1
|
Ding M, Zhou Y, Becker D, Yang S, Krischke M, Scherzer S, Yu-Strzelczyk J, Mueller MJ, Hedrich R, Nagel G, Gao S, Konrad KR. Probing plant signal processing optogenetically by two channelrhodopsins. Nature 2024; 633:872-877. [PMID: 39198644 PMCID: PMC11424491 DOI: 10.1038/s41586-024-07884-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 07/30/2024] [Indexed: 09/01/2024]
Abstract
Early plant responses to different stress situations often encompass cytosolic Ca2+ increases, plasma membrane depolarization and the generation of reactive oxygen species1-3. However, the mechanisms by which these signalling elements are translated into defined physiological outcomes are poorly understood. Here, to study the basis for encoding of specificity in plant signal processing, we used light-gated ion channels (channelrhodopsins). We developed a genetically engineered channelrhodopsin variant called XXM 2.0 with high Ca2+ conductance that enabled triggering cytosolic Ca2+ elevations in planta. Plant responses to light-induced Ca2+ influx through XXM 2.0 were studied side by side with effects caused by an anion efflux through the light-gated anion channelrhodopsin ACR1 2.04. Although both tools triggered membrane depolarizations, their activation led to distinct plant stress responses: XXM 2.0-induced Ca2+ signals stimulated production of reactive oxygen species and defence mechanisms; ACR1 2.0-mediated anion efflux triggered drought stress responses. Our findings imply that discrete Ca2+ signals and anion efflux serve as triggers for specific metabolic and transcriptional reprogramming enabling plants to adapt to particular stress situations. Our optogenetics approach unveiled that within plant leaves, distinct physiological responses are triggered by specific ion fluxes, which are accompanied by similar electrical signals.
Collapse
Affiliation(s)
- Meiqi Ding
- Molecular Plant Physiology and Biophysics, Julius-von-Sachs-Institute, University of Wuerzburg, Würzburg, Germany
| | - Yang Zhou
- Department of Neurophysiology, Physiological Institute, University of Wuerzburg, Würzburg, Germany
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
| | - Dirk Becker
- Molecular Plant Physiology and Biophysics, Julius-von-Sachs-Institute, University of Wuerzburg, Würzburg, Germany
| | - Shang Yang
- Department of Neurophysiology, Physiological Institute, University of Wuerzburg, Würzburg, Germany
| | - Markus Krischke
- Pharmaceutical Biology, Julius-von-Sachs-Institute, University of Wuerzburg, Würzburg, Germany
| | - Sönke Scherzer
- Molecular Plant Physiology and Biophysics, Julius-von-Sachs-Institute, University of Wuerzburg, Würzburg, Germany
| | - Jing Yu-Strzelczyk
- Department of Neurophysiology, Physiological Institute, University of Wuerzburg, Würzburg, Germany
| | - Martin J Mueller
- Pharmaceutical Biology, Julius-von-Sachs-Institute, University of Wuerzburg, Würzburg, Germany
| | - Rainer Hedrich
- Molecular Plant Physiology and Biophysics, Julius-von-Sachs-Institute, University of Wuerzburg, Würzburg, Germany.
| | - Georg Nagel
- Department of Neurophysiology, Physiological Institute, University of Wuerzburg, Würzburg, Germany.
| | - Shiqiang Gao
- Department of Neurophysiology, Physiological Institute, University of Wuerzburg, Würzburg, Germany.
| | - Kai R Konrad
- Molecular Plant Physiology and Biophysics, Julius-von-Sachs-Institute, University of Wuerzburg, Würzburg, Germany.
| |
Collapse
|
2
|
Portero V, Deng S, Boink GJJ, Zhang GQ, de Vries A, Pijnappels DA. Optoelectronic control of cardiac rhythm: Toward shock-free ambulatory cardioversion of atrial fibrillation. J Intern Med 2024; 295:126-145. [PMID: 37964404 DOI: 10.1111/joim.13744] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2023]
Abstract
Atrial fibrillation (AF) is the most prevalent cardiac arrhythmia, progressive in nature, and known to have a negative impact on mortality, morbidity, and quality of life. Patients requiring acute termination of AF to restore sinus rhythm are subjected to electrical cardioversion, which requires sedation and therefore hospitalization due to pain resulting from the electrical shocks. However, considering the progressive nature of AF and its detrimental effects, there is a clear need for acute out-of-hospital (i.e., ambulatory) cardioversion of AF. In the search for shock-free cardioversion methods to realize such ambulatory therapy, a method referred to as optogenetics has been put forward. Optogenetics enables optical control over the electrical activity of cardiomyocytes by targeted expression of light-activated ion channels or pumps and may therefore serve as a means for cardioversion. First proof-of-principle for such light-induced cardioversion came from in vitro studies, proving optogenetic AF termination to be very effective. Later, these results were confirmed in various rodent models of AF using different transgenes, illumination methods, and protocols, whereas computational studies in the human heart provided additional translational insight. Based on these results and fueled by recent advances in molecular biology, gene therapy, and optoelectronic engineering, a basis is now being formed to explore clinical translations of optoelectronic control of cardiac rhythm. In this review, we discuss the current literature regarding optogenetic cardioversion of AF to restore normal rhythm in a shock-free manner. Moreover, key translational steps will be discussed, both from a biological and technological point of view, to outline a path toward realizing acute shock-free ambulatory termination of AF.
