1
|
Szabó A, Borkúti P, Kovács Z, Kristó I, Vilmos P. Recent advances in nuclear actin research. Nucleus 2025; 16:2498643. [PMID: 40320716 DOI: 10.1080/19491034.2025.2498643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2025] [Revised: 04/21/2025] [Accepted: 04/22/2025] [Indexed: 05/08/2025] Open
Abstract
Actin was first observed in the nucleus more than sixty years ago but research on nuclear actin did not receive significant attention for the next forty years. It only started to accelerate around the year 2000, when the first convincing experimental data emerged indicating that actin participates in essential nuclear processes. Today, we know that actin is involved in transcription, replication, DNA repair, chromatin remodeling, and participates in the determination of nuclear shape and size. In this paper we review the results of the last five years of increasingly intensive research on nuclear actin, because on one hand, the field has expanded with several new directions during this time, and on the other hand, the enrichment of our picture of nuclear actin will certainly provide a more solid foundation and new impetus for its future investigation.
Collapse
Affiliation(s)
- Anikó Szabó
- HUN-REN Biological Research Centre, Institute of Genetics, Szeged, Hungary
| | - Péter Borkúti
- HUN-REN Biological Research Centre, Institute of Genetics, Szeged, Hungary
| | - Zoltán Kovács
- HUN-REN Biological Research Centre, Institute of Genetics, Szeged, Hungary
| | - Ildikó Kristó
- HUN-REN Biological Research Centre, Institute of Genetics, Szeged, Hungary
| | - Péter Vilmos
- HUN-REN Biological Research Centre, Institute of Genetics, Szeged, Hungary
| |
Collapse
|
2
|
Obuse C, Nakayama JI. Functional involvement of RNAs and intrinsically disordered proteins in the assembly of heterochromatin. Biochim Biophys Acta Gen Subj 2025; 1869:130790. [PMID: 40057003 DOI: 10.1016/j.bbagen.2025.130790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2025] [Revised: 02/28/2025] [Accepted: 03/05/2025] [Indexed: 04/29/2025]
Abstract
Heterochromatin is a highly condensed chromatin structure observed in the nuclei of eukaryotic cells. It plays a pivotal role in repressing undesired gene expression and establishing functional chromosomal domains, including centromeres and telomeres. Heterochromatin is characterized by specific histone modifications and the formation of higher-order chromatin structures mediated by proteins, such as HP1 and Polycomb repressive complexes (PRCs), which recognize the specific histone modifications. Recent studies have identified the involvement of non-coding RNAs (ncRNAs) and intrinsically disordered proteins (IDPs) in heterochromatin, leading to the proposal of a new model in which liquid-liquid phase separation (LLPS) contributes to heterochromatin formation and function. This emerging model not only broadens our understanding of heterochromatin's molecular mechanisms but also provides insights into its dynamic regulation depending on cellular context. Such advancements pave the way for exploring heterochromatin's role in genome organization and stability, as well as its implications in development and disease.
Collapse
Affiliation(s)
- Chikashi Obuse
- Graduate School of Science, Osaka University, Toyonaka 560-0043, Japan.
| | - Jun-Ichi Nakayama
- Division of Chromatin Regulation, National Institute for Basic Biology, Okazaki 444-8585, Japan; Basic Biology Program, Graduate Institute for Advanced Studies, SOKENDAI, Okazaki 444-8585, Japan
| |
Collapse
|
3
|
Pougy KC, Brito BA, Melo GS, Pinheiro AS. Phase separation as a key mechanism in plant development, environmental adaptation, and abiotic stress response. J Biol Chem 2025:108548. [PMID: 40286852 DOI: 10.1016/j.jbc.2025.108548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2024] [Revised: 04/14/2025] [Accepted: 04/22/2025] [Indexed: 04/29/2025] Open
Abstract
Liquid-liquid phase separation is a fundamental biophysical process in which biopolymers, such as proteins, nucleic acids, and their complexes, spontaneously demix into distinct coexisting phases. This phenomenon drives the formation of membraneless organelles-cellular subcompartments without a lipid bilayer that perform specialized functions. In plants, phase-separated biomolecular condensates play pivotal roles in regulating gene expression, from genome organization to transcriptional and post-transcriptional processes. In addition, phase separation governs plant-specific traits, such as flowering and photosynthesis. As sessile organisms, plants have evolved to leverage phase separation for rapid sensing and response to environmental fluctuations and stress conditions. Recent studies highlight the critical role of phase separation in plant adaptation, particularly in response to abiotic stress. This review compiles the latest research on biomolecular condensates in plant biology, providing examples of their diverse functions in development, environmental adaptation, and stress responses. We propose that phase separation represents a conserved and dynamic mechanism enabling plants to adapt efficiently to ever-changing environmental conditions. Deciphering the molecular mechanisms underlying phase separation in plant stress responses opens new avenues for biotechnological strategies aimed at engineering stress-resistant crops. These advancements have significant implications for agriculture, particularly in addressing crop productivity in the face of climate change.
Collapse
Affiliation(s)
- Karina C Pougy
- Department of Biochemistry, Institute of Chemistry, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, 21941 909, Brazil.
| | - Bruna A Brito
- Department of Biochemistry, Institute of Chemistry, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, 21941 909, Brazil
| | - Giovanna S Melo
- Department of Biochemistry, Institute of Chemistry, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, 21941 909, Brazil
| | - Anderson S Pinheiro
- Department of Biochemistry, Institute of Chemistry, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, 21941 909, Brazil
| |
Collapse
|
4
|
Hammonds EF, Singh A, Suresh KK, Yang S, Zahorodny SSM, Gupta R, Potoyan DA, Banerjee PR, Morrison EA. Histone H3 tail charge patterns govern nucleosome condensate formation and dynamics. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.04.09.647968. [PMID: 40291647 PMCID: PMC12027143 DOI: 10.1101/2025.04.09.647968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/30/2025]
Abstract
Emerging models of nuclear organization suggest that chromatin forms functionally distinct microenvironments through phase separation. As chromatin architecture is organized at the level of the nucleosome and regulated by histone post-translational modifications, we investigated how these known regulatory mechanisms influence nucleosome phase behavior. By systematically altering charge distribution within the H3 tail, we found that specific regions modulate the phase boundary and tune nucleosome condensate viscosity, as revealed by microscopy-based assays, microrheology, and simulations. Nuclear magnetic resonance relaxation experiments showed that H3 tails remain dynamically mobile within condensates, and their mobility correlates with condensate viscosity. These results demonstrate that the number, identity, and spatial arrangement of basic residues in the H3 tail critically regulate nucleosome phase separation. Our findings support a model in which nucleosomes, through their intrinsic properties and modifications, actively shape the local chromatin microenvironment-providing new insight into the histone language in chromatin condensates.
Collapse
|
5
|
Paldi F, Cavalli G. 3D genome folding in epigenetic regulation and cellular memory. Trends Cell Biol 2025:S0962-8924(25)00065-0. [PMID: 40221344 DOI: 10.1016/j.tcb.2025.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 03/07/2025] [Accepted: 03/11/2025] [Indexed: 04/14/2025]
Abstract
The 3D folding of the genome is tightly linked to its epigenetic state which maintains gene expression programmes. Although the relationship between gene expression and genome organisation is highly context dependent, 3D genome organisation is emerging as a novel epigenetic layer to reinforce and stabilise transcriptional states. Whether regulatory information carried in genome folding could be transmitted through mitosis is an area of active investigation. In this review, we discuss the relationship between epigenetic state and nuclear organisation, as well as the interplay between transcriptional regulation and epigenetic genome folding. We also consider the architectural remodelling of nuclei as cells enter and exit mitosis, and evaluate the potential of the 3D genome to contribute to cellular memory.
Collapse
Affiliation(s)
- Flora Paldi
- Institute of Human Genetics, CNRS and University of Montpellier, Montpellier, France
| | - Giacomo Cavalli
- Institute of Human Genetics, CNRS and University of Montpellier, Montpellier, France.
| |
Collapse
|
6
|
Breves SL, Di Giammartino DC, Nicholson J, Cirigliano S, Mahmood SR, Lee UJ, Martinez-Fundichely A, Jungverdorben J, Singhania R, Rajkumar S, Kirou R, Studer L, Khurana E, Polyzos A, Fine HA, Apostolou E. Three-dimensional regulatory hubs support oncogenic programs in glioblastoma. Mol Cell 2025; 85:1330-1348.e6. [PMID: 40147440 PMCID: PMC12009607 DOI: 10.1016/j.molcel.2025.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 12/18/2024] [Accepted: 03/05/2025] [Indexed: 03/29/2025]
Abstract
Dysregulation of enhancer-promoter communication in the three-dimensional (3D) nucleus is increasingly recognized as a potential driver of oncogenic programs. Here, we profiled the 3D enhancer-promoter networks of patient-derived glioblastoma stem cells to identify central regulatory nodes. We focused on hyperconnected 3D hubs and demonstrated that hub-interacting genes exhibit high and coordinated expression at the single-cell level and are associated with oncogenic programs that distinguish glioblastoma from low-grade glioma. Epigenetic silencing of a recurrent hub-with an uncharacterized role in glioblastoma-was sufficient to cause downregulation of hub-connected genes, shifts in transcriptional states, and reduced clonogenicity. Integration of datasets across 16 cancers identified "universal" and cancer-type-specific 3D hubs that enrich for oncogenic programs and factors associated with worse prognosis. Genetic alterations could explain only a small fraction of hub hyperconnectivity and increased activity. Overall, our study provides strong support for the potential central role of 3D regulatory hubs in controlling oncogenic programs and properties.
Collapse
Affiliation(s)
- Sarah L Breves
- Sanford I. Weill Department of Medicine, Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA; Physiology, Biophysics and Systems Biology Program, Weill Cornell Graduate School of Medical Sciences, Cornell University, New York, NY, USA; Department of Surgery, New York-Presbyterian Hospital, Weill Cornell Medicine, New York, NY, USA; Division of Hematology/Oncology, Department of Medicine, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Dafne Campigli Di Giammartino
- Sanford I. Weill Department of Medicine, Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA; Division of Hematology/Oncology, Department of Medicine, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - James Nicholson
- Sanford I. Weill Department of Medicine, Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA; Meyer Cancer Center, Division of Neuro-Oncology, Department of Neurology, Sandra and Edward Meyer Cancer Center, New York-Presbyterian Hospital, Weill Cornell Medicine, New York, NY, USA
| | - Stefano Cirigliano
- Sanford I. Weill Department of Medicine, Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA; Meyer Cancer Center, Division of Neuro-Oncology, Department of Neurology, Sandra and Edward Meyer Cancer Center, New York-Presbyterian Hospital, Weill Cornell Medicine, New York, NY, USA
| | - Syed Raza Mahmood
- Sanford I. Weill Department of Medicine, Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA; Division of Hematology/Oncology, Department of Medicine, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Uk Jin Lee
- Sanford I. Weill Department of Medicine, Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA; Division of Hematology/Oncology, Department of Medicine, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Alexander Martinez-Fundichely
- Sanford I. Weill Department of Medicine, Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA; Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY 10021, USA; Caryl and Israel Englander Institute for Precision Medicine, New York-Presbyterian Hospital, Weill Cornell Medicine, New York, NY 10065, USA; Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY 10065, USA
| | - Johannes Jungverdorben
- Center for Stem Cell Biology, Developmental Biology Program, Sloan Kettering Institute for Cancer Research, New York, NY, USA
| | - Richa Singhania
- Sanford I. Weill Department of Medicine, Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA; Meyer Cancer Center, Division of Neuro-Oncology, Department of Neurology, Sandra and Edward Meyer Cancer Center, New York-Presbyterian Hospital, Weill Cornell Medicine, New York, NY, USA
| | - Sandy Rajkumar
- Sanford I. Weill Department of Medicine, Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA; Division of Hematology/Oncology, Department of Medicine, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Raphael Kirou
- Sanford I. Weill Department of Medicine, Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA; Division of Hematology/Oncology, Department of Medicine, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Lorenz Studer
- Center for Stem Cell Biology, Developmental Biology Program, Sloan Kettering Institute for Cancer Research, New York, NY, USA
| | - Ekta Khurana
- Sanford I. Weill Department of Medicine, Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA; Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY 10021, USA; Caryl and Israel Englander Institute for Precision Medicine, New York-Presbyterian Hospital, Weill Cornell Medicine, New York, NY 10065, USA; Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY 10065, USA
| | - Alexander Polyzos
- Sanford I. Weill Department of Medicine, Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA; Division of Hematology/Oncology, Department of Medicine, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Howard A Fine
- Sanford I. Weill Department of Medicine, Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA; Meyer Cancer Center, Division of Neuro-Oncology, Department of Neurology, Sandra and Edward Meyer Cancer Center, New York-Presbyterian Hospital, Weill Cornell Medicine, New York, NY, USA.
| | - Effie Apostolou
- Sanford I. Weill Department of Medicine, Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA; Division of Hematology/Oncology, Department of Medicine, Weill Cornell Medicine, Cornell University, New York, NY, USA.
| |
Collapse
|
7
|
Liu Y, Xiao S, Yang M, Guo G, Zhou Y. The Impact of Polycomb Group Proteins on 3D Chromatin Structure and Environmental Stresses in Plants. PLANTS (BASEL, SWITZERLAND) 2025; 14:1038. [PMID: 40219106 PMCID: PMC11990978 DOI: 10.3390/plants14071038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Revised: 03/19/2025] [Accepted: 03/25/2025] [Indexed: 04/14/2025]
Abstract
The two multi-subunit complexes, Polycomb Repressive Complex 1 and 2 (PRC1/2), act synergistically during development to maintain the gene silencing state among different species. In contrast with mammals and Drosophila melanogaster, the enzyme activities and components of the PRC1 complex in plants are not fully conserved. In addition, the mutual recruitment of PRC1 and PRC2 in plants differs from that observed in mammals and Drosophila. Polycomb Group (PcG) proteins and their catalytic activity play an indispensable role in transcriptional regulation, developmental processes, and the maintenance of cellular identity. In plants, PRC1 and PRC2 deposit H2Aub and H3K27me3, respectively, and also play an important role in influencing three-dimensional (3D) chromatin structure. With the development of high-throughput sequencing techniques and computational biology, remarkable progress has been made in the field of plant 3D chromatin structure, and PcG has been found to be involved in the epigenetic regulation of gene expression by mediating the formation of 3D chromatin structures. At the same time, some genetic evidence indicates that PcG enables plants to better adapt to and resist a wide range of stresses by dynamically regulating gene expression. In the following review, we focus on the recruitment relationship between PRC1 and PRC2, the crucial role of PcG enzyme activity, the effect of PcG on 3D chromatin structure, and the vital role of PcG in environmental stress in plants.
