1
|
Coassolo L, Wiggenhorn A, Svensson KJ. Understanding peptide hormones: from precursor proteins to bioactive molecules. Trends Biochem Sci 2025:S0968-0004(25)00063-5. [PMID: 40234176 DOI: 10.1016/j.tibs.2025.03.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 03/19/2025] [Accepted: 03/20/2025] [Indexed: 04/17/2025]
Abstract
Peptide hormones are fundamental regulators of biological processes involved in homeostasis regulation and are often dysregulated in endocrine diseases. Despite their biological significance and established therapeutic potential, there is still a gap in our knowledge of their processing and post-translational modifications, as well as in the technologies for their discovery and detection. In this review, we cover insights into the peptidome landscape, including the proteolytic processing and post-translational modifications of peptide hormones. Understanding the full landscape of peptide hormones and their modifications could provide insights into leveraging proteolytic mechanisms to identify novel peptides with therapeutic potential. Therefore, we also discuss the need for future research aiming at better predicting, detecting, and characterizing new peptides with biological activities.
Collapse
Affiliation(s)
- Laetitia Coassolo
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA; Stanford Diabetes Research Center, Stanford University School of Medicine, Stanford, CA, USA; Stanford Cardiovascular Institute, Stanford University School of Medicine, CA, USA
| | - Amanda Wiggenhorn
- Department of Chemistry, Stanford University, Stanford, CA, USA; Sarafan ChEM-H, Stanford University, Stanford, CA, USA
| | - Katrin J Svensson
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA; Stanford Diabetes Research Center, Stanford University School of Medicine, Stanford, CA, USA; Stanford Cardiovascular Institute, Stanford University School of Medicine, CA, USA.
| |
Collapse
|
2
|
Cui S, Jin Z, Yu T, Guo C, He Y, Kan Y, Yan L, Wu L. Effect of Glycosylation on the Enzymatic Degradation of D-Amino Acid-Containing Peptides. Molecules 2025; 30:441. [PMID: 39942548 PMCID: PMC11820358 DOI: 10.3390/molecules30030441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Revised: 01/16/2025] [Accepted: 01/18/2025] [Indexed: 02/16/2025] Open
Abstract
The accumulation of D-amino acid-containing peptides is associated with age-related diseases such as Alzheimer's disease and cataracts, while glycosylation is an important modification of proteins and plays a key role in improving the physicochemical properties of peptides and facilitating their regulation in biological systems. This study investigates the effects of glycosylation position, glycan number, and monosaccharide structure on the conformation and enzymatic degradation of D-amino acid-containing peptides, using KYNEtWRSED (5-t) as a model peptide and six monosaccharides as model glycans. The results demonstrated that glycosylation inhibited the enzymatic degradation of 5-t in the presence of most serine-like proteases. However, in the presence of chymotrypsin, glycosylation with modified monosaccharides (except for β-D-GalNAc) promoted the degradation of 5-t. Furthermore, glycosylation had no effect on the cleavage site of 5-t. Molecular docking analysis revealed that the hydrogen bonding and electrostatic interactions between the glycopeptide and chymotrypsin were markedly strengthened, likely serving as a key determinant of the enzymatic effects. Collectively, these findings highlight the potential of glycosylation to enhance the therapeutic and biomedical applications of D-amino acid-containing peptides in disease treatment and drug design.
Collapse
Affiliation(s)
- Shuaishuai Cui
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China; (S.C.); (Z.J.); (T.Y.); (C.G.); (Y.H.)
| | - Zhaoyang Jin
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China; (S.C.); (Z.J.); (T.Y.); (C.G.); (Y.H.)
| | - Tonglin Yu
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China; (S.C.); (Z.J.); (T.Y.); (C.G.); (Y.H.)
| | - Cunxin Guo
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China; (S.C.); (Z.J.); (T.Y.); (C.G.); (Y.H.)
| | - Yujian He
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China; (S.C.); (Z.J.); (T.Y.); (C.G.); (Y.H.)