Collapse
Affiliation(s)
- Vincent Portero
- Laboratory of Experimental Cardiology, Department of Cardiology, Leiden University Medical Center (LUMC), Leiden, The Netherlands
| | - Shanliang Deng
- Laboratory of Experimental Cardiology, Department of Cardiology, Leiden University Medical Center (LUMC), Leiden, The Netherlands
- Department of Microelectronics, Delft University of Technology, Delft, The Netherlands
| | - Gerard J J Boink
- Department of Medical Biology, Department of Cardiology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
| | - Guo Qi Zhang
- Department of Microelectronics, Delft University of Technology, Delft, The Netherlands
| | - Antoine de Vries
- Laboratory of Experimental Cardiology, Department of Cardiology, Leiden University Medical Center (LUMC), Leiden, The Netherlands
| | - Daniël A Pijnappels
- Laboratory of Experimental Cardiology, Department of Cardiology, Leiden University Medical Center (LUMC), Leiden, The Netherlands
| |
Collapse
|
3
|
Piatkevich KD, Boyden ES. Optogenetic control of neural activity: The biophysics of microbial rhodopsins in neuroscience. Q Rev Biophys 2023; 57:e1. [PMID: 37831008 DOI: 10.1017/s0033583523000033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2023]
Abstract
Optogenetics, the use of microbial rhodopsins to make the electrical activity of targeted neurons controllable by light, has swept through neuroscience, enabling thousands of scientists to study how specific neuron types contribute to behaviors and pathologies, and how they might serve as novel therapeutic targets. By activating a set of neurons, one can probe what functions they can initiate or sustain, and by silencing a set of neurons, one can probe the functions they are necessary for. We here review the biophysics of these molecules, asking why they became so useful in neuroscience for the study of brain circuitry. We review the history of the field, including early thinking, early experiments, applications of optogenetics, pre-optogenetics targeted neural control tools, and the history of discovering and characterizing microbial rhodopsins. We then review the biophysical attributes of rhodopsins that make them so useful to neuroscience - their classes and structure, their photocycles, their photocurrent magnitudes and kinetics, their action spectra, and their ion selectivity. Our hope is to convey to the reader how specific biophysical properties of these molecules made them especially useful to neuroscientists for a difficult problem - the control of high-speed electrical activity, with great precision and ease, in the brain.
Collapse
Affiliation(s)
- Kiryl D Piatkevich
- School of Life Sciences, Westlake University, Hangzhou, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, China
| | - Edward S Boyden
- McGovern Institute and Koch Institute, Departments of Brain and Cognitive Sciences, Media Arts and Sciences, and Biological Engineering, K. Lisa Yang Center for Bionics and Center for Neurobiological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Howard Hughes Medical Institute, Cambridge, MA, USA
| |
Collapse
|
4
|
Ledri M, Andersson M, Wickham J, Kokaia M. Optogenetics for controlling seizure circuits for translational approaches. Neurobiol Dis 2023:106234. [PMID: 37479090 DOI: 10.1016/j.nbd.2023.106234] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 07/02/2023] [Accepted: 07/19/2023] [Indexed: 07/23/2023] Open
Abstract
The advent of optogenetic tools has had a profound impact on modern neuroscience research, revolutionizing our understanding of the brain. These tools offer a remarkable ability to precisely manipulate specific groups of neurons with an unprecedented level of temporal precision, on the order of milliseconds. This breakthrough has significantly advanced our knowledge of various physiological and pathophysiological processes in the brain. Within the realm of epilepsy research, optogenetic tools have played a crucial role in investigating the contributions of different neuronal populations to the generation of seizures and hyperexcitability. By selectively activating or inhibiting specific neurons using optogenetics, researchers have been able to elucidate the underlying mechanisms and identify key players involved in epileptic activity. Moreover, optogenetic techniques have also been explored as innovative therapeutic strategies for treating epilepsy. These strategies aim to halt seizure progression and alleviate symptoms by utilizing the precise control offered by optogenetics. The application of optogenetic tools has provided valuable insights into the intricate workings of the brain during epileptic episodes. For instance, researchers have discovered how distinct interneuron populations contribute to the initiation of seizures (ictogenesis). They have also revealed how remote circuits in regions such as the cerebellum, septum, or raphe nuclei can interact with hyperexcitable networks in the hippocampus. Additionally, studies have demonstrated the potential of closed-loop systems, where optogenetics is combined with real-time monitoring, to enable precise, on-demand control of seizure activity. Despite the immense promise demonstrated by optogenetic approaches, it is important to acknowledge that many of these techniques are still in the early stages of development and have yet to reach potential clinical applications. The transition from experimental research to practical clinical use poses numerous challenges. In this review, we aim to introduce optogenetic tools, provide a comprehensive survey of their application in epilepsy research, and critically discuss their current potential and limitations in achieving successful clinical implementation for the treatment of human epilepsy. By addressing these crucial aspects, we hope to foster a deeper understanding of the current state and future prospects of optogenetics in epilepsy treatment.