Collapse
Affiliation(s)
- Yali Liu
- Institute of Cell Biology and MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China;
| | - Suxin Xiao
- State Key Laboratory of Gene Function and Modulation Research, School of Advanced Agricultural Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China; (S.X.); (M.Y.)
| | - Minqi Yang
- State Key Laboratory of Gene Function and Modulation Research, School of Advanced Agricultural Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China; (S.X.); (M.Y.)
| | - Guangqin Guo
- Institute of Cell Biology and MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China;
| | - Yue Zhou
- State Key Laboratory of Gene Function and Modulation Research, School of Advanced Agricultural Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China; (S.X.); (M.Y.)
| |
Collapse
|
8
|
Li Z, Portillo-Ledesma S, Janani M, Schlick T. Incorporating multiscale methylation effects into nucleosome-resolution chromatin models for simulating mesoscale fibers. J Chem Phys 2025; 162:094107. [PMID: 40047512 PMCID: PMC11888786 DOI: 10.1063/5.0242199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Accepted: 01/04/2025] [Indexed: 03/09/2025] Open
Abstract
Histone modifications play a crucial role in regulating chromatin architecture and gene expression. Here we develop a multiscale model for incorporating methylation in our nucleosome-resolution physics-based chromatin model to investigate the mechanisms by which H3K9 and H3K27 trimethylation (H3K9me3 and H3K27me3) influence chromatin structure and gene regulation. We apply three types of energy terms for this purpose: short-range potentials are derived from all-atom molecular dynamics simulations of wildtype and methylated chromatosomes, which revealed subtle local changes; medium-range potentials are derived by incorporating contacts between HP1 and nucleosomes modified by H3K9me3, to incorporate experimental results of enhanced contacts for short chromatin fibers (12 nucleosomes); for long-range interactions we identify H3K9me3- and H3K27me3-associated contacts based on Hi-C maps with a machine learning approach. These combined multiscale effects can model methylation as a first approximation in our mesoscale chromatin model, and applications to gene systems offer new insights into the epigenetic regulation of genomes mediated by H3K9me3 and H3K27me3.
Collapse
Affiliation(s)
| | | | - Moshe Janani
- Department of Chemistry, New York University, 100 Washington Square East, Silver Building, New York, New York 10003, USA
| | | |
Collapse
|
9
|
Uckelmann M, Levina V, Taveneau C, Ng XH, Pandey V, Martinez J, Mendiratta S, Houx J, Boudes M, Venugopal H, Trépout S, Fulcher AJ, Zhang Q, Flanigan S, Li M, Sierecki E, Gambin Y, Das PP, Bell O, de Marco A, Davidovich C. Dynamic PRC1-CBX8 stabilizes a porous structure of chromatin condensates. Nat Struct Mol Biol 2025; 32:520-530. [PMID: 39815045 PMCID: PMC11919719 DOI: 10.1038/s41594-024-01457-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 11/21/2024] [Indexed: 01/18/2025]
Abstract
The compaction of chromatin is a prevalent paradigm in gene repression. Chromatin compaction is commonly thought to repress transcription by restricting chromatin accessibility. However, the spatial organization and dynamics of chromatin compacted by gene-repressing factors are unknown. Here, using cryo-electron tomography, we solved the three-dimensional structure of chromatin condensed by the polycomb repressive complex 1 (PRC1) in a complex with CBX8. PRC1-condensed chromatin is porous and stabilized through multivalent dynamic interactions of PRC1 with chromatin. Mechanistically, positively charged residues on the internally disordered regions of CBX8 mask negative charges on the DNA to stabilize the condensed state of chromatin. Within condensates, PRC1 remains dynamic while maintaining a static chromatin structure. In differentiated mouse embryonic stem cells, CBX8-bound chromatin remains accessible. These findings challenge the idea of rigidly compacted polycomb domains and instead provide a mechanistic framework for dynamic and accessible PRC1-chromatin condensates.
Collapse
Affiliation(s)
- Michael Uckelmann
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, Victoria, Australia
| | - Vita Levina
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, Victoria, Australia
| | - Cyntia Taveneau
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, Victoria, Australia
- ARC Centre of Excellence in Advanced Molecular Imaging, Monash University, Clayton, Victoria, Australia
| | - Xiao Han Ng
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, Victoria, Australia
| | - Varun Pandey
- Department of Anatomy and Developmental Biology, Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Jasmine Martinez
- Departments of Biochemistry and Molecular Medicine, and Stem Cell and Regenerative Medicine, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Shweta Mendiratta
- Departments of Biochemistry and Molecular Medicine, and Stem Cell and Regenerative Medicine, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Justin Houx
- EMBL Australia Node for Single Molecule Science and School of Biomedical Sciences, Faculty of Medicine, The University of New South Wales, Sydney, New South Wales, Australia
| | - Marion Boudes
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, Victoria, Australia
| | - Hari Venugopal
- Ramaciotti Centre for Cryo-Electron Microscopy, Monash University, Monash, Victoria, Australia
| | - Sylvain Trépout
- Ramaciotti Centre for Cryo-Electron Microscopy, Monash University, Monash, Victoria, Australia
| | - Alex J Fulcher
- Monash Micro Imaging, Monash University, Clayton, Victoria, Australia
| | - Qi Zhang
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, Victoria, Australia
| | - Sarena Flanigan
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, Victoria, Australia
| | - Minrui Li
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, Victoria, Australia
- Faculty of Information Technology, Monash University, Clayton, Victoria, Australia
| | - Emma Sierecki
- EMBL Australia Node for Single Molecule Science and School of Biomedical Sciences, Faculty of Medicine, The University of New South Wales, Sydney, New South Wales, Australia
| | - Yann Gambin
- EMBL Australia Node for Single Molecule Science and School of Biomedical Sciences, Faculty of Medicine, The University of New South Wales, Sydney, New South Wales, Australia
| | - Partha Pratim Das
- Department of Anatomy and Developmental Biology, Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Oliver Bell
- Departments of Biochemistry and Molecular Medicine, and Stem Cell and Regenerative Medicine, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Alex de Marco
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, Victoria, Australia
- ARC Centre of Excellence in Advanced Molecular Imaging, Monash University, Clayton, Victoria, Australia
- Simons Electron Microscopy Center, New York Structural Biology Center, New York, NY, USA
| | - Chen Davidovich
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, Victoria, Australia.
- EMBL-Australia, Clayton, Victoria, Australia.
| |
Collapse
|
10
|
Pei G, Lyons H, Li P, Sabari BR. Transcription regulation by biomolecular condensates. Nat Rev Mol Cell Biol 2025; 26:213-236. [PMID: 39516712 DOI: 10.1038/s41580-024-00789-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/30/2024] [Indexed: 11/16/2024]
Abstract
Biomolecular condensates regulate transcription by dynamically compartmentalizing the transcription machinery. Classic models of transcription regulation focus on the recruitment and regulation of RNA polymerase II by the formation of complexes at the 1-10 nm length scale, which are driven by structured and stoichiometric interactions. These complexes are further organized into condensates at the 100-1,000 nm length scale, which are driven by dynamic multivalent interactions often involving domain-ligand pairs or intrinsically disordered regions. Regulation through condensate-mediated organization does not supersede the processes occurring at the 1-10 nm scale, but it provides regulatory mechanisms for promoting or preventing these processes in the crowded nuclear environment. Regulation of transcription by transcriptional condensates is involved in cell state transitions during animal and plant development, cell signalling and cellular responses to the environment. These condensate-mediated processes are dysregulated in developmental disorders, cancer and neurodegeneration. In this Review, we discuss the principles underlying the regulation of transcriptional condensates, their roles in physiology and their dysregulation in human diseases.
Collapse
Affiliation(s)
- Gaofeng Pei
- State Key Laboratory of Membrane Biology, School of Life Sciences, Tsinghua University, Beijing, China
- Beijing Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University, Beijing, China
- Tsinghua-Peking Center for Life Sciences, Beijing, China
| | - Heankel Lyons
- Laboratory of Nuclear Organization, Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Pilong Li
- State Key Laboratory of Membrane Biology, School of Life Sciences, Tsinghua University, Beijing, China.
- Beijing Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University, Beijing, China.
- Tsinghua-Peking Center for Life Sciences, Beijing, China.
| | - Benjamin R Sabari
- Laboratory of Nuclear Organization, Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, TX, USA.
- Division of Basic Research, Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, TX, USA.
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA.
- Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
11
|
Gemeinhardt TM, Regy RM, Phan TM, Pal N, Sharma J, Senkovich O, Mendiola AJ, Ledterman HJ, Henrickson A, Lopes D, Kapoor U, Bihani A, Sihou D, Kim YC, Jeruzalmi D, Demeler B, Kim CA, Mittal J, Francis NJ. How a disordered linker in the Polycomb protein Polyhomeotic tunes phase separation and oligomerization. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2023.10.26.564264. [PMID: 37961422 PMCID: PMC10634872 DOI: 10.1101/2023.10.26.564264] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Biomolecular condensates are increasingly appreciated for their function in organizing and regulating biochemical processes in cells, including chromatin function. Condensate formation and properties are encoded in protein sequence but the mechanisms linking sequence to macroscale properties are incompletely understood. Cross species comparisons can reveal mechanisms either because they identify conserved functions or because they point to important differences. Here we use in vitro reconstitution and molecular dynamics simulations to compare Drosophila and human sequences that regulate condensate formation driven by the sterile alpha motif (SAM) oligomerization domain in the Polyhomeotic (Ph) subunit of the chromatin regulatory complex PRC1. We discover evolutionarily diverged contacts between the conserved SAM and the disordered linker that connects it to the rest of Ph. Linker-SAM interactions increase oligomerization and regulate formation and properties of reconstituted condensates. Oligomerization affects condensate dynamics but, in most cases, has little effect on their formation. Linker-SAM interactions also affect condensate formation in Drosophila and human cells, and growth in Drosophila imaginal discs. Our data show how evolutionary sequence changes in linkers connecting conserved structured domains can alter condensate properties.
Collapse
Affiliation(s)
- Tim M. Gemeinhardt
- Montreal Clinical Research Institute (IRCM), Montreal, QC, Canada
- Division of Experimental Medicine, McGill University, Montreal, QC, Canada
| | - Roshan M. Regy
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, TX, USA
| | - Tien M. Phan
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, TX, USA
| | - Nanu Pal
- Montreal Clinical Research Institute (IRCM), Montreal, QC, Canada
- Department of Biochemistry and Molecular Medicine, University of Montreal, Montreal, QC, Canada
| | - Jyoti Sharma
- Montreal Clinical Research Institute (IRCM), Montreal, QC, Canada
| | - Olga Senkovich
- Department of Biochemistry and Molecular Genetics, Midwestern University, Glendale, AZ, USA
| | - Andrea J. Mendiola
- Department of Biochemistry and Molecular Genetics, Midwestern University, Glendale, AZ, USA
| | - Heather J. Ledterman
- Department of Biochemistry and Molecular Genetics, Midwestern University, Glendale, AZ, USA
| | - Amy Henrickson
- Department of Chemistry and Biochemistry, The University of Lethbridge, Lethbridge, AB, Canada
| | - Daniel Lopes
- Department of Chemistry and Biochemistry, City College of New York, NY, USA
| | - Utkarsh Kapoor
- Department of Chemical and Biomedical Engineering, University of Wyoming, Laramie, WY, USA
| | - Ashish Bihani
- Montreal Clinical Research Institute (IRCM), Montreal, QC, Canada
- Division of Experimental Medicine, McGill University, Montreal, QC, Canada
| | - Djamouna Sihou
- Montreal Clinical Research Institute (IRCM), Montreal, QC, Canada
- Department of Biochemistry and Molecular Medicine, University of Montreal, Montreal, QC, Canada
| | - Young C. Kim
- Center for Materials Physics and Technology, Naval Research Laboratory, Washington, DC, USA
| | - David Jeruzalmi
- Department of Chemistry and Biochemistry, City College of New York, NY, USA
- Ph.D. Program in Biochemistry, The Graduate Center of the City University of New York, New York, NY, USA
- Ph.D. Program in Biology, The Graduate Center of the City University of New York, New York, NY, USA
- Ph.D. Program in Chemistry, The Graduate Center of the City University of New York, New York, NY, USA
| | - Borries Demeler
- Department of Chemistry and Biochemistry, The University of Lethbridge, Lethbridge, AB, Canada
- Department of Chemistry and Biochemistry, University of Montana, Missoula, MT, United States
| | - Chongwoo A. Kim
- Department of Biochemistry and Molecular Genetics, Midwestern University, Glendale, AZ, USA
| | - Jeetain Mittal
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, TX, USA
- Department of Chemistry, Texas A&M University, College Station, TX, USA
- Interdisciplinary Graduate Program in Genetics and Genomics, Texas A&M University, College Station, TX, USA
| | - Nicole J. Francis
- Montreal Clinical Research Institute (IRCM), Montreal, QC, Canada
- Division of Experimental Medicine, McGill University, Montreal, QC, Canada
- Department of Biochemistry and Molecular Medicine, University of Montreal, Montreal, QC, Canada
- Lead contact
| |
Collapse
|
12
|
Brulé B, Alcalá-Vida R, Penaud N, Scuto J, Mounier C, Seguin J, Khodaverdian SV, Cosquer B, Birmelé E, Le Gras S, Decraene C, Boutillier AL, Merienne K. Accelerated epigenetic aging in Huntington's disease involves polycomb repressive complex 1. Nat Commun 2025; 16:1550. [PMID: 39934111 DOI: 10.1038/s41467-025-56722-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 01/29/2025] [Indexed: 02/13/2025] Open
Abstract
Loss of epigenetic information during physiological aging compromises cellular identity, leading to de-repression of developmental genes. Here, we assessed the epigenomic landscape of vulnerable neurons in two reference mouse models of Huntington neurodegenerative disease (HD), using cell-type-specific multi-omics, including temporal analysis at three disease stages via FANS-CUT&Tag. We show accelerated de-repression of developmental genes in HD striatal neurons, involving histone re-acetylation and depletion of H2AK119 ubiquitination and H3K27 trimethylation marks, which are catalyzed by polycomb repressive complexes 1 and 2 (PRC1 and PRC2), respectively. We further identify a PRC1-dependent subcluster of bivalent developmental transcription factors that is re-activated in HD striatal neurons. This mechanism likely involves progressive paralog switching between PRC1-CBX genes, which promotes the upregulation of normally low-expressed PRC1-CBX2/4/8 isoforms in striatal neurons, alongside the down-regulation of predominant PRC1-CBX isoforms in these cells (e.g., CBX6/7). Collectively, our data provide evidence for PRC1-dependent accelerated epigenetic aging in HD vulnerable neurons.