Collapse
Affiliation(s)
- Marco Ledri
- Epilepsy Center, Department of Clinical Sciences Lund, Faculty of Medicine, Lund University, Sölvegatan 17, 223 62 Lund, Sweden
| | - My Andersson
- Epilepsy Center, Department of Clinical Sciences Lund, Faculty of Medicine, Lund University, Sölvegatan 17, 223 62 Lund, Sweden
| | - Jenny Wickham
- Epilepsy Center, Department of Clinical Sciences Lund, Faculty of Medicine, Lund University, Sölvegatan 17, 223 62 Lund, Sweden
| | - Merab Kokaia
- Epilepsy Center, Department of Clinical Sciences Lund, Faculty of Medicine, Lund University, Sölvegatan 17, 223 62 Lund, Sweden.
| |
Collapse
|
5
|
Hatakeyama A, Sugano E, Sayama T, Watanabe Y, Suzuki T, Tabata K, Endo Y, Sakajiri T, Fukuda T, Ozaki T, Tomita H. Properties of a Single Amino Acid Residue in the Third Transmembrane Domain Determine the Kinetics of Ambient Light-Sensitive Channelrhodopsin. Int J Mol Sci 2023; 24:ijms24055054. [PMID: 36902480 PMCID: PMC10003734 DOI: 10.3390/ijms24055054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/02/2023] [Accepted: 03/04/2023] [Indexed: 03/09/2023] Open
Abstract
Channelrhodopsins have been utilized in gene therapy to restore vision in patients with retinitis pigmentosa and their channel kinetics are an important factor to consider in such applications. We investigated the channel kinetics of ComV1 variants with different amino acid residues at the 172nd position. Patch clamp methods were used to record the photocurrents induced by stimuli from diodes in HEK293 cells transfected with plasmid vectors. The channel kinetics (τon and τoff) were considerably altered by the replacement of the 172nd amino acid and was dependent on the amino acid characteristics. The size of amino acids at this position correlated with τon and decay, whereas the solubility correlated with τon and τoff. Molecular dynamic simulation indicated that the ion tunnel constructed by H172, E121, and R306 widened due to H172A variant, whereas the interaction between A172 and the surrounding amino acids weakened compared with H172. The bottleneck radius of the ion gate constructed with the 172nd amino acid affected the photocurrent and channel kinetics. The 172nd amino acid in ComV1 is a key residue for determining channel kinetics as its properties alter the radius of the ion gate. Our findings can be used to improve the channel kinetics of channelrhodopsins.
Collapse
|
6
|
Lee J, Campillo B, Hamidian S, Liu Z, Shorey M, St-Pierre F. Automating the High-Throughput Screening of Protein-Based Optical Indicators and Actuators. Biochemistry 2023; 62:169-177. [PMID: 36315460 PMCID: PMC9852035 DOI: 10.1021/acs.biochem.2c00357] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Over the last 25 years, protein engineers have developed an impressive collection of optical tools to interface with biological systems: indicators to eavesdrop on cellular activity and actuators to poke and prod native processes. To reach the performance level required for their downstream applications, protein-based tools are usually sculpted by iterative rounds of mutagenesis. In each round, libraries of variants are made and evaluated, and the most promising hits are then retrieved, sequenced, and further characterized. Early efforts to engineer protein-based optical tools were largely manual, suffering from low throughput, human error, and tedium. Here, we describe approaches to automating the screening of libraries generated as colonies on agar, multiwell plates, and pooled populations of single-cell variants. We also briefly discuss emerging approaches for screening, including cell-free systems and machine learning.
Collapse
Affiliation(s)
- Jihwan Lee
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
| | - Beatriz Campillo
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
| | - Shaminta Hamidian
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
| | - Zhuohe Liu
- Department of Electrical and Computer Engineering, Rice University, Houston, TX 77005, USA
| | - Matthew Shorey
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
| | - François St-Pierre
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
- Systems, Synthetic, and Physical Biology Program, Rice University, Houston, TX 77005, USA
- Department of Electrical and Computer Engineering, Rice University, Houston, TX 77005, USA
- Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
7
|
Fernandez Lahore RG, Pampaloni NP, Schiewer E, Heim MM, Tillert L, Vierock J, Oppermann J, Walther J, Schmitz D, Owald D, Plested AJR, Rost BR, Hegemann P. Calcium-permeable channelrhodopsins for the photocontrol of calcium signalling. Nat Commun 2022; 13:7844. [PMID: 36543773 PMCID: PMC9772239 DOI: 10.1038/s41467-022-35373-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 11/29/2022] [Indexed: 12/24/2022] Open
Abstract
Channelrhodopsins are light-gated ion channels used to control excitability of designated cells in large networks with high spatiotemporal resolution. While ChRs selective for H+, Na+, K+ and anions have been discovered or engineered, Ca2+-selective ChRs have not been reported to date. Here, we analyse ChRs and mutant derivatives with regard to their Ca2+ permeability and improve their Ca2+ affinity by targeted mutagenesis at the central selectivity filter. The engineered channels, termed CapChR1 and CapChR2 for calcium-permeable channelrhodopsins, exhibit reduced sodium and proton conductance in connection with strongly improved Ca2+ permeation at negative voltage and low extracellular Ca2+ concentrations. In cultured cells and neurons, CapChR2 reliably increases intracellular Ca2+ concentrations. Moreover, CapChR2 can robustly trigger Ca2+ signalling in hippocampal neurons. When expressed together with genetically encoded Ca2+ indicators in Drosophila melanogaster mushroom body output neurons, CapChRs mediate light-evoked Ca2+ entry in brain explants.
Collapse
Affiliation(s)
| | - Niccolò P Pampaloni
- Molecular Neuroscience and Biophysics, Leibniz-Institut für Molekulare Pharmakologie, Berlin, Germany
- Institute of Biology, Cellular Biophysics, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Enrico Schiewer
- Institute of Biology, Experimental Biophysics, Humboldt-Universität zu Berlin, Berlin, Germany
| | - M-Marcel Heim
- Institute of Neurophysiology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Linda Tillert
- Institute of Biology, Experimental Biophysics, Humboldt-Universität zu Berlin, Berlin, Germany
- Neuroscience Research Center, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Johannes Vierock
- Institute of Biology, Experimental Biophysics, Humboldt-Universität zu Berlin, Berlin, Germany
- Neuroscience Research Center, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Johannes Oppermann
- Institute of Biology, Experimental Biophysics, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Jakob Walther
- Department of Neurology with Experimental Neurology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Dietmar Schmitz
- Neuroscience Research Center, Charité - Universitätsmedizin Berlin, Berlin, Germany
- German Center for Neurodegenerative Diseases (DZNE), Berlin, Germany
| | - David Owald
- Institute of Neurophysiology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Andrew J R Plested
- Molecular Neuroscience and Biophysics, Leibniz-Institut für Molekulare Pharmakologie, Berlin, Germany
- Institute of Biology, Cellular Biophysics, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Benjamin R Rost
- German Center for Neurodegenerative Diseases (DZNE), Berlin, Germany
| | - Peter Hegemann
- Institute of Biology, Experimental Biophysics, Humboldt-Universität zu Berlin, Berlin, Germany
| |
Collapse
|
8
|
Gating and ion selectivity of Channelrhodopsins are critical for photo-activated orientation of Chlamydomonas as shown by in vivo point mutation. Nat Commun 2022; 13:7253. [PMID: 36433995 PMCID: PMC9700795 DOI: 10.1038/s41467-022-35018-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 11/15/2022] [Indexed: 11/26/2022] Open
Abstract
The green unicellular alga Chlamydomonas reinhardtii with two photoreceptors called channelrhodopsins is a model organism that gave birth to a new scientific field of biomedical studies, optogenetics. Although channelrhodopsins are helping to decipher the activity of the human brain, their functionality has never been extensively studied in the organism of origin, mainly due to the difficulties connected to reverse genetic interventions. In this study, we present a CRISPR-Cas9-based technique that enables a precise in vivo exchange of single amino acids in a selected gene. To shed light on the function of channelrhodopsins ChR1 (C1) and ChR2 (C2) in vivo, we deleted both channelrhodopsins independently in the wild-type strain and introduced point mutations in the remaining channel, causing modified photocycle kinetics and ion selectivity. The mutated strains, ΔC1C2-E123T, ΔC1C2-E90R and ΔC1C2-E90Q, showed about 100-fold decrease in photosensitivity, a reduced photophobic response and faster light adaptation rates due to accelerated photocycle kinetics and reduced Ca2+ conductance. Moreover, the ΔC1C2-E90Q with an additionally reduced H+ permeability produced an electrical response only in the presence of Na+ ions, highlighting a contribution and importance of H+ conductance to photocurrents in the wild-type algae. Finally, in the ΔC1C2-E90R strain with the channelrhodopsin selectivity converted to anions, no photo-responses were detected. We conclude that the precise photocycle kinetics and the particular ion selectivity of channelrhodopsins are the key parameters for efficient phototaxis in low light conditions.
Collapse
|
9
|
Fernandez-Ruiz A, Oliva A, Chang H. High-resolution optogenetics in space and time. Trends Neurosci 2022; 45:854-864. [PMID: 36192264 DOI: 10.1016/j.tins.2022.09.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 09/12/2022] [Accepted: 09/13/2022] [Indexed: 10/31/2022]
Abstract
To understand the neural mechanisms of behavior, it is necessary to both monitor and perturb the activity of ensembles of neurons with high specificity. While neural ensemble recordings have been available for decades, progress in high-resolution manipulation techniques has lagged behind. Optogenetics has enabled the manipulation of genetically defined cell types in behaving animals, and recent developments, including multipoint nanofabricated light sources, provide spatiotemporal resolution on a par with that of physiological recordings. Here we review current advances in optogenetic methods for cellular-resolution stimulation and intervention, as well as their integration with real-time neural recordings for closed-loop experimentation. We discuss how these approaches open the door to new kinds of experiments aimed at dissecting the role of specific neural patterns and discrete cellular populations in orchestrating the activity of brain circuits that support behavior and cognition.