Collapse
Affiliation(s)
- Baptiste Brulé
- Laboratoire de Neurosciences Cognitives et Adaptatives (LNCA), Strasbourg, France
- Centre National de la Recherche Scientifique (CNRS, UMR 7364), Strasbourg, France
- University of Strasbourg, Strasbourg, France
| | - Rafael Alcalá-Vida
- Laboratoire de Neurosciences Cognitives et Adaptatives (LNCA), Strasbourg, France
- Centre National de la Recherche Scientifique (CNRS, UMR 7364), Strasbourg, France
- University of Strasbourg, Strasbourg, France
- Instituto de Neurociencias (Universidad Miguel Hernández - Consejo Superior de Investigaciones Científicas). Av. Santiago Ramón y Cajal s/n. Sant Joan d'Alacant, Alicante, Spain
| | - Noémie Penaud
- Laboratoire de Neurosciences Cognitives et Adaptatives (LNCA), Strasbourg, France
- Centre National de la Recherche Scientifique (CNRS, UMR 7364), Strasbourg, France
- University of Strasbourg, Strasbourg, France
| | - Jil Scuto
- Laboratoire de Neurosciences Cognitives et Adaptatives (LNCA), Strasbourg, France
- Centre National de la Recherche Scientifique (CNRS, UMR 7364), Strasbourg, France
- University of Strasbourg, Strasbourg, France
| | - Coline Mounier
- Laboratoire de Neurosciences Cognitives et Adaptatives (LNCA), Strasbourg, France
- Centre National de la Recherche Scientifique (CNRS, UMR 7364), Strasbourg, France
- University of Strasbourg, Strasbourg, France
| | - Jonathan Seguin
- Laboratoire de Neurosciences Cognitives et Adaptatives (LNCA), Strasbourg, France
- Centre National de la Recherche Scientifique (CNRS, UMR 7364), Strasbourg, France
- University of Strasbourg, Strasbourg, France
| | | | - Brigitte Cosquer
- Laboratoire de Neurosciences Cognitives et Adaptatives (LNCA), Strasbourg, France
- Centre National de la Recherche Scientifique (CNRS, UMR 7364), Strasbourg, France
- University of Strasbourg, Strasbourg, France
| | - Etienne Birmelé
- University of Strasbourg, Strasbourg, France
- IRMA, Strasbourg, France
| | - Stéphanie Le Gras
- University of Strasbourg, Strasbourg, France
- Institut de Genetique et de Biologie Moleculaire et Cellulaire, Strasbourg, France
- CNRS UMR7104, Strasbourg, France
- INSERM U1258, Strasbourg, France
| | - Charles Decraene
- Laboratoire de Neurosciences Cognitives et Adaptatives (LNCA), Strasbourg, France
- Centre National de la Recherche Scientifique (CNRS, UMR 7364), Strasbourg, France
- University of Strasbourg, Strasbourg, France
| | - Anne-Laurence Boutillier
- Laboratoire de Neurosciences Cognitives et Adaptatives (LNCA), Strasbourg, France
- Centre National de la Recherche Scientifique (CNRS, UMR 7364), Strasbourg, France
- University of Strasbourg, Strasbourg, France
| | - Karine Merienne
- Laboratoire de Neurosciences Cognitives et Adaptatives (LNCA), Strasbourg, France.
- Centre National de la Recherche Scientifique (CNRS, UMR 7364), Strasbourg, France.
- University of Strasbourg, Strasbourg, France.
| |
Collapse
|
13
|
Li W, Shi R, Gao Y, Wang X, Shen T, Liu X, Wu Q, Xu X, Wang Z, Du S, Sun S, Yang L, Cai J, Liu L. CBX2 promotes cervical cancer cell proliferation and resistance to DNA-damaging treatment via maintaining cancer stemness. J Biol Chem 2025; 301:108170. [PMID: 39793896 PMCID: PMC11835617 DOI: 10.1016/j.jbc.2025.108170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 01/01/2025] [Accepted: 01/03/2025] [Indexed: 01/13/2025] Open
Abstract
Cervical cancer is the fourth most common malignancy and the fourth leading cause of cancer-related death among women. Advanced stages and resistance to treatment in cervical cancer induce cancer-related deaths. Although epigenetics has been known to play a vital role in tumor progression and resistance, the function of epigenetic regulators in cervical cancer is an area of investigation. In this study, we focused on an epigenetic regulator, polycomb repressor complex 1 in cervical cancer. Through bioinformatics analysis and immunochemistry, we subsequently identified chromobox 2CBX2), the deregulated subunit of polycomb repressor complex 1, which is upregulated in cervical cancer and associated with poor prognosis and unfavorable clinicopathological characteristics. We provided functional evidence demonstrating that CBX2 promoted cervical cancer cell proliferation. Furthermore, CBX2 exhibited an antiapoptotic effect, which induced resistance to cisplatin and ionizing radiation in cervical cancer cells. Moreover, CBX2 was involved in maintaining cancer stemness. These findings suggest that CBX2 plays an important role in cervical cancer progression and resistance to treatment, and may serve as a potential biomarker for prognosis and resistance as well as a potential therapeutic target.
Collapse
Affiliation(s)
- Wenhan Li
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ru Shi
- Department of Obstetrics and Gynecology, Shanxi Children's Hospital, Shanxi Maternal and Child Health Hospital, Taiyuan, Shanxi, China
| | - Yumei Gao
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoman Wang
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tiantian Shen
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoli Liu
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qiulei Wu
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaohan Xu
- Department of Gynecology, Qingdao Municipal Hospital, Qingdao, China
| | - Zanhong Wang
- Department of Obstetrics and Gynecology, Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
| | - Shi Du
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Si Sun
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lu Yang
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jing Cai
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Lin Liu
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
14
|
Salomoni P, Flanagan AM, Cottone L. (B)On(e)-cohistones and the epigenetic alterations at the root of bone cancer. Cell Death Differ 2025; 32:66-77. [PMID: 37828086 PMCID: PMC11748643 DOI: 10.1038/s41418-023-01227-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 09/20/2023] [Accepted: 09/27/2023] [Indexed: 10/14/2023] Open
Abstract
Identification of mutations in histones in a number of human neoplasms and developmental syndromes represents the most compelling evidence to date for a causal role of epigenetic perturbations in human disease. In most cases, these mutations have gain of function properties that cause deviation from normal developmental processes leading to embryo defects and/or neoplastic transformation. These exciting discoveries represent a step-change in our understanding of the role of chromatin (dys)regulation in development and disease. However, the mechanisms of action of oncogenic histone mutations (oncohistones) remain only partially understood. Here, we critically assess existing literature on oncohistones focussing mainly on bone neoplasms. We show how it is possible to draw parallels with some of the cell-autonomous mechanisms of action described in paediatric brain cancer, although the functions of oncohistones in bone tumours remain under-investigated. In this respect, it is becoming clear that histone mutations targeting the same residues display, at least in part, tissue-specific oncogenic mechanisms. Furthermore, it is emerging that cancer cells carrying oncohistones can modify the surrounding microenvironment to support growth and/or alter differentiation trajectories. A better understanding of oncohistone function in different neoplasms provide potential for identification of signalling that could be targeted therapeutically. Finally, we discuss some of the main concepts and future directions in this research area, while also drawing possible connections and parallels with other cancer epigenetic mechanisms.
Collapse
Affiliation(s)
- Paolo Salomoni
- Nuclear Function Group, German Center for Neurodegenerative Diseases (DZNE), 53127, Bonn, Germany.
| | - Adrienne M Flanagan
- Department of Histopathology, Royal National Orthopaedic Hospital, Stanmore, Middlesex, HA7 4LP, UK
- Department of Pathology, UCL Cancer Institute, University College London, London, WC1E 6BT, UK
| | - Lucia Cottone
- Department of Pathology, UCL Cancer Institute, University College London, London, WC1E 6BT, UK.
| |
Collapse
|
15
|
Breves SL, Di Giammartino DC, Nicholson J, Cirigliano S, Mahmood SR, Lee UJ, Martinez-Fundichely A, Jungverdorben J, Singhania R, Rajkumar S, Kirou R, Studer L, Khurana E, Polyzos A, Fine HA, Apostolou E. Three-dimensional regulatory hubs support oncogenic programs in glioblastoma. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.20.629544. [PMID: 40034649 PMCID: PMC11875237 DOI: 10.1101/2024.12.20.629544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
Dysregulation of enhancer-promoter communication in the context of the three-dimensional (3D) nucleus is increasingly recognized as a potential driver of oncogenic programs. Here, we profiled the 3D enhancer-promoter networks of primary patient-derived glioblastoma stem cells (GSCs) in comparison with neuronal stem cells (NSCs) to identify potential central nodes and vulnerabilities in the regulatory logic of this devastating cancer. Specifically, we focused on hyperconnected 3D regulatory hubs and demonstrated that hub-interacting genes exhibit high and coordinated expression at the single-cell level and strong association with oncogenic programs that distinguish IDH-wt glioblastoma patients from low-grade glioma. Epigenetic silencing of a recurrent 3D enhancer hub-with an uncharacterized role in glioblastoma-was sufficient to cause concordant downregulation of multiple hub-connected genes along with significant shifts in transcriptional states and reduced clonogenicity. By integrating published datasets from other cancer types, we also identified both universal and cancer type-specific 3D regulatory hubs which enrich for varying oncogenic programs and nominate specific factors associated with worse outcomes. Genetic alterations, such as focal duplications, could explain only a small fraction of the detected hyperconnected hubs and their increased activity. Overall, our study provides computational and experimental support for the potential central role of 3D regulatory hubs in controlling oncogenic programs and properties.
Collapse
Affiliation(s)
- Sarah L. Breves
- Sanford I. Weill Department of Medicine, Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, United States
- Physiology, Biophysics and Systems Biology Program, Weill Cornell Graduate School of Medical Sciences, Cornell University, New York, NY, USA
- Division of Hematology/Oncology, Department of Medicine, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Dafne Campigli Di Giammartino
- Sanford I. Weill Department of Medicine, Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, United States
- Division of Hematology/Oncology, Department of Medicine, Weill Cornell Medicine, Cornell University, New York, NY, USA
- 3D Chromatin Conformation and RNA genomics laboratory, Istituto Italiano di Tecnologia (IIT), Center for Human Technologies (CHT), Genova, Italy (current affiliation)
| | - James Nicholson
- Meyer Cancer Center, Division of Neuro-Oncology, Department of Neurology, Sandra and Edward Meyer Cancer Center, New York-Presbyterian Hospital/Weill Cornell Medicine, New York, NY, USA
| | - Stefano Cirigliano
- Meyer Cancer Center, Division of Neuro-Oncology, Department of Neurology, Sandra and Edward Meyer Cancer Center, New York-Presbyterian Hospital/Weill Cornell Medicine, New York, NY, USA
| | - Syed Raza Mahmood
- Sanford I. Weill Department of Medicine, Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, United States
- Division of Hematology/Oncology, Department of Medicine, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Uk Jin Lee
- Sanford I. Weill Department of Medicine, Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, United States
- Division of Hematology/Oncology, Department of Medicine, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Alexander Martinez-Fundichely
- Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, 10021, USA
- Meyer Cancer Center, Sandra and Edward Meyer Cancer Center, New York-Presbyterian Hospital/Weill Cornell Medicine, New York, NY, USA
- Caryl and Israel Englander Institute for Precision Medicine, New York Presbyterian Hospital, Weill Cornell Medicine, New York, NY 10065, USA
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY 10065, USA
| | - Johannes Jungverdorben
- The Center for Stem Cell Biology, Developmental Biology Program, Sloan Kettering Institute for Cancer Research, New York, NY, USA
| | - Richa Singhania
- Meyer Cancer Center, Division of Neuro-Oncology, Department of Neurology, Sandra and Edward Meyer Cancer Center, New York-Presbyterian Hospital/Weill Cornell Medicine, New York, NY, USA
| | - Sandy Rajkumar
- Sanford I. Weill Department of Medicine, Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, United States
- Division of Hematology/Oncology, Department of Medicine, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Raphael Kirou
- Sanford I. Weill Department of Medicine, Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, United States
- Division of Hematology/Oncology, Department of Medicine, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Lorenz Studer
- The Center for Stem Cell Biology, Developmental Biology Program, Sloan Kettering Institute for Cancer Research, New York, NY, USA
| | - Ekta Khurana
- Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, 10021, USA
- Meyer Cancer Center, Sandra and Edward Meyer Cancer Center, New York-Presbyterian Hospital/Weill Cornell Medicine, New York, NY, USA
- Caryl and Israel Englander Institute for Precision Medicine, New York Presbyterian Hospital, Weill Cornell Medicine, New York, NY 10065, USA
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY 10065, USA
| | - Alexander Polyzos
- Sanford I. Weill Department of Medicine, Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, United States
- Division of Hematology/Oncology, Department of Medicine, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Howard A. Fine
- 3D Chromatin Conformation and RNA genomics laboratory, Istituto Italiano di Tecnologia (IIT), Center for Human Technologies (CHT), Genova, Italy (current affiliation)
| | - Effie Apostolou
- Sanford I. Weill Department of Medicine, Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, United States
- Division of Hematology/Oncology, Department of Medicine, Weill Cornell Medicine, Cornell University, New York, NY, USA
| |
Collapse
|
16
|
Li X, Liu C, Lei Z, Chen H, Wang L. Phase-separated chromatin compartments: Orchestrating gene expression through condensation. CELL INSIGHT 2024; 3:100213. [PMID: 39512706 PMCID: PMC11541479 DOI: 10.1016/j.cellin.2024.100213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 10/07/2024] [Accepted: 10/07/2024] [Indexed: 11/15/2024]
Abstract
Eukaryotic genomes are organized into distinct chromatin compartments, some of which exhibit properties of biomolecular condensates. These condensates primarily form due to chromatin-associated proteins/complexes (CAPs). CAPs play a crucial role in gene expression, functioning as either transcriptional repressors or activators. Phase separation, a well-established biophysical phenomenon, is a key driver of chromatin condensate formation by CAPs. Notably, multivalent CAPs with the ability to engage in diverse interactions promote chromatin compaction, leading to the formation of transcriptionally repressed compartments. Conversely, interactions between intrinsically disordered region (IDR)-containing transcriptional regulators, mediated by their multivalent IDRs, lead to the formation of protein-rich, transcriptionally active droplets on decondensed genomic regions. Interestingly, both repressive heterochromatin and activating euchromatin condensates exhibit spontaneous phase separation and selectively enrich components with concordant transcriptional functions. This review delves into the mechanisms by which transcriptionally repressive CAPs orchestrate the formation of repressed chromatin domains. We further explore how a diverse array of transcription-related CAPs or core histone variants, via phase separation, influence gene expression by inducing erroneous transcription events, regulating expression levels, and facilitating the interconversion of transcriptionally repressed and active regions.
Collapse
Affiliation(s)
- Xin Li
- Beijing Life Science Academy, Beijing, 102209, China
| | - Chengzhi Liu
- School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430074, Hubei, China
| | - Zhichao Lei
- Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, 430079, Hubei, China
| | - Huan Chen
- Beijing Life Science Academy, Beijing, 102209, China
| | - Liang Wang
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, 430079, Hubei, China
| |
Collapse
|
17
|
Li M, Yang X, Zhang D, Tian Y, Jia ZC, Liu WH, Hao RR, Chen YS, Chen MX, Liu YG. A story of two kingdoms: unravelling the intricacies of protein phase separation in plants and animals. Crit Rev Biotechnol 2024:1-21. [PMID: 39592156 DOI: 10.1080/07388551.2024.2425989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 08/17/2024] [Accepted: 10/20/2024] [Indexed: 11/28/2024]
Abstract
The biomolecular condensates (BCs) formed by proteins through phase separation provide the necessary space and raw materials for the orderly progression of cellular activities, and on this basis, various membraneless organelles (MLOs) are formed. The occurrence of eukaryotic phase separation is driven by multivalent interactions from intrinsically disordered regions (IDRs) and/or specific protein/nucleic acid binding domains and is regulated by various environmental factors. In plant and animal cells, the MLOs involved in gene expression regulation, stress response, and mitotic control display similar functions and mechanisms. In contrast, the phase separation related to reproductive development and immune regulation differs significantly between the two kingdoms owing to their distinct cell structures and nutritional patterns. In addition, animals and plants each exhibit unique protein phase separation activities, such as neural regulation and light signal response. By comparing the similarities and differences in the formation mechanism and functional regulation of known protein phase separation, we elucidated its importance in the evolution, differentiation, and environmental adaptation of both animals and plants. The significance of studying protein phase separation for enhancing biological quality of life has been further emphasized.