Collapse
Affiliation(s)
| | - Azahara Oliva
- Department of Neurobiology and Behavior, Cornell University, Ithaca, NY 14853, USA
| | - Hongyu Chang
- Department of Neurobiology and Behavior, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
10
|
de Grip WJ, Ganapathy S. Rhodopsins: An Excitingly Versatile Protein Species for Research, Development and Creative Engineering. Front Chem 2022; 10:879609. [PMID: 35815212 PMCID: PMC9257189 DOI: 10.3389/fchem.2022.879609] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Accepted: 05/16/2022] [Indexed: 01/17/2023] Open
Abstract
The first member and eponym of the rhodopsin family was identified in the 1930s as the visual pigment of the rod photoreceptor cell in the animal retina. It was found to be a membrane protein, owing its photosensitivity to the presence of a covalently bound chromophoric group. This group, derived from vitamin A, was appropriately dubbed retinal. In the 1970s a microbial counterpart of this species was discovered in an archaeon, being a membrane protein also harbouring retinal as a chromophore, and named bacteriorhodopsin. Since their discovery a photogenic panorama unfolded, where up to date new members and subspecies with a variety of light-driven functionality have been added to this family. The animal branch, meanwhile categorized as type-2 rhodopsins, turned out to form a large subclass in the superfamily of G protein-coupled receptors and are essential to multiple elements of light-dependent animal sensory physiology. The microbial branch, the type-1 rhodopsins, largely function as light-driven ion pumps or channels, but also contain sensory-active and enzyme-sustaining subspecies. In this review we will follow the development of this exciting membrane protein panorama in a representative number of highlights and will present a prospect of their extraordinary future potential.
Collapse
Affiliation(s)
- Willem J. de Grip
- Leiden Institute of Chemistry, Department of Biophysical Organic Chemistry, Leiden University, Leiden, Netherlands
- Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Srividya Ganapathy
- Department of Imaging Physics, Delft University of Technology, Netherlands
| |
Collapse
|
11
|
Govorunova EG, Sineshchekov OA, Spudich JL. Emerging Diversity of Channelrhodopsins and Their Structure-Function Relationships. Front Cell Neurosci 2022; 15:800313. [PMID: 35140589 PMCID: PMC8818676 DOI: 10.3389/fncel.2021.800313] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 12/28/2021] [Indexed: 12/12/2022] Open
Abstract
Cation and anion channelrhodopsins (CCRs and ACRs, respectively) from phototactic algae have become widely used as genetically encoded molecular tools to control cell membrane potential with light. Recent advances in polynucleotide sequencing, especially in environmental samples, have led to identification of hundreds of channelrhodopsin homologs in many phylogenetic lineages, including non-photosynthetic protists. Only a few CCRs and ACRs have been characterized in detail, but there are indications that ion channel function has evolved within the rhodopsin superfamily by convergent routes. The diversity of channelrhodopsins provides an exceptional platform for the study of structure-function evolution in membrane proteins. Here we review the current state of channelrhodopsin research and outline perspectives for its further development.
Collapse
|
12
|
Dwijayanti A, Zhang C, Poh CL, Lautier T. Toward Multiplexed Optogenetic Circuits. Front Bioeng Biotechnol 2022; 9:804563. [PMID: 35071213 PMCID: PMC8766309 DOI: 10.3389/fbioe.2021.804563] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 12/06/2021] [Indexed: 11/25/2022] Open
Abstract
Owing to its ubiquity and easy availability in nature, light has been widely employed to control complex cellular behaviors. Light-sensitive proteins are the foundation to such diverse and multilevel adaptive regulations in a large range of organisms. Due to their remarkable properties and potential applications in engineered systems, exploration and engineering of natural light-sensitive proteins have significantly contributed to expand optogenetic toolboxes with tailor-made performances in synthetic genetic circuits. Progressively, more complex systems have been designed in which multiple photoreceptors, each sensing its dedicated wavelength, are combined to simultaneously coordinate cellular responses in a single cell. In this review, we highlight recent works and challenges on multiplexed optogenetic circuits in natural and engineered systems for a dynamic regulation breakthrough in biotechnological applications.
Collapse
Affiliation(s)
| | - Congqiang Zhang
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Chueh Loo Poh
- NUS Synthetic Biology for Clinical and Technological Innovation (SynCTI), Life Sciences Institute, National University of Singapore, Singapore, Singapore
| | - Thomas Lautier
- CNRS@CREATE, Singapore, Singapore
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
- TBI, Université de Toulouse, CNRS, INRAE, INSA, Toulouse, France
| |
Collapse
|
13
|
Landry CR, Yip MC, Kolb I, Stoy WA, Gonzalez MM, Forest CR. Method for Rapid Enzymatic Cleaning for Reuse of Patch Clamp Pipettes: Increasing Throughput by Eliminating Manual Pipette Replacement between Patch Clamp Attempts. Bio Protoc 2021; 11:e4085. [PMID: 34395724 PMCID: PMC8329470 DOI: 10.21769/bioprotoc.4085] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 03/26/2021] [Accepted: 04/12/2021] [Indexed: 11/02/2022] Open
Abstract
The whole-cell patch-clamp method is a gold standard for single-cell analysis of electrical activity, cellular morphology, and gene expression. Prior to our discovery that patch-clamp pipettes could be cleaned and reused, experimental throughput and automation were limited by the need to replace pipettes manually after each experiment. This article presents an optimized protocol for pipette cleaning, which enables it to be performed quickly (< 30 s), resulting in a high yield of whole-cell recording success rate (> 90%) for over 100 reuses of a single pipette. For most patch-clamp experiments (< 30 whole-cell recordings per day), this method enables a single pipette to be used for an entire day of experiments. In addition, we describe easily implementable hardware and software as well as troubleshooting tips to help other labs implement this method in their own experiments. Pipette cleaning enables patch-clamp experiments to be performed with higher throughput, whether manually or in an automated fashion, by eliminating the tedious and skillful task of replacing pipettes. From our experience with numerous electrophysiology laboratories, pipette cleaning can be integrated into existing patch-clamp setups in approximately one day using the hardware and software described in this article. Graphic abstract: Rapid enzymatic cleaning for reuse of patch-clamp pipettes.
Collapse
Affiliation(s)
- Corey R. Landry
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, USA
| | - Mighten C. Yip
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, USA
| | - Ilya Kolb
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, USA
| | | | - Mercedes M. Gonzalez
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, USA
| | - Craig R. Forest
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, USA
| |
Collapse
|
14
|
Expanding evolutionary neuroscience: insights from comparing variation in behavior. Neuron 2021; 109:1084-1099. [PMID: 33609484 DOI: 10.1016/j.neuron.2021.02.002] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 01/25/2021] [Accepted: 01/28/2021] [Indexed: 01/01/2023]
Abstract
Neuroscientists have long studied species with convenient biological features to discover how behavior emerges from conserved molecular, neural, and circuit level processes. With the advent of new tools, from viral vectors and gene editing to automated behavioral analyses, there has been a recent wave of interest in developing new, "nontraditional" model species. Here, we advocate for a complementary approach to model species development, that is, model clade development, as a way to integrate an evolutionary comparative approach with neurobiological and behavioral experiments. Capitalizing on natural behavioral variation in and investing in experimental tools for model clades will be a valuable strategy for the next generation of neuroscience discovery.
Collapse
|
15
|
Structure-Function Relationship of Channelrhodopsins. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1293:35-53. [PMID: 33398806 DOI: 10.1007/978-981-15-8763-4_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Abstract
Ion-translocating rhodopsins, especially channelrhodopsins (ChRs), have attracted broad attention as a powerful tool to modulate the membrane potential of cells with light (optogenetics). Because of recent biophysical, spectroscopic, and computational studies, including the structural determination of cation and anion ChRs, our understanding of the molecular mechanism underlying light-gated ion conduction has been greatly advanced. In this chapter, I first describe the background of rhodopsin family proteins including ChR, and how the optogenetics technology has been established from the discovery of first ChR in 2002. I later introduce the recent findings of the structure-function relationship of ChR by comparing the crystal structures of cation and anion ChRs. I further discuss the future goal in the fields of ChR research and optogenetic tool development.
Collapse
|
16
|
Optogenetic Modulation of Ion Channels by Photoreceptive Proteins. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1293:73-88. [PMID: 33398808 DOI: 10.1007/978-981-15-8763-4_5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
In these 15 years, researches to control cellular responses by light have flourished dramatically to establish "optogenetics" as a research field. In particular, light-dependent excitation/inhibition of neural cells using channelrhodopsins or other microbial rhodopsins is the most powerful and the most widely used optogenetic technique. New channelrhodopsin-based optogenetic tools having favorable characteristics have been identified from a wide variety of organisms or created through mutagenesis. Despite the great efforts, some neuronal activities are still hard to be manipulated by the channelrhodopsin-based tools, indicating that complementary approaches are needed to make optogenetics more comprehensive. One of the feasible and complementary approaches is optical control of ion channels using photoreceptive proteins other than channelrhodopsins. In particular, animal opsins can modulate various ion channels via light-dependent G protein activation. In this chapter, we summarize how such alternative optogenetic tools work and they will be improved.
Collapse
|
17
|
Walther F, Feind D, Vom Dahl C, Müller CE, Kukaj T, Sattler C, Nagel G, Gao S, Zimmer T. Action potentials in Xenopus oocytes triggered by blue light. J Gen Physiol 2020; 152:151581. [PMID: 32211871 PMCID: PMC7201882 DOI: 10.1085/jgp.201912489] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 02/24/2020] [Indexed: 11/20/2022] Open
Abstract
Voltage-gated sodium (Na+) channels are responsible for the fast upstroke of the action potential of excitable cells. The different α subunits of Na+ channels respond to brief membrane depolarizations above a threshold level by undergoing conformational changes that result in the opening of the pore and a subsequent inward flux of Na+. Physiologically, these initial membrane depolarizations are caused by other ion channels that are activated by a variety of stimuli such as mechanical stretch, temperature changes, and various ligands. In the present study, we developed an optogenetic approach to activate Na+ channels and elicit action potentials in Xenopus laevis oocytes. All recordings were performed by the two-microelectrode technique. We first coupled channelrhodopsin-2 (ChR2), a light-sensitive ion channel of the green alga Chlamydomonas reinhardtii, to the auxiliary β1 subunit of voltage-gated Na+ channels. The resulting fusion construct, β1-ChR2, retained the ability to modulate Na+ channel kinetics and generate photosensitive inward currents. Stimulation of Xenopus oocytes coexpressing the skeletal muscle Na+ channel Nav1.4 and β1-ChR2 with 25-ms lasting blue-light pulses resulted in rapid alterations of the membrane potential strongly resembling typical action potentials of excitable cells. Blocking Nav1.4 with tetrodotoxin prevented the fast upstroke and the reversal of the membrane potential. Coexpression of the voltage-gated K+ channel Kv2.1 facilitated action potential repolarization considerably. Light-induced action potentials were also obtained by coexpressing β1-ChR2 with either the neuronal Na+ channel Nav1.2 or the cardiac-specific isoform Nav1.5. Potential applications of this novel optogenetic tool are discussed.