Collapse
Affiliation(s)
- Min Li
- State Key Laboratory of Wheat Improvement, College of Life Science, Shandong Agricultural University, Taian, China
| | - Xue Yang
- State Key Laboratory of Wheat Improvement, College of Life Science, Shandong Agricultural University, Taian, China
| | - Di Zhang
- Department of Biology, Hong Kong Baptist University, and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Yuan Tian
- State Key Laboratory of Wheat Improvement, College of Life Science, Shandong Agricultural University, Taian, China
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Key Laboratory of State Forestry and Grassland Administration on Subtropical Forest Biodiversity Conservation, College of Life Sciences, Nanjing Forestry University, Nanjing, China
| | - Zi-Chang Jia
- State Key Laboratory of Wheat Improvement, College of Life Science, Shandong Agricultural University, Taian, China
| | - Wen-Hui Liu
- State Key Laboratory of Wheat Improvement, College of Life Science, Shandong Agricultural University, Taian, China
| | - Rui-Rui Hao
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Key Laboratory of State Forestry and Grassland Administration on Subtropical Forest Biodiversity Conservation, College of Life Sciences, Nanjing Forestry University, Nanjing, China
| | - Yun-Sheng Chen
- Clinical Laboratory, Shenzhen Children's Hospital, Shenzhen, China
| | - Mo-Xian Chen
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Key Laboratory of State Forestry and Grassland Administration on Subtropical Forest Biodiversity Conservation, College of Life Sciences, Nanjing Forestry University, Nanjing, China
| | - Ying-Gao Liu
- State Key Laboratory of Wheat Improvement, College of Life Science, Shandong Agricultural University, Taian, China
| |
Collapse
|
18
|
Rahman S, Roussos P. The 3D Genome in Brain Development: An Exploration of Molecular Mechanisms and Experimental Methods. Neurosci Insights 2024; 19:26331055241293455. [PMID: 39494115 PMCID: PMC11528596 DOI: 10.1177/26331055241293455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 10/08/2024] [Indexed: 11/05/2024] Open
Abstract
The human brain contains multiple cell types that are spatially organized into functionally distinct regions. The proper development of the brain requires complex gene regulation mechanisms in both neurons and the non-neuronal cell types that support neuronal function. Studies across the last decade have discovered that the 3D nuclear organization of the genome is instrumental in the regulation of gene expression in the diverse cell types of the brain. In this review, we describe the fundamental biochemical mechanisms that regulate the 3D genome, and comprehensively describe in vitro and ex vivo studies on mouse and human brain development that have characterized the roles of the 3D genome in gene regulation. We highlight the significance of the 3D genome in linking distal enhancers to their target promoters, which provides insights on the etiology of psychiatric and neurological disorders, as the genetic variants associated with these disorders are primarily located in noncoding regulatory regions. We also describe the molecular mechanisms that regulate chromatin folding and gene expression in neurons. Furthermore, we describe studies with an evolutionary perspective, which have investigated features that are conserved from mice to human, as well as human gained 3D chromatin features. Although most of the insights on disease and molecular mechanisms have been obtained from bulk 3C based experiments, we also highlight other approaches that have been developed recently, such as single cell 3C approaches, as well as non-3C based approaches. In our future perspectives, we highlight the gaps in our current knowledge and emphasize the need for 3D genome engineering and live cell imaging approaches to elucidate mechanisms and temporal dynamics of chromatin interactions, respectively.
Collapse
Affiliation(s)
- Samir Rahman
- Center for Disease Neurogenomics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Panos Roussos
- Center for Disease Neurogenomics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Mental Illness Research Education and Clinical Center (MIRECC), James J. Peters VA Medical Center, Bronx, NY, USA
- Center for Dementia Research, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, USA
| |
Collapse
|
19
|
Chen Q, Wang S, Zhang J, Xie M, Lu B, He J, Zhen Z, Li J, Zhu J, Li R, Li P, Wang H, Vakoc C, Roeder RG, Chen M. JMJD1C forms condensates to facilitate a RUNX1-dependent gene expression program shared by multiple types of AML cells. Protein Cell 2024:pwae059. [PMID: 39450904 DOI: 10.1093/procel/pwae059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Indexed: 10/26/2024] Open
Abstract
JMJD1C, a member of the lysine demethylase 3 (KDM3) family, is universally required for the survival of several types of acute myeloid leukemia (AML) cells with different genetic mutations, representing a therapeutic opportunity with broad application. Yet how JMJD1C regulates the leukemic programs of various AML cells is largely unexplored. Here we show that JMJD1C interacts with the master hematopoietic transcription factor RUNX1, which thereby recruits JMJD1C to the genome to facilitate a RUNX1-driven transcriptional program that supports leukemic cell survival. The underlying mechanism hinges on the long N-terminal disordered region of JMJD1C, which harbors two inseparable abilities: condensate formation and direct interaction with RUNX1. This dual capability of JMJD1C may influence enhancer-promoter contacts crucial for the expression of key leukemic genes regulated by RUNX1. Our findings demonstrate a previously unappreciated role for the non-catalytic function of JMJD1C in transcriptional regulation, underlying a mechanism shared by different types of leukemias.
Collapse
Affiliation(s)
- Qian Chen
- State Key Laboratory of Molecular Oncology, School of Basic Medical Sciences, Tsinghua University, Beijing 100084, China
| | - Saisai Wang
- State Key Laboratory of Molecular Oncology, School of Basic Medical Sciences, Tsinghua University, Beijing 100084, China
| | - Juqing Zhang
- School of Life Sciences, Tsinghua-Peking Center for Life Sciences, Center for Synthetic and Systems Biology, Tsinghua University, Beijing 100084, China
| | - Min Xie
- School of Basic Medical Sciences, Tsinghua University, Beijing 100084, China
| | - Bin Lu
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Jie He
- Nuclear Radiation Injury Protection and Treatment Department, Navy Medical Center of People Liberation Army (PLA), Second Military Medical University (Naval Medical University), Shanghai 200052, China
| | - Zhuoran Zhen
- State Key Laboratory of Molecular Oncology, Tsinghua-Peking Center for Life Sciences, School of Basic Medical Sciences, Tsinghua University, Beijing 100084, China
| | - Jing Li
- Department of Precision Medicine, Changhai Hospital, Second Military Medical University (Naval Medical University), Shanghai 200433, China
| | - Jiajun Zhu
- State Key Laboratory of Molecular Oncology, Tsinghua-Peking Center for Life Sciences, School of Basic Medical Sciences, Tsinghua University, Beijing 100084, China
| | - Rong Li
- Nuclear Radiation Injury Protection and Treatment Department, Navy Medical Center of People Liberation Army (PLA), Second Military Medical University (Naval Medical University), Shanghai 200052, China
| | - Pilong Li
- State Key Laboratory of Membrane Biology, Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University-Peking University Joint Center for Life Sciences, Tsinghua University, Beijing 100084, China
| | - Haifeng Wang
- School of Life Sciences, Tsinghua-Peking Center for Life Sciences, Center for Synthetic and Systems Biology, Tsinghua University, Beijing 100084, China
| | | | - Robert G Roeder
- Laboratory of Biochemistry and Molecular Biology, The Rockefeller University, New York, NY 10065, USA
| | - Mo Chen
- State Key Laboratory of Molecular Oncology, School of Basic Medical Sciences, Tsinghua University, Beijing 100084, China
- SXMU-Tsinghua Collaborative Innovation Center for Frontier Medicine, Shanxi Medical University, Taiyuan 030607, China
| |
Collapse
|
20
|
Wensveen MR, Dixit AA, van Schendel R, Kendek A, Lambooij JP, Tijsterman M, Colmenares SU, Janssen A. Double-strand breaks in facultative heterochromatin require specific movements and chromatin changes for efficient repair. Nat Commun 2024; 15:8984. [PMID: 39419979 PMCID: PMC11487122 DOI: 10.1038/s41467-024-53313-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 10/08/2024] [Indexed: 10/19/2024] Open
Abstract
DNA double-strand breaks (DSBs) must be properly repaired within diverse chromatin domains to maintain genome stability. Whereas euchromatin has an open structure and is associated with transcription, facultative heterochromatin is essential to silence developmental genes and forms compact nuclear condensates, called polycomb bodies. Whether the specific chromatin properties of facultative heterochromatin require distinct DSB repair mechanisms remains unknown. Here, we integrate single DSB systems in euchromatin and facultative heterochromatin in Drosophila melanogaster and find that heterochromatic DSBs rapidly move outside polycomb bodies. These DSB movements coincide with a break-proximal reduction in the canonical heterochromatin mark histone H3 Lysine 27 trimethylation (H3K27me3). We demonstrate that DSB movement and loss of H3K27me3 at heterochromatic DSBs depend on the histone demethylase dUtx. Moreover, loss of dUtx specifically disrupts completion of homologous recombination at heterochromatic DSBs. We conclude that DSBs in facultative heterochromatin require dUtx-mediated loss of H3K27me3 to promote DSB movement and repair.
Collapse
Affiliation(s)
- Marieke R Wensveen
- Center for Molecular Medicine, University Medical Center Utrecht, Universiteitsweg 100, Utrecht, the Netherlands
| | - Aditya A Dixit
- Center for Molecular Medicine, University Medical Center Utrecht, Universiteitsweg 100, Utrecht, the Netherlands
| | - Robin van Schendel
- Human Genetics Department, Leiden University Medical Center, Leiden, the Netherlands
| | - Apfrida Kendek
- Center for Molecular Medicine, University Medical Center Utrecht, Universiteitsweg 100, Utrecht, the Netherlands
| | - Jan-Paul Lambooij
- Center for Molecular Medicine, University Medical Center Utrecht, Universiteitsweg 100, Utrecht, the Netherlands
| | - Marcel Tijsterman
- Human Genetics Department, Leiden University Medical Center, Leiden, the Netherlands
| | - Serafin U Colmenares
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, USA
| | - Aniek Janssen
- Center for Molecular Medicine, University Medical Center Utrecht, Universiteitsweg 100, Utrecht, the Netherlands.
| |
Collapse
|
21
|
Tamburri S, Rustichelli S, Amato S, Pasini D. Navigating the complexity of Polycomb repression: Enzymatic cores and regulatory modules. Mol Cell 2024; 84:3381-3405. [PMID: 39178860 DOI: 10.1016/j.molcel.2024.07.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 07/12/2024] [Accepted: 07/30/2024] [Indexed: 08/26/2024]
Abstract
Polycomb proteins are a fundamental repressive system that plays crucial developmental roles by orchestrating cell-type-specific transcription programs that govern cell identity. Direct alterations of Polycomb activity are indeed implicated in human pathologies, including developmental disorders and cancer. General Polycomb repression is coordinated by three distinct activities that regulate the deposition of two histone post-translational modifications: tri-methylation of histone H3 lysine 27 (H3K27me3) and histone H2A at lysine 119 (H2AK119ub1). These activities exist in large and heterogeneous multiprotein ensembles consisting of common enzymatic cores regulated by heterogeneous non-catalytic modules composed of a large number of accessory proteins with diverse biochemical properties. Here, we have analyzed the current molecular knowledge, focusing on the functional interaction between the core enzymatic activities and their regulation mediated by distinct accessory modules. This provides a comprehensive analysis of the molecular details that control the establishment and maintenance of Polycomb repression, examining their underlying coordination and highlighting missing information and emerging new features of Polycomb-mediated transcriptional control.
Collapse
Affiliation(s)
- Simone Tamburri
- IEO, European Institute of Oncology IRCCS, Department of Experimental Oncology, Via Adamello 16, 20139 Milan, Italy; University of Milan, Department of Health Sciences, Via A. di Rudinì 8, 20142 Milan, Italy.
| | - Samantha Rustichelli
- IEO, European Institute of Oncology IRCCS, Department of Experimental Oncology, Via Adamello 16, 20139 Milan, Italy
| | - Simona Amato
- IEO, European Institute of Oncology IRCCS, Department of Experimental Oncology, Via Adamello 16, 20139 Milan, Italy
| | - Diego Pasini
- IEO, European Institute of Oncology IRCCS, Department of Experimental Oncology, Via Adamello 16, 20139 Milan, Italy; University of Milan, Department of Health Sciences, Via A. di Rudinì 8, 20142 Milan, Italy.
| |
Collapse
|
22
|
McCreery KP, Stubb A, Stephens R, Fursova NA, Cook A, Kruse K, Michelbach A, Biggs LC, Keikhosravi A, Nykänen S, Hydén-Granskog C, Zou J, Lackmann JW, Niessen CM, Vuoristo S, Miroshnikova YA, Wickström SA. Mechano-osmotic signals control chromatin state and fate transitions in pluripotent stem cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.07.611779. [PMID: 39372762 PMCID: PMC11451594 DOI: 10.1101/2024.09.07.611779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
Acquisition of specific cell shapes and morphologies is a central component of cell fate transitions. Although signaling circuits and gene regulatory networks that regulate pluripotent stem cell differentiation have been intensely studied, how these networks are integrated in space and time with morphological transitions and mechanical deformations to control state transitions remains a fundamental open question. Here, we focus on two distinct models of pluripotency, primed pluripotent stem cells and pre-implantation inner cell mass cells of human embryos to discover that cell fate transitions associate with rapid changes in nuclear shape and volume which collectively alter the nuclear mechanophenotype. Mechanistic studies in human induced pluripotent stem cells further reveal that these phenotypical changes and the associated active fluctuations of the nuclear envelope arise from growth factor signaling-controlled changes in chromatin mechanics and cytoskeletal confinement. These collective mechano-osmotic changes trigger global transcriptional repression and a condensation-prone environment that primes chromatin for a cell fate transition by attenuating repression of differentiation genes. However, while this mechano-osmotic chromatin priming has the potential to accelerate fate transitions and differentiation, sustained biochemical signals are required for robust induction of specific lineages. Our findings uncover a critical mechanochemical feedback mechanism that integrates nuclear mechanics, shape and volume with biochemical signaling and chromatin state to control cell fate transition dynamics.