Collapse
Affiliation(s)
- Florian Walther
- Institute of Physiology II, University Hospital Jena, Friedrich Schiller University, Jena, Germany
| | - Dominic Feind
- Institute of Physiology II, University Hospital Jena, Friedrich Schiller University, Jena, Germany
| | - Christian Vom Dahl
- Institute of Physiology II, University Hospital Jena, Friedrich Schiller University, Jena, Germany
| | - Christoph Emanuel Müller
- Institute of Physiology II, University Hospital Jena, Friedrich Schiller University, Jena, Germany
| | - Taulant Kukaj
- Institute of Physiology II, University Hospital Jena, Friedrich Schiller University, Jena, Germany
| | - Christian Sattler
- Institute of Physiology II, University Hospital Jena, Friedrich Schiller University, Jena, Germany
| | - Georg Nagel
- Institute of Physiology-Neurophysiology, Biocentre, Julius-Maximilians-University, Wuerzburg, Germany
| | - Shiqiang Gao
- Institute of Physiology-Neurophysiology, Biocentre, Julius-Maximilians-University, Wuerzburg, Germany
| | - Thomas Zimmer
- Institute of Physiology II, University Hospital Jena, Friedrich Schiller University, Jena, Germany
| |
Collapse
|
18
|
Mao D, Li N, Xiong Z, Sun Y, Xu G. Single-Cell Optogenetic Control of Calcium Signaling with a High-Density Micro-LED Array. iScience 2019; 21:403-412. [PMID: 31704651 PMCID: PMC6889635 DOI: 10.1016/j.isci.2019.10.024] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 10/08/2019] [Accepted: 10/11/2019] [Indexed: 11/30/2022] Open
Abstract
Precise optogenetic control, ideally down to single cells in dense cell populations, is essential in understanding the heterogeneity of cell networks. Devices with such capability, if built in a chip scale, will advance optogenetic studies at cellular levels in a variety of experimental settings. Here we demonstrate optogenetic control of intracellular Ca2+ dynamics at the single cell level using a 16-μm pitched micro-light emitting diode (LED) array that features high brightness, small spot size, fast response, and low voltage operation. Individual LED pixels are able to reliably trigger intracellular Ca2+ transients, confirmed by fluorescence microscopy and control experiments and cross-checked by two genetically coded Ca2+ indicators. Importantly, our array can optogenetically address individual cells that are sub-10 μm apart in densely packed cell populations. These results suggest the possible use of the micro-LED array toward a lab-on-a-chip for single-cell optogenetics, which may allow for pharmaceutical screening and fundamental studies on a variety of cell networks.
Collapse
Affiliation(s)
- Dacheng Mao
- Department of Electrical and Computer Engineering, University of Massachusetts, Amherst, MA 01003, USA
| | - Ningwei Li
- Department of Mechanical and Industrial Engineering, University of Massachusetts, Amherst, MA 01003, USA
| | - Zheshun Xiong
- Department of Electrical and Computer Engineering, University of Massachusetts, Amherst, MA 01003, USA
| | - Yubing Sun
- Department of Mechanical and Industrial Engineering, University of Massachusetts, Amherst, MA 01003, USA.
| | - Guangyu Xu
- Department of Electrical and Computer Engineering, University of Massachusetts, Amherst, MA 01003, USA.
| |
Collapse
|
19
|
Li D, Cho YK. High specificity of widely used phospho-tau antibodies validated using a quantitative whole-cell based assay. J Neurochem 2019; 152:122-135. [PMID: 31325178 DOI: 10.1111/jnc.14830] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 06/25/2019] [Accepted: 07/11/2019] [Indexed: 02/04/2023]
Abstract
Antibodies raised against defined phosphorylation sites of the microtubule-associated protein tau are widely used in scientific research and being applied in clinical assays. However, recent studies have revealed an alarming degree of non-specific binding found in these antibodies. In order to quantify and compare the specificity phospho-tau antibodies and other post-translational modification site-specific antibodies in general, a measure of specificity is urgently needed. Here, we report a robust flow cytometry assay using human embryonic kidney cells that enables the determination of a specificity parameter termed Φ, which measures the fraction of non-specific signal in antibody binding. We validate our assay using anti-tau antibodies with known specificity profiles, and apply it to measure the specificity of seven widely used phospho-tau antibodies (AT270, AT8, AT100, AT180, PHF-6, TG-3, and PHF-1) among others. We successfully determined the Φ values for all antibodies except AT100, which did not show detectable binding in our assay. Our results show that antibodies AT8, AT180, PHF-6, TG-3, and PHF-1 have Φ values near 1, which indicates no detectable non-specific binding. AT270 showed Φ value around 0.8, meaning that approximately 20% of the binding signal originates from non-specific binding. Further analyses using immunocytochemistry and western blotting confirmed the presence of non-specific binding of AT270 to non-tau proteins found in human embryonic kidney cells and the mouse hippocampus. We anticipate that the quantitative approach and parameter introduced here will be widely adopted as a standard for reporting the specificity for phospho-tau antibodies, and potentially for post-translational modification targeting antibodies in general. Cover Image for this issue: doi: 10.1111/jnc.14727.