Collapse
Affiliation(s)
- Kaitlin P. McCreery
- Department of Cell and Tissue Dynamics, Max Planck Institute for Molecular Biomedicine, 48149 Münster, Germany
| | - Aki Stubb
- Department of Cell and Tissue Dynamics, Max Planck Institute for Molecular Biomedicine, 48149 Münster, Germany
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, 00290 Helsinki Finland
| | - Rebecca Stephens
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Nadezda A. Fursova
- System Biology of Gene Expression, National Cancer Institute, National Institute of Health, Bethesda, MD 20892
| | - Andrew Cook
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Kai Kruse
- Bioinformatics Service Unit, Max Planck Institute for Molecular Biomedicine, 48149 Münster, Germany
| | - Anja Michelbach
- Department of Cell and Tissue Dynamics, Max Planck Institute for Molecular Biomedicine, 48149 Münster, Germany
| | - Leah C. Biggs
- Department of Cell and Tissue Dynamics, Max Planck Institute for Molecular Biomedicine, 48149 Münster, Germany
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, 00290 Helsinki Finland
| | - Adib Keikhosravi
- High-Throughput Imaging Facility, National Cancer Institute, National Institute of Health, Bethesda, MD 20892
| | - Sonja Nykänen
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, 00290 Helsinki Finland
- Gynecology and Obstetrics, Clinicum, University of Helsinki, 00290 Helsinki, Finland
| | - Christel Hydén-Granskog
- Helsinki University Hospital, Reproductive Medicine Unit, P.O. Box 150, 00029 HUS, Helsinki, Finland
| | - Jizhong Zou
- iPSC Core, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jan-Wilm Lackmann
- CECAD Research Center, University of Cologne, Joseph-Stelzmann-Str. 26, 50931 Cologne, Germany
| | - Carien M. Niessen
- Department Cell Biology of the Skin, Cologne Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD), Center for Molecular Medicine Cologne, University Hospital Cologne, University of Cologne, Joseph-Stelzmann-Str. 26, 50931 Cologne, Germany
| | - Sanna Vuoristo
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, 00290 Helsinki Finland
- Gynecology and Obstetrics, Clinicum, University of Helsinki, 00290 Helsinki, Finland
- Helsinki Institute of Life Science, Biomedicum Helsinki, University of Helsinki, 00290 Helsinki, Finland
| | - Yekaterina A. Miroshnikova
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Sara A. Wickström
- Department of Cell and Tissue Dynamics, Max Planck Institute for Molecular Biomedicine, 48149 Münster, Germany
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, 00290 Helsinki Finland
- Helsinki Institute of Life Science, Biomedicum Helsinki, University of Helsinki, 00290 Helsinki, Finland
| |
Collapse
|
23
|
Lin L, Huang Y, McIntyre J, Chang CH, Colmenares S, Lee YCG. Prevalent Fast Evolution of Genes Involved in Heterochromatin Functions. Mol Biol Evol 2024; 41:msae181. [PMID: 39189646 PMCID: PMC11408610 DOI: 10.1093/molbev/msae181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 08/14/2024] [Accepted: 08/20/2024] [Indexed: 08/28/2024] Open
Abstract
Heterochromatin is a gene-poor and repeat-rich genomic compartment universally found in eukaryotes. Despite its low transcriptional activity, heterochromatin plays important roles in maintaining genome stability, organizing chromosomes, and suppressing transposable elements. Given the importance of these functions, it is expected that genes involved in heterochromatin regulation would be highly conserved. Yet, a handful of these genes were found to evolve rapidly. To investigate whether these previous findings are anecdotal or general to genes modulating heterochromatin, we compile an exhaustive list of 106 candidate genes involved in heterochromatin functions and investigate their evolution over short and long evolutionary time scales in Drosophila. Our analyses find that these genes exhibit significantly more frequent evolutionary changes, both in the forms of amino acid substitutions and gene copy number change, when compared to genes involved in Polycomb-based repressive chromatin. While positive selection drives amino acid changes within both structured domains with diverse functions and intrinsically disordered regions, purifying selection may have maintained the proportions of intrinsically disordered regions of these proteins. Together with the observed negative associations between the evolutionary rate of these genes and the genomic abundance of transposable elements, we propose an evolutionary model where the fast evolution of genes involved in heterochromatin functions is an inevitable outcome of the unique functional roles of heterochromatin, while the rapid evolution of transposable elements may be an effect rather than cause. Our study provides an important global view of the evolution of genes involved in this critical cellular domain and provides insights into the factors driving the distinctive evolution of heterochromatin.
Collapse
Affiliation(s)
- Leila Lin
- Department of Ecology and Evolutionary Biology, University of California, Irvine, CA, USA
| | - Yuheng Huang
- Department of Ecology and Evolutionary Biology, University of California, Irvine, CA, USA
| | - Jennifer McIntyre
- Department of Ecology and Evolutionary Biology, University of California, Irvine, CA, USA
| | - Ching-Ho Chang
- Division of Basic Sciences, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Serafin Colmenares
- Department of Cell and Molecular Biology, University of California, Berkeley, CA, USA
| | - Yuh Chwen G Lee
- Department of Ecology and Evolutionary Biology, University of California, Irvine, CA, USA
| |
Collapse
|
24
|
Xuan H, Li Y, Liu Y, Zhao J, Chen J, Shi N, Zhou Y, Pi L, Li S, Xu G, Yang H. The H1/H5 domain contributes to OsTRBF2 phase separation and gene repression during rice development. THE PLANT CELL 2024; 36:3787-3808. [PMID: 38976557 PMCID: PMC11483615 DOI: 10.1093/plcell/koae199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 05/27/2024] [Accepted: 06/28/2024] [Indexed: 07/10/2024]
Abstract
Transcription factors (TFs) tightly control plant development by regulating gene expression. The phase separation of TFs plays a vital role in gene regulation. Many plant TFs have the potential to form phase-separated protein condensates; however, little is known about which TFs are regulated by phase separation and how it affects their roles in plant development. Here, we report that the rice (Oryza sativa) single Myb TF TELOMERE REPEAT-BINDING FACTOR 2 (TRBF2) is highly expressed in fast-growing tissues at the seedling stage. TRBF2 is a transcriptional repressor that binds to the transcriptional start site of thousands of genes. Mutation of TRBF2 leads to pleiotropic developmental defects and misexpression of many genes. TRBF2 displays characteristics consistent with phase separation in vivo and forms phase-separated condensates in vitro. The H1/H5 domain of TRBF2 plays a crucial role in phase separation, chromatin targeting, and gene repression. Replacing the H1/H5 domain by a phase-separated intrinsically disordered region from Arabidopsis (Arabidopsis thaliana) AtSERRATE partially recovers the function of TRBF2 in gene repression in vitro and in transgenic plants. We also found that TRBF2 is required for trimethylation of histone H3 Lys27 (H3K27me3) deposition at specific genes and genome wide. Our findings reveal that phase separation of TRBF2 facilitates gene repression in rice development.
Collapse
Affiliation(s)
- Hua Xuan
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Yanzhuo Li
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Yue Liu
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Jingze Zhao
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Jianhao Chen
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Nan Shi
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Yulu Zhou
- State Key Laboratory of Hybrid Rice, Institute for Advanced Studies (IAS), Wuhan University, Wuhan 430072, China
| | - Limin Pi
- Hubei Hongshan Laboratory, Wuhan 430070, China
- State Key Laboratory of Hybrid Rice, Institute for Advanced Studies (IAS), Wuhan University, Wuhan 430072, China
| | - Shaoqing Li
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Guoyong Xu
- Hubei Hongshan Laboratory, Wuhan 430070, China
- State Key Laboratory of Hybrid Rice, Institute for Advanced Studies (IAS), Wuhan University, Wuhan 430072, China
| | - Hongchun Yang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
- RNA Institute, Wuhan University, Wuhan 430072, China
| |
Collapse
|
25
|
Mathias C, Rodrigues AC, Baal SCS, de Azevedo ALK, Kozak VN, Alves LF, de Oliveira JC, Guil S, Gradia DF. The landscape of lncRNAs in cell granules: Insights into their significance in cancer. WILEY INTERDISCIPLINARY REVIEWS. RNA 2024; 15:e1870. [PMID: 39268566 DOI: 10.1002/wrna.1870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 08/22/2024] [Accepted: 08/27/2024] [Indexed: 09/17/2024]
Abstract
Cellular compartmentalization, achieved through membrane-based compartments, is a fundamental aspect of cell biology that contributes to the evolutionary success of cells. While organelles have traditionally been the focus of research, membrane-less organelles (MLOs) are emerging as critical players, exhibiting distinct morphological features and unique molecular compositions. Recent research highlights the pivotal role of long noncoding RNAs (lncRNAs) in MLOs and their involvement in various cellular processes across different organisms. In the context of cancer, dysregulation of MLO formation, influenced by altered lncRNA expression, impacts chromatin organization, oncogenic transcription, signaling pathways, and telomere lengthening. This review synthesizes the current understanding of lncRNA composition within MLOs, delineating their functions and exploring how their dysregulation contributes to human cancers. Environmental challenges in tumorigenesis, such as nutrient deprivation and hypoxia, induce stress granules, promoting cancer cell survival and progression. Advancements in biochemical techniques, particularly single RNA imaging methods, offer valuable tools for studying RNA functions within live cells. However, detecting low-abundance lncRNAs remains challenging due to their limited expression levels. The correlation between lncRNA expression and pathological conditions, particularly cancer, should be explored, emphasizing the importance of single-cell studies for precise biomarker identification and the development of personalized therapeutic strategies. This article is categorized under: RNA Export and Localization > RNA Localization RNA in Disease and Development > RNA in Disease RNA Interactions with Proteins and Other Molecules > RNA-Protein Complexes.
Collapse
Affiliation(s)
- Carolina Mathias
- Post-Graduation Program in Genetics, Department of Genetics, Federal University of Parana, Curitiba, PR, Brazil
| | - Ana Carolina Rodrigues
- Post-Graduation Program in Genetics, Department of Genetics, Federal University of Parana, Curitiba, PR, Brazil
| | - Suelen Cristina Soares Baal
- Post-Graduation Program in Genetics, Department of Genetics, Federal University of Parana, Curitiba, PR, Brazil
| | | | - Vanessa Nascimento Kozak
- Post-Graduation Program in Genetics, Department of Genetics, Federal University of Parana, Curitiba, PR, Brazil
| | | | | | - Sonia Guil
- Josep Carreras Leukaemia Research Institute (IJC), Barcelona, Catalonia, Spain
| | - Daniela Fiori Gradia
- Post-Graduation Program in Genetics, Department of Genetics, Federal University of Parana, Curitiba, PR, Brazil
| |
Collapse
|
26
|
Liu Y, Hu G, Yang S, Yan C, Wang J, Pan G, Yao H. Variant PRC1 subunit RYBP/YAF2 forms condensate with RING1B and promotes H2AK119ub deposition. SCIENCE CHINA. LIFE SCIENCES 2024; 67:2036-2038. [PMID: 38739171 DOI: 10.1007/s11427-023-2559-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 02/29/2024] [Indexed: 05/14/2024]
Affiliation(s)
- Yanjiang Liu
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
- Department of Basic Research, Guangzhou National Laboratory, Guangzhou, 510005, China
- CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Gongcheng Hu
- Department of Basic Research, Guangzhou National Laboratory, Guangzhou, 510005, China
| | - Shengxiong Yang
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
- Department of Basic Research, Guangzhou National Laboratory, Guangzhou, 510005, China
| | - Chenghong Yan
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Juehan Wang
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Guangjin Pan
- CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hongjie Yao
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China.
- Department of Basic Research, Guangzhou National Laboratory, Guangzhou, 510005, China.
- CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
27
|
Dhatterwal P, Sharma N, Prasad M. Decoding the functionality of plant transcription factors. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:4745-4759. [PMID: 38761104 DOI: 10.1093/jxb/erae231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 05/16/2024] [Indexed: 05/20/2024]
Abstract
Transcription factors (TFs) intricately govern cellular processes and responses to external stimuli by modulating gene expression. TFs help plants to balance the trade-off between stress tolerance and growth, thus ensuring their long-term survival in challenging environments. Understanding the factors and mechanisms that define the functionality of plant TFs is of paramount importance for unravelling the intricate regulatory networks governing development, growth, and responses to environmental stimuli in plants. This review provides a comprehensive understanding of these factors and mechanisms defining the activity of TFs. Understanding the dynamic nature of TFs has practical implications for modern molecular breeding programmes, as it provides insights into how to manipulate gene expression to optimize desired traits in crops. Moreover, recent studies also report the functional duality of TFs, highlighting their ability to switch between activation and repression modes; this represents an important mechanism for attuning gene expression. Here we discuss what the possible reasons for the dual nature of TFs are and how this duality instructs the cell fate decision during development, and fine-tunes stress responses in plants, enabling them to adapt to various environmental challenges.
Collapse
Affiliation(s)
| | | | - Manoj Prasad
- National Institute of Plant Genome Research, New Delhi, India
- Department of Genetics, University of Delhi South Campus, New Delhi, India
- Department of Plant Sciences, University of Hyderabad, Hyderabad, India
| |
Collapse
|
28
|
Das M, Semple JI, Haemmerli A, Volodkina V, Scotton J, Gitchev T, Annan A, Campos J, Statzer C, Dakhovnik A, Ewald CY, Mozziconacci J, Meister P. Condensin I folds the Caenorhabditis elegans genome. Nat Genet 2024; 56:1737-1749. [PMID: 39039278 DOI: 10.1038/s41588-024-01832-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 06/13/2024] [Indexed: 07/24/2024]
Abstract
The structural maintenance of chromosome (SMC) complexes-cohesin and condensins-are crucial for chromosome separation and compaction during cell division. During the interphase, mammalian cohesins additionally fold the genome into loops and domains. Here we show that, in Caenorhabditis elegans, a species with holocentric chromosomes, condensin I is the primary, long-range loop extruder. The loss of condensin I and its X-specific variant, condensin IDC, leads to genome-wide decompaction, chromosome mixing and disappearance of X-specific topologically associating domains, while reinforcing fine-scale epigenomic compartments. In addition, condensin I/IDC inactivation led to the upregulation of X-linked genes and unveiled nuclear bodies grouping together binding sites for the X-targeting loading complex of condensin IDC. C. elegans condensin I/IDC thus uniquely organizes holocentric interphase chromosomes, akin to cohesin in mammals, as well as regulates X-chromosome gene expression.
Collapse
Affiliation(s)
- Moushumi Das
- Cell Fate and Nuclear Organization, Institute of Cell Biology, University of Bern, Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Jennifer I Semple
- Cell Fate and Nuclear Organization, Institute of Cell Biology, University of Bern, Bern, Switzerland
| | - Anja Haemmerli
- Cell Fate and Nuclear Organization, Institute of Cell Biology, University of Bern, Bern, Switzerland
| | - Valeriia Volodkina
- Cell Fate and Nuclear Organization, Institute of Cell Biology, University of Bern, Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Janik Scotton
- Cell Fate and Nuclear Organization, Institute of Cell Biology, University of Bern, Bern, Switzerland
| | - Todor Gitchev
- Cell Fate and Nuclear Organization, Institute of Cell Biology, University of Bern, Bern, Switzerland
| | - Ahrmad Annan
- Cell Fate and Nuclear Organization, Institute of Cell Biology, University of Bern, Bern, Switzerland
| | - Julie Campos
- Cell Fate and Nuclear Organization, Institute of Cell Biology, University of Bern, Bern, Switzerland
| | - Cyril Statzer
- Eidgenössische Technische Hochschule Zürich, Department of Health Sciences and Technology, Institute of Translational Medicine, Schwerzenbach, Switzerland
| | - Alexander Dakhovnik
- Eidgenössische Technische Hochschule Zürich, Department of Health Sciences and Technology, Institute of Translational Medicine, Schwerzenbach, Switzerland
| | - Collin Y Ewald
- Eidgenössische Technische Hochschule Zürich, Department of Health Sciences and Technology, Institute of Translational Medicine, Schwerzenbach, Switzerland
| | - Julien Mozziconacci
- Laboratoire Structure et Instabilité des Génomes UMR 7196, Muséum National d'Histoire Naturelle, Paris, France
| | - Peter Meister
- Cell Fate and Nuclear Organization, Institute of Cell Biology, University of Bern, Bern, Switzerland.
| |
Collapse
|
29
|
Lin L, Huang Y, McIntyre J, Chang CH, Colmenares S, Lee YCG. Prevalent fast evolution of genes involved in heterochromatin functions. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.03.583199. [PMID: 38496614 PMCID: PMC10942301 DOI: 10.1101/2024.03.03.583199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
Heterochromatin is a gene-poor and repeat-rich genomic compartment universally found in eukaryotes. Despite its low transcriptional activity, heterochromatin plays important roles in maintaining genome stability, organizing chromosomes, and suppressing transposable elements (TEs). Given the importance of these functions, it is expected that the genes involved in heterochromatin regulation would be highly conserved. Yet, a handful of these genes were found to evolve rapidly. To investigate whether these previous findings are anecdotal or general to genes modulating heterochromatin, we compile an exhaustive list of 106 candidate genes involved in heterochromatin functions and investigate their evolution over short and long evolutionary time scales in Drosophila. Our analyses find that these genes exhibit significantly more frequent evolutionary changes, both in the forms of amino acid substitutions and gene copy number change, when compared to genes involved in Polycomb-based repressive chromatin. While positive selection drives amino acid changes within both structured domains with diverse functions and intrinsically disordered regions (IDRs), purifying selection may have maintained the proportions of IDRs of these proteins. Together with the observed negative associations between evolutionary rates of these genes and genomic TE abundance, we propose an evolutionary model where the fast evolution of genes involved in heterochromatin functions is an inevitable outcome of the unique functional roles of heterochromatin, while the rapid evolution of TEs may be an effect rather than cause. Our study provides an important global view of the evolution of genes involved in this critical cellular domain and provides insights into the factors driving the distinctive evolution of heterochromatin.
Collapse
|
30
|
Uckelmann M, Levina V, Taveneau C, Ng XH, Pandey V, Martinez J, Mendiratta S, Houx J, Boudes M, Venugopal H, Trépout S, Zhang Q, Flanigan S, Li M, Sierecki E, Gambin Y, Das PP, Bell O, de Marco A, Davidovich C. Dynamic PRC1-CBX8 stabilizes a porous structure of chromatin condensates. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.05.08.539931. [PMID: 38405976 PMCID: PMC10888862 DOI: 10.1101/2023.05.08.539931] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
The compaction of chromatin is a prevalent paradigm in gene repression. Chromatin compaction is commonly thought to repress transcription by restricting chromatin accessibility. However, the spatial organisation and dynamics of chromatin compacted by gene-repressing factors are unknown. Using cryo-electron tomography, we solved the three-dimensional structure of chromatin condensed by the Polycomb Repressive Complex 1 (PRC1) in a complex with CBX8. PRC1-condensed chromatin is porous and stabilised through multivalent dynamic interactions of PRC1 with chromatin. Mechanistically, positively charged residues on the internally disordered regions (IDRs) of CBX8 mask negative charges on the DNA to stabilize the condensed state of chromatin. Within condensates, PRC1 remains dynamic while maintaining a static chromatin structure. In differentiated mouse embryonic stem cells, CBX8-bound chromatin remains accessible. These findings challenge the idea of rigidly compacted polycomb domains and instead provides a mechanistic framework for dynamic and accessible PRC1-chromatin condensates.
Collapse
|
31
|
Zhang X, Yuan L, Zhang W, Zhang Y, Wu Q, Li C, Wu M, Huang Y. Liquid-liquid phase separation in diseases. MedComm (Beijing) 2024; 5:e640. [PMID: 39006762 PMCID: PMC11245632 DOI: 10.1002/mco2.640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 05/31/2024] [Accepted: 06/03/2024] [Indexed: 07/16/2024] Open
Abstract
Liquid-liquid phase separation (LLPS), an emerging biophysical phenomenon, can sequester molecules to implement physiological and pathological functions. LLPS implements the assembly of numerous membraneless chambers, including stress granules and P-bodies, containing RNA and protein. RNA-RNA and RNA-protein interactions play a critical role in LLPS. Scaffolding proteins, through multivalent interactions and external factors, support protein-RNA interaction networks to form condensates involved in a variety of diseases, particularly neurodegenerative diseases and cancer. Modulating LLPS phenomenon in multiple pathogenic proteins for the treatment of neurodegenerative diseases and cancer could present a promising direction, though recent advances in this area are limited. Here, we summarize in detail the complexity of LLPS in constructing signaling pathways and highlight the role of LLPS in neurodegenerative diseases and cancers. We also explore RNA modifications on LLPS to alter diseases progression because these modifications can influence LLPS of certain proteins or the formation of stress granules, and discuss the possibility of proper manipulation of LLPS process to restore cellular homeostasis or develop therapeutic drugs for the eradication of diseases. This review attempts to discuss potential therapeutic opportunities by elaborating on the connection between LLPS, RNA modification, and their roles in diseases.
Collapse
Affiliation(s)
- Xinyue Zhang
- College of Life and Health Sciences Northeastern University Shenyang China
| | - Lin Yuan
- Laboratory of Research in Parkinson's Disease and Related Disorders Health Sciences Institute China Medical University Shenyang China
| | - Wanlu Zhang
- College of Life and Health Sciences Northeastern University Shenyang China
| | - Yi Zhang
- College of Life and Health Sciences Northeastern University Shenyang China
| | - Qun Wu
- Department of Pediatrics Ruijin Hospital Affiliated to Shanghai Jiaotong University School of Medicine Shanghai China
| | - Chunting Li
- College of Life and Health Sciences Northeastern University Shenyang China
| | - Min Wu
- Wenzhou Institute University of Chinese Academy of Sciences Wenzhou Zhejiang China
- The Joint Research Center Affiliated Xiangshan Hospital of Wenzhou Medical University Ningbo China
| | - Yongye Huang
- College of Life and Health Sciences Northeastern University Shenyang China
- Key Laboratory of Bioresource Research and Development of Liaoning Province College of Life and Health Sciences Northeastern University Shenyang China
| |
Collapse
|
32
|
Liu S, Athreya A, Lao Z, Zhang B. From Nucleosomes to Compartments: Physicochemical Interactions Underlying Chromatin Organization. Annu Rev Biophys 2024; 53:221-245. [PMID: 38346246 PMCID: PMC11369498 DOI: 10.1146/annurev-biophys-030822-032650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2024]
Abstract
Chromatin organization plays a critical role in cellular function by regulating access to genetic information. However, understanding chromatin folding is challenging due to its complex, multiscale nature. Significant progress has been made in studying in vitro systems, uncovering the structure of individual nucleosomes and their arrays, and elucidating the role of physicochemical forces in stabilizing these structures. Additionally, remarkable advancements have been achieved in characterizing chromatin organization in vivo, particularly at the whole-chromosome level, revealing important features such as chromatin loops, topologically associating domains, and nuclear compartments. However, bridging the gap between in vitro and in vivo studies remains challenging. The resemblance between in vitro and in vivo chromatin conformations and the relevance of internucleosomal interactions for chromatin folding in vivo are subjects of debate. This article reviews experimental and computational studies conducted at various length scales, highlighting the significance of intrinsic interactions between nucleosomes and their roles in chromatin folding in vivo.
Collapse
Affiliation(s)
- Shuming Liu
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA;
| | - Advait Athreya
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA;
| | - Zhuohan Lao
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA;
| | - Bin Zhang
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA;
| |
Collapse
|
33
|
Farhadova S, Ghousein A, Charon F, Surcis C, Gomez-Velazques M, Roidor C, Di Michele F, Borensztein M, De Sario A, Esnault C, Noordermeer D, Moindrot B, Feil R. The long non-coding RNA Meg3 mediates imprinted gene expression during stem cell differentiation. Nucleic Acids Res 2024; 52:6183-6200. [PMID: 38613389 PMCID: PMC11194098 DOI: 10.1093/nar/gkae247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/02/2024] [Accepted: 04/03/2024] [Indexed: 04/14/2024] Open
Abstract
The imprinted Dlk1-Dio3 domain comprises the developmental genes Dlk1 and Rtl1, which are silenced on the maternal chromosome in different cell types. On this parental chromosome, the domain's imprinting control region activates a polycistron that produces the lncRNA Meg3 and many miRNAs (Mirg) and C/D-box snoRNAs (Rian). Although Meg3 lncRNA is nuclear and associates with the maternal chromosome, it is unknown whether it controls gene repression in cis. We created mouse embryonic stem cells (mESCs) that carry an ectopic poly(A) signal, reducing RNA levels along the polycistron, and generated Rian-/- mESCs as well. Upon ESC differentiation, we found that Meg3 lncRNA (but not Rian) is required for Dlk1 repression on the maternal chromosome. Biallelic Meg3 expression acquired through CRISPR-mediated demethylation of the paternal Meg3 promoter led to biallelic Dlk1 repression, and to loss of Rtl1 expression. lncRNA expression also correlated with DNA hypomethylation and CTCF binding at the 5'-side of Meg3. Using Capture Hi-C, we found that this creates a Topologically Associating Domain (TAD) organization that brings Meg3 close to Dlk1 on the maternal chromosome. The requirement of Meg3 for gene repression and TAD structure may explain how aberrant MEG3 expression at the human DLK1-DIO3 locus associates with imprinting disorders.
Collapse
Affiliation(s)
- Sabina Farhadova
- Institute of Molecular Genetics of Montpellier (IGMM), Centre National de Recherche Scientifique (CNRS), 34090 Montpellier, France
- University of Montpellier, 34090 Montpellier, France
- Genetic Resources Research Institute, Azerbaijan National Academy of Sciences (ANAS), AZ1106 Baku, Azerbaijan
| | - Amani Ghousein
- Institute of Molecular Genetics of Montpellier (IGMM), Centre National de Recherche Scientifique (CNRS), 34090 Montpellier, France
- University of Montpellier, 34090 Montpellier, France
| | - François Charon
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91190 Gif-sur-Yvette, France
| | - Caroline Surcis
- Institute of Molecular Genetics of Montpellier (IGMM), Centre National de Recherche Scientifique (CNRS), 34090 Montpellier, France
| | - Melisa Gomez-Velazques
- Institute of Molecular Genetics of Montpellier (IGMM), Centre National de Recherche Scientifique (CNRS), 34090 Montpellier, France
- University of Montpellier, 34090 Montpellier, France
| | - Clara Roidor
- Institute of Molecular Genetics of Montpellier (IGMM), Centre National de Recherche Scientifique (CNRS), 34090 Montpellier, France
- University of Montpellier, 34090 Montpellier, France
| | - Flavio Di Michele
- Institute of Molecular Genetics of Montpellier (IGMM), Centre National de Recherche Scientifique (CNRS), 34090 Montpellier, France
- University of Montpellier, 34090 Montpellier, France
| | - Maud Borensztein
- Institute of Molecular Genetics of Montpellier (IGMM), Centre National de Recherche Scientifique (CNRS), 34090 Montpellier, France
- University of Montpellier, 34090 Montpellier, France
| | - Albertina De Sario
- University of Montpellier, 34090 Montpellier, France
- PhyMedExp, Institut National de la Santé et de la Recherche Médicale (INSERM), CNRS, 34295 Montpellier, France
| | - Cyril Esnault
- Institute of Molecular Genetics of Montpellier (IGMM), Centre National de Recherche Scientifique (CNRS), 34090 Montpellier, France
- University of Montpellier, 34090 Montpellier, France
| | - Daan Noordermeer
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91190 Gif-sur-Yvette, France
| | - Benoit Moindrot
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91190 Gif-sur-Yvette, France
| | - Robert Feil
- Institute of Molecular Genetics of Montpellier (IGMM), Centre National de Recherche Scientifique (CNRS), 34090 Montpellier, France
- University of Montpellier, 34090 Montpellier, France
| |
Collapse
|
34
|
Akilli N, Cheutin T, Cavalli G. Phase separation and inheritance of repressive chromatin domains. Curr Opin Genet Dev 2024; 86:102201. [PMID: 38701672 DOI: 10.1016/j.gde.2024.102201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 04/04/2024] [Accepted: 04/16/2024] [Indexed: 05/05/2024]
Abstract
Polycomb-associated chromatin and pericentromeric heterochromatin form genomic domains important for the epigenetic regulation of gene expression. Both Polycomb complexes and heterochromatin factors rely on 'read and write' mechanisms, which, on their own, are not sufficient to explain the formation and the maintenance of these epigenetic domains. Microscopy has revealed that they form specific nuclear compartments separated from the rest of the genome. Recently, some subunits of these molecular machineries have been shown to undergo phase separation, both in vitro and in vivo, suggesting that phase separation might play important roles in the formation and the function of these two kinds of repressive chromatin. In this review, we will present the recent advances in the field of facultative and constitutive heterochromatin formation and maintenance through phase separation.
Collapse
Affiliation(s)
- Nazli Akilli
- Institute of Human Genetics, CNRS, University of Montpellier, Montpellier, France. https://twitter.com/@sinmerank
| | - Thierry Cheutin
- Institute of Human Genetics, CNRS, University of Montpellier, Montpellier, France
| | - Giacomo Cavalli
- Institute of Human Genetics, CNRS, University of Montpellier, Montpellier, France.
| |
Collapse
|
35
|
Mathias KM, Liu Y, Wan L. Dysregulation of transcriptional condensates in human disease: mechanisms, biological functions, and open questions. Curr Opin Genet Dev 2024; 86:102203. [PMID: 38788489 PMCID: PMC11162900 DOI: 10.1016/j.gde.2024.102203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 04/18/2024] [Accepted: 04/22/2024] [Indexed: 05/26/2024]
Abstract
Precise gene expression, crucial for normal development and health, depends on the co-ordinated assembly and function of various factors within the crowded nucleus. Recent evidence suggests that this process is in part regulated by mesoscale compartmentalization and concentration of transcriptional components within condensates, offering a new perspective on gene regulation. Dysregulation of transcriptional condensates is increasingly associated with diseases, indicating a potential role in pathogenesis. In this mini-review, we provide a concise overview of the current understanding of the formation and function of transcriptional condensates, with a specific focus on recent advances in their dysregulation and implications in diseases, notably cancer. We also address limitations in the field and highlight open questions for future research.