Collapse
Affiliation(s)
- Dan Li
- Department of Biomedical Engineering, University of Connecticut, Storrs, Connecticut, USA
| | - Yong Ku Cho
- Department of Biomedical Engineering, University of Connecticut, Storrs, Connecticut, USA.,Department of Chemical and Biomolecular Engineering, University of Connecticut, Storrs, Connecticut, USA.,Institute for Systems Genomics, University of Connecticut, Storrs, Connecticut, USA.,Connecticut Institute for the Brain and Cognitive Sciences, University of Connecticut, Storrs, Connecticut, USA
| |
Collapse
|
20
|
Formation Mechanism of Ion Channel in Channelrhodopsin-2: Molecular Dynamics Simulation and Steering Molecular Dynamics Simulations. Int J Mol Sci 2019; 20:ijms20153780. [PMID: 31382458 PMCID: PMC6695816 DOI: 10.3390/ijms20153780] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 07/30/2019] [Indexed: 01/19/2023] Open
Abstract
Channelrhodopsin-2 (ChR2) is a light-activated and non-selective cationic channel protein that can be easily expressed in specific neurons to control neuronal activity by light. Although ChR2 has been extensively used as an optogenetic tool in neuroscience research, the molecular mechanism of cation channel formation following retinal photoisomerization in ChR2 is not well understood. In this paper, studies of the closed and opened state ChR2 structures are presented. The formation of the cationic channel is elucidated in atomic detail using molecular dynamics simulations on the all-trans-retinal (ChR2-trans) configuration of ChR2 and its isomerization products, 13-cis-retinal (ChR2-cis) configuration, respectively. Photoisomerization of the retinal-chromophore causes the destruction of interactions among the crucial residues (e.g., E90, E82, N258, and R268) around the channel and the extended H-bond network mediated by numerous water molecules, which opens the pore. Steering molecular dynamics (SMD) simulations show that the electrostatic interactions at the binding sites in intracellular gate (ICG) and central gate (CG) can influence the transmembrane transport of Na+ in ChR2-cis obviously. Potential of mean force (PMF) constructed by SMD and umbrella sampling also found the existing energy wells at these two binding sites during the transportation of Na+. These wells partly hinder the penetration of Na+ into cytoplasm through the ion channel. This investigation provides a theoretical insight on the formation mechanism of ion channels and the mechanism of ion permeation.
Collapse
|
21
|
Li D, Cho YK. High specificity of widely used phospho-tau antibodies validated using a quantitative whole-cell based assay. J Neurochem 2019. [PMID: 31325178 DOI: 10.1111/jnc.14727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Antibodies raised against defined phosphorylation sites of the microtubule-associated protein tau are widely used in scientific research and being applied in clinical assays. However, recent studies have revealed an alarming degree of non-specific binding found in these antibodies. In order to quantify and compare the specificity phospho-tau antibodies and other post-translational modification site-specific antibodies in general, a measure of specificity is urgently needed. Here, we report a robust flow cytometry assay using human embryonic kidney cells that enables the determination of a specificity parameter termed Φ, which measures the fraction of non-specific signal in antibody binding. We validate our assay using anti-tau antibodies with known specificity profiles, and apply it to measure the specificity of seven widely used phospho-tau antibodies (AT270, AT8, AT100, AT180, PHF-6, TG-3, and PHF-1) among others. We successfully determined the Φ values for all antibodies except AT100, which did not show detectable binding in our assay. Our results show that antibodies AT8, AT180, PHF-6, TG-3, and PHF-1 have Φ values near 1, which indicates no detectable non-specific binding. AT270 showed Φ value around 0.8, meaning that approximately 20% of the binding signal originates from non-specific binding. Further analyses using immunocytochemistry and western blotting confirmed the presence of non-specific binding of AT270 to non-tau proteins found in human embryonic kidney cells and the mouse hippocampus. We anticipate that the quantitative approach and parameter introduced here will be widely adopted as a standard for reporting the specificity for phospho-tau antibodies, and potentially for post-translational modification targeting antibodies in general. Cover Image for this issue: doi: 10.1111/jnc.14727.
Collapse
Affiliation(s)
- Dan Li
- Department of Biomedical Engineering, University of Connecticut, Storrs, Connecticut, USA
| | - Yong Ku Cho
- Department of Biomedical Engineering, University of Connecticut, Storrs, Connecticut, USA.,Department of Chemical and Biomolecular Engineering, University of Connecticut, Storrs, Connecticut, USA.,Institute for Systems Genomics, University of Connecticut, Storrs, Connecticut, USA.,Connecticut Institute for the Brain and Cognitive Sciences, University of Connecticut, Storrs, Connecticut, USA
| |
Collapse
|
22
|
Moorhouse AJ, Power JM. Making light work of fine-tuning channelrhodopsins. J Biol Chem 2019; 294:3822-3823. [PMID: 30877261 DOI: 10.1074/jbc.h119.007749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The development of genetically engineered proteins that can control cell excitability with light have revolutionized our understanding of the nervous system. The most widely used of these optogenetic tools is the light-gated ion channel, channelrhodopsin 2 (ChR2). A new study by Cho et al. describes the development of ChR2 variants with improved photocurrents and more selective ion permeability using an automated multifaceted fluorescence-based screening. This methodological framework holds promise not only in refining features of ChR2, but also for other proteins in which fluorescence phenotyping is possible.
Collapse
Affiliation(s)
- Andrew J Moorhouse
- From the School of Medical Sciences, UNSW Sydney, New South Wales, 2052, Australia
| | | |
Collapse
|