Collapse
Affiliation(s)
- Kaeli M Mathias
- Department of Cancer Biology and Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Biochemistry Biophysics Chemical Biology Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Center for Computational and Genomic Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Yiman Liu
- Department of Cancer Biology and Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Liling Wan
- Department of Cancer Biology and Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Center for Computational and Genomic Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Institute for Regenerative Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
36
|
Uckelmann M, Davidovich C. Chromatin compaction by Polycomb group proteins revisited. Curr Opin Struct Biol 2024; 86:102806. [PMID: 38537534 DOI: 10.1016/j.sbi.2024.102806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 02/29/2024] [Accepted: 03/05/2024] [Indexed: 05/19/2024]
Abstract
The chromatin compaction activity of Polycomb group proteins has traditionally been considered essential for transcriptional repression. However, there is very little information on how Polycomb group proteins compact chromatin at the molecular level and no causal link between the compactness of chromatin and transcriptional repression. Recently, a more complete picture of Polycomb-dependent chromatin architecture has started to emerge, owing to advanced methods for imaging and chromosome conformation capture. Discoveries into Polycomb-driven phase separation add another layer of complexity. Recent observations generally imply that Polycomb group proteins modulate chromatin structure at multiple scales to reduce its dynamics and segregate it from active domains. Hence, it is reasonable to hypothesise that Polycomb group proteins maintain the energetically favourable state of compacted chromatin, rather than actively compact it.
Collapse
Affiliation(s)
- Michael Uckelmann
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, Victoria, 3800, Australia.
| | - Chen Davidovich
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, Victoria, 3800, Australia; EMBL-Australia, Clayton, Victoria, 3800, Australia.
| |
Collapse
|
37
|
Gu Y, Wei K, Wang J. Phase separation and transcriptional regulation in cancer development. J Biomed Res 2024; 38:307-321. [PMID: 39113127 PMCID: PMC11300516 DOI: 10.7555/jbr.37.20230214] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 12/29/2023] [Accepted: 01/02/2024] [Indexed: 08/10/2024] Open
Abstract
Liquid-liquid phase separation, a novel biochemical phenomenon, has been increasingly studied for its medical applications. It underlies the formation of membrane-less organelles and is involved in many cellular and biological processes. During transcriptional regulation, dynamic condensates are formed through interactions between transcriptional elements, such as transcription factors, coactivators, and mediators. Cancer is a disease characterized by uncontrolled cell proliferation, but the precise mechanisms underlying tumorigenesis often remain to be elucidated. Emerging evidence has linked abnormal transcriptional condensates to several diseases, especially cancer, implying that phase separation plays an important role in tumorigenesis. Condensates formed by phase separation may have an effect on gene transcription in tumors. In the present review, we focus on the correlation between phase separation and transcriptional regulation, as well as how this phenomenon contributes to cancer development.
Collapse
Affiliation(s)
- Yan Gu
- Department of Thoracic Surgery, Jiangsu Province Hospital, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Ke Wei
- Department of Thoracic Surgery, Jiangsu Province Hospital, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Jun Wang
- Department of Thoracic Surgery, Jiangsu Province Hospital, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| |
Collapse
|
38
|
Shafiq TA, Yu J, Feng W, Zhang Y, Zhou H, Paulo JA, Gygi SP, Moazed D. Genomic context- and H2AK119 ubiquitination-dependent inheritance of human Polycomb silencing. SCIENCE ADVANCES 2024; 10:eadl4529. [PMID: 38718120 PMCID: PMC11078181 DOI: 10.1126/sciadv.adl4529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 04/04/2024] [Indexed: 05/12/2024]
Abstract
Polycomb repressive complexes 1 and 2 (PRC1 and 2) are required for heritable repression of developmental genes. The cis- and trans-acting factors that contribute to epigenetic inheritance of mammalian Polycomb repression are not fully understood. Here, we show that, in human cells, ectopically induced Polycomb silencing at initially active developmental genes, but not near ubiquitously expressed housekeeping genes, is inherited for many cell divisions. Unexpectedly, silencing is heritable in cells with mutations in the H3K27me3 binding pocket of the Embryonic Ectoderm Development (EED) subunit of PRC2, which are known to disrupt H3K27me3 recognition and lead to loss of H3K27me3. This mode of inheritance is less stable and requires intact PRC2 and recognition of H2AK119ub1 by PRC1. Our findings suggest that maintenance of Polycomb silencing is sensitive to local genomic context and can be mediated by PRC1-dependent H2AK119ub1 and PRC2 independently of H3K27me3 recognition.
Collapse
Affiliation(s)
- Tiasha A. Shafiq
- Department of Cell Biology, Howard Hughes Medical Institute, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Juntao Yu
- Department of Cell Biology, Howard Hughes Medical Institute, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Wenzhi Feng
- Department of Cell Biology, Howard Hughes Medical Institute, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Yizhe Zhang
- Department of Cell Biology, Howard Hughes Medical Institute, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Haining Zhou
- Department of Cell Biology, Howard Hughes Medical Institute, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Joao A. Paulo
- Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Steven P. Gygi
- Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Danesh Moazed
- Department of Cell Biology, Howard Hughes Medical Institute, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
39
|
Niekamp S, Marr SK, Oei TA, Subramanian R, Kingston RE. Modularity of PRC1 composition and chromatin interaction define condensate properties. Mol Cell 2024; 84:1651-1666.e12. [PMID: 38521066 PMCID: PMC11234260 DOI: 10.1016/j.molcel.2024.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 01/04/2024] [Accepted: 02/29/2024] [Indexed: 03/25/2024]
Abstract
Polycomb repressive complexes (PRCs) play a key role in gene repression and are indispensable for proper development. Canonical PRC1 forms condensates in vitro and in cells that are proposed to contribute to the maintenance of repression. However, how chromatin and the various subunits of PRC1 contribute to condensation is largely unexplored. Using a reconstitution approach and single-molecule imaging, we demonstrate that nucleosomal arrays and PRC1 act synergistically, reducing the critical concentration required for condensation by more than 20-fold. We find that the exact combination of PHC and CBX subunits determines condensate initiation, morphology, stability, and dynamics. Particularly, PHC2's polymerization activity influences condensate dynamics by promoting the formation of distinct domains that adhere to each other but do not coalesce. Live-cell imaging confirms CBX's role in condensate initiation and highlights PHC's importance for condensate stability. We propose that PRC1 composition can modulate condensate properties, providing crucial regulatory flexibility across developmental stages.
Collapse
Affiliation(s)
- Stefan Niekamp
- Department of Molecular Biology, Massachusetts General Hospital Research Institute, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Sharon K Marr
- Department of Molecular Biology, Massachusetts General Hospital Research Institute, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Theresa A Oei
- Department of Molecular Biology, Massachusetts General Hospital Research Institute, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Genetics, Harvard Medical School, Boston, MA 02115, USA; Department of Chemical Biology, Harvard University, Cambridge, MA 02138, USA
| | - Radhika Subramanian
- Department of Molecular Biology, Massachusetts General Hospital Research Institute, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Genetics, Harvard Medical School, Boston, MA 02115, USA.
| | - Robert E Kingston
- Department of Molecular Biology, Massachusetts General Hospital Research Institute, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Genetics, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
40
|
Sood A, Schuette G, Zhang B. Dynamical phase transition in models that couple chromatin folding with histone modifications. Phys Rev E 2024; 109:054411. [PMID: 38907407 DOI: 10.1103/physreve.109.054411] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 04/25/2024] [Indexed: 06/24/2024]
Abstract
Genomic regions can acquire heritable epigenetic states through unique histone modifications, which lead to stable gene expression patterns without altering the underlying DNA sequence. However, the relationship between chromatin conformational dynamics and epigenetic stability is poorly understood. In this paper, we propose kinetic models to investigate the dynamic fluctuations of histone modifications and the spatial interactions between nucleosomes. Our model explicitly incorporates the influence of chemical modifications on the structural stability of chromatin and the contribution of chromatin contacts to the cooperative nature of chemical reactions. Through stochastic simulations and analytical theory, we have discovered distinct steady-state outcomes in different kinetic regimes, resembling a dynamical phase transition. Importantly, we have validated that the emergence of this transition, which occurs on biologically relevant timescales, is robust against variations in model design and parameters. Our findings suggest that the viscoelastic properties of chromatin and the timescale at which it transitions from a gel-like to a liquidlike state significantly impact dynamic processes that occur along the one-dimensional DNA sequence.
Collapse
|
41
|
Guan S, Tang J, Ma X, Miao R, Cheng B. CBX7C⋅PHC2 interaction facilitates PRC1 assembly and modulates its phase separation properties. iScience 2024; 27:109548. [PMID: 38600974 PMCID: PMC11004992 DOI: 10.1016/j.isci.2024.109548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 02/04/2024] [Accepted: 03/19/2024] [Indexed: 04/12/2024] Open
Abstract
CBX7 is a key component of PRC1 complex. Cbx7C is an uncharacterized Cbx7 splicing isoform specifically expressed in mouse embryonic stem cells (mESCs). We demonstrate that CBX7C functions as an epigenetic repressor at the classic PRC1 targets in mESCs, and its preferential interaction to PHC2 facilitates PRC1 assembly. Both Cbx7C and Phc2 are significantly upregulated during cell differentiation, and knockdown of Cbx7C abolishes the differentiation of mESCs to embryoid bodies. Interestingly, CBX7C⋅PHC2 interaction at low levels efficiently undergoes the formation of functional Polycomb bodies with high mobility, whereas the coordination of the two factors at high doses results in the formation of large, low-mobility, chromatin-free aggregates. Overall, these findings uncover the unique roles and molecular basis of the CBX7C⋅PHC2 interaction in PRC1 assembly on chromatin and Pc body formation and open a new avenue of controlling PRC1 activities via modulation of its phase separation properties.
Collapse
Affiliation(s)
- Shanli Guan
- School of Life Sciences, Lanzhou University, Lanzhou 730000, Gansu, P.R. China
| | - Jiajia Tang
- School of Life Sciences, Lanzhou University, Lanzhou 730000, Gansu, P.R. China
| | - Xiaojun Ma
- School of Life Sciences, Lanzhou University, Lanzhou 730000, Gansu, P.R. China
| | - Ruidong Miao
- School of Life Sciences, Lanzhou University, Lanzhou 730000, Gansu, P.R. China
| | - Bo Cheng
- School of Life Sciences, Lanzhou University, Lanzhou 730000, Gansu, P.R. China
- Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, Lanzhou University, Lanzhou 730000, Gansu, P.R. China
| |
Collapse
|
42
|
Zhao J, Lan J, Wang M, Liu C, Fang Z, Song A, Zhang T, Wang L, Zhu B, Chen P, Yu J, Li G. H2AK119ub1 differentially fine-tunes gene expression by modulating canonical PRC1- and H1-dependent chromatin compaction. Mol Cell 2024; 84:1191-1205.e7. [PMID: 38458202 DOI: 10.1016/j.molcel.2024.02.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 11/15/2023] [Accepted: 02/16/2024] [Indexed: 03/10/2024]
Abstract
Polycomb repressive complex 1 (PRC1) is a key transcriptional regulator in development via modulating chromatin structure and catalyzing histone H2A ubiquitination at Lys119 (H2AK119ub1). H2AK119ub1 is one of the most abundant histone modifications in mammalian cells. However, the function of H2AK119ub1 in polycomb-mediated gene silencing remains debated. In this study, we reveal that H2AK119ub1 has two distinct roles in gene expression, through differentially modulating chromatin compaction mediated by canonical PRC1 and the linker histone H1. Interestingly, we find that H2AK119ub1 plays a positive role in transcription through interfering with the binding of canonical PRC1 to nucleosomes and therefore counteracting chromatin condensation. Conversely, we demonstrate that H2AK119ub1 facilitates H1-dependent chromatin condensation and enhances the silencing of developmental genes in mouse embryonic stem cells, suggesting that H1 may be one of several possible pathways for H2AK119ub1 in repressing transcription. These results provide insights and molecular mechanisms by which H2AK119ub1 differentially fine-tunes developmental gene expression.
Collapse
Affiliation(s)
- Jicheng Zhao
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Jie Lan
- Department of Bioinformatics, School of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, China
| | - Min Wang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Cuifang Liu
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Zheng Fang
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Aoqun Song
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Tiantian Zhang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Liang Wang
- Beijing Advanced Innovation Center for Structure Biology, Beijing Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University, Beijing 100101, China
| | - Bing Zhu
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ping Chen
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; Department of Immunology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China.
| | - Juan Yu
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China.
| | - Guohong Li
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China; New Cornerstone Science Laboratory, Frontier Science Center for Immunology and Metabolism, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan 430072, China.
| |
Collapse
|
43
|
Franz P, Fierz B. Decoding Chromatin Ubiquitylation: A Chemical Biology Perspective. J Mol Biol 2024; 436:168442. [PMID: 38211893 DOI: 10.1016/j.jmb.2024.168442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 01/05/2024] [Accepted: 01/05/2024] [Indexed: 01/13/2024]
Abstract
Since Strahl and Allis proposed the "language of covalent histone modifications", a host of experimental studies have shed light on the different facets of chromatin regulation by epigenetic mechanisms. Initially proposed as a concept for controlling gene transcription, the regulation of deposition and removal of histone post-translational modifications (PTMs), such as acetylation, methylation, and phosphorylation, have been implicated in many chromatin regulation pathways. However, large PTMs such as ubiquitylation challenge research on many levels due to their chemical complexity. In recent years, chemical tools have been developed to generate chromatin in defined ubiquitylation states in vitro. Chemical biology approaches are now used to link specific histone ubiquitylation marks with downstream chromatin regulation events on the molecular level. Here, we want to highlight how chemical biology approaches have empowered the mechanistic study of chromatin ubiquitylation in the context of gene regulation and DNA repair with attention to future challenges.
Collapse
Affiliation(s)
- Pauline Franz
- Laboratory of Biophysical Chemistry of Macromolecules, Institute of Chemical Sciences and Engineering (ISIC), Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Beat Fierz
- Laboratory of Biophysical Chemistry of Macromolecules, Institute of Chemical Sciences and Engineering (ISIC), Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland.
| |
Collapse
|
44
|
Candela-Ferre J, Diego-Martin B, Pérez-Alemany J, Gallego-Bartolomé J. Mind the gap: Epigenetic regulation of chromatin accessibility in plants. PLANT PHYSIOLOGY 2024; 194:1998-2016. [PMID: 38236303 PMCID: PMC10980423 DOI: 10.1093/plphys/kiae024] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 11/07/2023] [Accepted: 11/23/2023] [Indexed: 01/19/2024]
Abstract
Chromatin plays a crucial role in genome compaction and is fundamental for regulating multiple nuclear processes. Nucleosomes, the basic building blocks of chromatin, are central in regulating these processes, determining chromatin accessibility by limiting access to DNA for various proteins and acting as important signaling hubs. The association of histones with DNA in nucleosomes and the folding of chromatin into higher-order structures are strongly influenced by a variety of epigenetic marks, including DNA methylation, histone variants, and histone post-translational modifications. Additionally, a wide array of chaperones and ATP-dependent remodelers regulate various aspects of nucleosome biology, including assembly, deposition, and positioning. This review provides an overview of recent advances in our mechanistic understanding of how nucleosomes and chromatin organization are regulated by epigenetic marks and remodelers in plants. Furthermore, we present current technologies for profiling chromatin accessibility and organization.
Collapse
Affiliation(s)
- Joan Candela-Ferre
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), CSIC-Universitat Politècnica de València, Valencia, 46022Spain
| | - Borja Diego-Martin
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), CSIC-Universitat Politècnica de València, Valencia, 46022Spain
| | - Jaime Pérez-Alemany
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), CSIC-Universitat Politècnica de València, Valencia, 46022Spain
| | - Javier Gallego-Bartolomé
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), CSIC-Universitat Politècnica de València, Valencia, 46022Spain
| |
Collapse
|
45
|
Tariq D, Maurici N, Bartholomai BM, Chandrasekaran S, Dunlap JC, Bah A, Crane BR. Phosphorylation, disorder, and phase separation govern the behavior of Frequency in the fungal circadian clock. eLife 2024; 12:RP90259. [PMID: 38526948 PMCID: PMC10963029 DOI: 10.7554/elife.90259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2024] Open
Abstract
Circadian clocks are composed of transcription-translation negative feedback loops that pace rhythms of gene expression to the diurnal cycle. In the filamentous fungus Neurospora crassa, the proteins Frequency (FRQ), the FRQ-interacting RNA helicase (FRH), and Casein-Kinase I (CK1) form the FFC complex that represses expression of genes activated by the white-collar complex (WCC). FRQ orchestrates key molecular interactions of the clock despite containing little predicted tertiary structure. Spin labeling and pulse-dipolar electron spin resonance spectroscopy provide domain-specific structural insights into the 989-residue intrinsically disordered FRQ and the FFC. FRQ contains a compact core that associates and organizes FRH and CK1 to coordinate their roles in WCC repression. FRQ phosphorylation increases conformational flexibility and alters oligomeric state, but the changes in structure and dynamics are non-uniform. Full-length FRQ undergoes liquid-liquid phase separation (LLPS) to sequester FRH and CK1 and influence CK1 enzymatic activity. Although FRQ phosphorylation favors LLPS, LLPS feeds back to reduce FRQ phosphorylation by CK1 at higher temperatures. Live imaging of Neurospora hyphae reveals FRQ foci characteristic of condensates near the nuclear periphery. Analogous clock repressor proteins in higher organisms share little position-specific sequence identity with FRQ; yet, they contain amino acid compositions that promote LLPS. Hence, condensate formation may be a conserved feature of eukaryotic clocks.
Collapse
Affiliation(s)
- Daniyal Tariq
- Department of Chemistry & Chemical Biology, Cornell UniversityIthacaUnited States
| | - Nicole Maurici
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical UniversitySyracuseUnited States
| | - Bradley M Bartholomai
- Department of Molecular and Systems Biology, Geisel School of Medicine at DartmouthHanoverUnited States
| | | | - Jay C Dunlap
- Department of Molecular and Systems Biology, Geisel School of Medicine at DartmouthHanoverUnited States
| | - Alaji Bah
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical UniversitySyracuseUnited States
| | - Brian R Crane
- Department of Chemistry & Chemical Biology, Cornell UniversityIthacaUnited States
| |
Collapse
|
46
|
Tang G, Xia H, Huang Y, Guo Y, Chen Y, Ma Z, Liu W. Liquid-liquid phase separation of H3K27me3 reader BP1 regulates transcriptional repression. Genome Biol 2024; 25:67. [PMID: 38468348 PMCID: PMC10926671 DOI: 10.1186/s13059-024-03209-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 03/04/2024] [Indexed: 03/13/2024] Open
Abstract
BACKGROUND Bromo-adjacent homology-plant homeodomain domain containing protein 1 (BP1) is a reader of histone post-translational modifications in fungi. BP1 recognizes trimethylation of lysine 27 in histone H3 (H3K27me3), an epigenetic hallmark of gene silencing. However, whether and how BP1 participates in transcriptional repression remains poorly understood. RESULTS We report that BP1 forms phase-separated liquid condensates to modulate its biological function in Fusarium graminearum. Deletion assays reveal that intrinsically disordered region 2 (IDR2) of BP1 mediates its liquid-liquid phase separation. The phase separation of BP1 is indispensable for its interaction with suppressor of Zeste 12, a component of polycomb repressive complex 2. Furthermore, IDR2 deletion abolishes BP1-H3K27me3 binding and alleviates the transcriptional repression of secondary metabolism-related genes, especially deoxynivalenol mycotoxin biosynthesis genes. CONCLUSIONS BP1 maintains transcriptional repression by forming liquid-liquid phase-separated condensates, expanding our understanding of the relationship between post-translational modifications and liquid-liquid phase separation.
Collapse
Affiliation(s)
- Guangfei Tang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Haoxue Xia
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Yufei Huang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
- College of Plant Protection, Shenyang Agricultural University, Shenyang, 110866, China
| | - Yuanwen Guo
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Yun Chen
- State Key Laboratory of Rice Biology, Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Zhonghua Ma
- State Key Laboratory of Rice Biology, Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Wende Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
| |
Collapse
|
47
|
Xu M, Senanayaka D, Zhao R, Chigumira T, Tripathi A, Tones J, Lackner RM, Wondisford AR, Moneysmith LN, Hirschi A, Craig S, Alishiri S, O'Sullivan RJ, Chenoweth DM, Reiter NJ, Zhang H. TERRA-LSD1 phase separation promotes R-loop formation for telomere maintenance in ALT cancer cells. Nat Commun 2024; 15:2165. [PMID: 38461301 PMCID: PMC10925046 DOI: 10.1038/s41467-024-46509-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 02/28/2024] [Indexed: 03/11/2024] Open
Abstract
The telomere repeat-containing RNA (TERRA) forms R-loops to promote homology-directed DNA synthesis in the alternative lengthening of telomere (ALT) pathway. Here we report that TERRA contributes to ALT via interacting with the lysine-specific demethylase 1A (LSD1 or KDM1A). We show that LSD1 localizes to ALT telomeres in a TERRA dependent manner and LSD1 function in ALT is largely independent of its demethylase activity. Instead, LSD1 promotes TERRA recruitment to ALT telomeres via RNA binding. In addition, LSD1 and TERRA undergo phase separation, driven by interactions between the RNA binding properties of LSD1 and the G-quadruplex structure of TERRA. Importantly, the formation of TERRA-LSD1 condensates enriches the R-loop stimulating protein Rad51AP1 and increases TERRA-containing R-loops at telomeres. Our findings suggest that LSD1-TERRA phase separation enhances the function of R-loop regulatory molecules for ALT telomere maintenance, providing a mechanism for how the biophysical properties of histone modification enzyme-RNA interactions impact chromatin function.
Collapse
Affiliation(s)
- Meng Xu
- Department of Biology, Carnegie Mellon University, Pittsburgh, PA, 15213, USA
| | - Dulmi Senanayaka
- Klingler College of Arts and Sciences, Department of Chemistry, Marquette University, Milwaukee, WI, 53233, USA
| | - Rongwei Zhao
- Department of Biology, Carnegie Mellon University, Pittsburgh, PA, 15213, USA
| | - Tafadzwa Chigumira
- Department of Biology, Carnegie Mellon University, Pittsburgh, PA, 15213, USA
| | - Astha Tripathi
- Department of Biology, Carnegie Mellon University, Pittsburgh, PA, 15213, USA
| | - Jason Tones
- Department of Biology, Carnegie Mellon University, Pittsburgh, PA, 15213, USA
| | - Rachel M Lackner
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA, 19014, USA
| | - Anne R Wondisford
- Department of Pharmacology and Chemical Biology, UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Laurel N Moneysmith
- Klingler College of Arts and Sciences, Department of Chemistry, Marquette University, Milwaukee, WI, 53233, USA
| | - Alexander Hirschi
- Cepheid Diagnostics, 904 E. Caribbean Dr., Sunnyvale, California, 94089, USA
| | - Sara Craig
- Klingler College of Arts and Sciences, Department of Chemistry, Marquette University, Milwaukee, WI, 53233, USA
| | - Sahar Alishiri
- Klingler College of Arts and Sciences, Department of Chemistry, Marquette University, Milwaukee, WI, 53233, USA
| | - Roderick J O'Sullivan
- Department of Pharmacology and Chemical Biology, UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - David M Chenoweth
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA, 19014, USA
| | - Nicholas J Reiter
- Klingler College of Arts and Sciences, Department of Chemistry, Marquette University, Milwaukee, WI, 53233, USA
| | - Huaiying Zhang
- Department of Biology, Carnegie Mellon University, Pittsburgh, PA, 15213, USA.
| |
Collapse
|
48
|
Murphy SE, Boettiger AN. Polycomb repression of Hox genes involves spatial feedback but not domain compaction or phase transition. Nat Genet 2024; 56:493-504. [PMID: 38361032 DOI: 10.1038/s41588-024-01661-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 01/10/2024] [Indexed: 02/17/2024]
Abstract
Polycomb group proteins have a critical role in silencing transcription during development. It is commonly proposed that Polycomb-dependent changes in genome folding, which compact chromatin, contribute directly to repression by blocking the binding of activating complexes. Recently, it has also been argued that liquid-liquid demixing of Polycomb proteins facilitates this compaction and repression by phase-separating target genes into a membraneless compartment. To test these models, we used Optical Reconstruction of Chromatin Architecture to trace the Hoxa gene cluster, a canonical Polycomb target, in thousands of single cells. Across multiple cell types, we find that Polycomb-bound chromatin frequently explores decompact states and partial mixing with neighboring chromatin, while remaining uniformly repressed, challenging the repression-by-compaction or phase-separation models. Using polymer simulations, we show that these observed flexible ensembles can be explained by 'spatial feedback'-transient contacts that contribute to the propagation of the epigenetic state (epigenetic memory), without inducing a globular organization.
Collapse
Affiliation(s)
- Sedona Eve Murphy
- Department of Genetics, Stanford University, Stanford, CA, USA
- Department of Developmental Biology, Stanford University, Stanford, CA, USA
- Department of Cell Biology, Yale University, New Haven, CT, USA
| | | |
Collapse
|
49
|
Ito S, Umehara T, Koseki H. Polycomb-mediated histone modifications and gene regulation. Biochem Soc Trans 2024; 52:151-161. [PMID: 38288743 DOI: 10.1042/bst20230336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 01/03/2024] [Accepted: 01/05/2024] [Indexed: 02/29/2024]
Abstract
Polycomb repressive complexes 1 and 2 (PRC1 and PRC2) are transcriptional repressor complexes that play a fundamental role in epigenomic regulation and the cell-fate decision; these complexes are widely conserved in multicellular organisms. PRC1 is an E3 ubiquitin (ub) ligase that generates histone H2A ubiquitinated at lysine (K) 119 (H2AK119ub1), whereas PRC2 is a histone methyltransferase that specifically catalyzes tri-methylation of histone H3K27 (H3K27me3). Genome-wide analyses have confirmed that these two key epigenetic marks highly overlap across the genome and contribute to gene repression. We are now beginning to understand the molecular mechanisms that enable PRC1 and PRC2 to identify their target sites in the genome and communicate through feedback mechanisms to create Polycomb chromatin domains. Recently, it has become apparent that PRC1-induced H2AK119ub1 not only serves as a docking site for PRC2 but also affects the dynamics of the H3 tail, both of which enhance PRC2 activity, suggesting that trans-tail communication between H2A and H3 facilitates the formation of the Polycomb chromatin domain. In this review, we discuss the emerging principles that define how PRC1 and PRC2 establish the Polycomb chromatin domain and regulate gene expression in mammals.
Collapse
Affiliation(s)
- Shinsuke Ito
- Laboratory of Developmental Genetics, RIKEN Center for Integrative Medical Sciences, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Takashi Umehara
- Laboratory of Developmental Genetics, RIKEN Center for Integrative Medical Sciences, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
- Laboratory for Epigenetics Drug Discovery, RIKEN Center for Biosystems Dynamics Research, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Haruhiko Koseki
- Laboratory of Developmental Genetics, RIKEN Center for Integrative Medical Sciences, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
- Department of Cellular and Molecular Medicine, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan
| |
Collapse
|
50
|
Ingersoll S, Trouth A, Luo X, Espinoza A, Wen J, Tucker J, Astatike K, Phiel CJ, Kutateladze TG, Wu TP, Ramachandran S, Ren X. Sparse CBX2 nucleates many Polycomb proteins to promote facultative heterochromatinization of Polycomb target genes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.05.578969. [PMID: 38370615 PMCID: PMC10871256 DOI: 10.1101/2024.02.05.578969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
Facultative heterochromatinization of genomic regulators by Polycomb repressive complex (PRC) 1 and 2 is essential in development and differentiation; however, the underlying molecular mechanisms remain obscure. Using genetic engineering, molecular approaches, and live-cell single-molecule imaging, we quantify the number of proteins within condensates formed through liquid-liquid phase separation (LLPS) and find that in mouse embryonic stem cells (mESCs), approximately 3 CBX2 proteins nucleate many PRC1 and PRC2 subunits to form one non-stoichiometric condensate. We demonstrate that sparse CBX2 prevents Polycomb proteins from migrating to constitutive heterochromatin, demarcates the spatial boundaries of facultative heterochromatin, controls the deposition of H3K27me3, regulates transcription, and impacts cellular differentiation. Furthermore, we show that LLPS of CBX2 is required for the demarcation and deposition of H3K27me3 and is essential for cellular differentiation. Our findings uncover new functional roles of LLPS in the formation of facultative heterochromatin and unravel a new mechanism by which low-abundant proteins nucleate many other proteins to form compartments that enable them to execute their functions.
Collapse
Affiliation(s)
- Steven Ingersoll
- Department of Chemistry, University of Colorado Denver, Denver, CO 80217-3364, USA
| | - Abby Trouth
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, CO, USA
| | - Xinlong Luo
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Axel Espinoza
- Department of Integrative Biology, University of Colorado Denver, CO 80217-3364, USA
| | - Joey Wen
- Department of Chemistry, University of Colorado Denver, Denver, CO 80217-3364, USA
| | - Joseph Tucker
- Department of Integrative Biology, University of Colorado Denver, CO 80217-3364, USA
| | - Kalkidan Astatike
- Department of Chemistry, University of Colorado Denver, Denver, CO 80217-3364, USA
| | - Christopher J. Phiel
- Department of Integrative Biology, University of Colorado Denver, CO 80217-3364, USA
| | - Tatiana G. Kutateladze
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Tao P. Wu
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Srinivas Ramachandran
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, CO, USA
- RNA Bioscience Initiative, University of Colorado School of Medicine, Aurora, CO, USA
| | - Xiaojun Ren
- Department of Chemistry, University of Colorado Denver, Denver, CO 80217-3364, USA
- Department of Integrative Biology, University of Colorado Denver, CO 80217-3364, USA
| |
Collapse
|