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuhe Kan
- College of Biology and Oceanography, Weifang University, Weifang 261061, China
| | - Liang Yan
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China; (S.C.); (Z.J.); (T.Y.); (C.G.); (Y.H.)
| | - Li Wu
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China; (S.C.); (Z.J.); (T.Y.); (C.G.); (Y.H.)
| |
Collapse
|
3
|
Burnett JC. Long-lasting heart-failure treatment could be a game-changer. Nature 2024; 633:534-535. [PMID: 39261684 DOI: 10.1038/d41586-024-02660-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2024]
|
4
|
Huang S, Cai J, Ma L, Zhang Q, Sun Y, Zhang Q, Qin L. Effects of grafting on chemical constituents, toxicological properties, antithrombotic activity, and myocardial infarction protection of styrax secreted from the trunk of Liquidambar orientalis Mill. PLoS One 2024; 19:e0289894. [PMID: 38181063 PMCID: PMC10769069 DOI: 10.1371/journal.pone.0289894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 07/27/2023] [Indexed: 01/07/2024] Open
Abstract
Styrax, the balsam refined from the trunk of Liquidambar orientalis Mill. has a variety of applications in the perfumery and medical industry, especially for use in traditional Chinese medicine. However, the resources of styrax are in shortage due to being endangered of this plant. Grafting can improve the adaptability of plants to unfavorable environmental conditions. We tried to graft the L. orientalis Mill. on L. formosana Hance which was widely distributed in Jiangsu and Zhejiang provinces of China in an attempt to obtain styrax from grafted L. orientalis Mill. (grafted styrax, SG). Whether SG can become an alternative application of commercially available styrax (SC) need be further investigated. The components of SG were analyzed by GC-MS, and the results showed that the chromatograms of SG, SC, and styrax standard (SS) were consistent. The ration of 12 major chemical components based peak area in SG, SC, and SS were 93.95%, 94.24%, and 95.86% respectively. The assessment of toxicity, antithrombotic activity, and myocardial infarction protection of SG and SC was evaluated by using the zebrafish model, the results showed that SG and SC have the similar toxicological properties as evidenced by acute toxicity test, developmental toxicity and teratogenicity, and long-term toxicity test. Both SG and SC significantly decreased the thrombosis and increased blood flow velocity of zebrafish induced by adrenaline hydrochloride, inhibited myocardial apoptosis, myocardial infarction and myocardial inflammation in zebrafish induced by isoproterenol hydrochloride. Moreover, SG had an obvious improvement effect on cardiac output, while SC has no effect. Collectively, SG is similar to SC in chemical composition, toxicological properties, antithrombotic activity, and myocardial infarction protection effects, and may be used as a substitute for styrax to reduce the collection for wild L. orientalis Mill. and increase the available styrax resources.
Collapse
Affiliation(s)
- Shen Huang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Jiayi Cai
- The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Li Ma
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, China
| | - Quanlong Zhang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yiqi Sun
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Qiaoyan Zhang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Luping Qin
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
5
|
Vink S, Akondi KB, Jin J, Poth K, Torres AM, Kuchel PW, Burke SL, Head GA, Alewood PF. Taipan Natriuretic Peptides Are Potent and Selective Agonists for the Natriuretic Peptide Receptor A. Molecules 2023; 28:molecules28073063. [PMID: 37049825 PMCID: PMC10095932 DOI: 10.3390/molecules28073063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 03/10/2023] [Accepted: 03/13/2023] [Indexed: 04/14/2023] Open
Abstract
Cardiovascular ailments are a major cause of mortality where over 1.3 billion people suffer from hypertension leading to heart-disease related deaths. Snake venoms possess a broad repertoire of natriuretic peptides with therapeutic potential for treating hypertension, congestive heart failure, and related cardiovascular disease. We now describe several taipan (Oxyuranus microlepidotus) natriuretic peptides TNPa-e which stimulated cGMP production through the natriuretic peptide receptor A (NPR-A) with higher potencies for the rat NPR-A (rNPR-A) over human NPR-A (hNPR-A). TNPc and TNPd were the most potent, demonstrating 100- and 560-fold selectivity for rNPR-A over hNPR-A. In vivo studies found that TNPc decreased diastolic and systolic blood pressure (BP) and increased heart rate (HR) in conscious normotensive rabbits, to a level that was similar to that of human atrial natriuretic peptide (hANP). TNPc also enhanced the bradycardia due to cardiac afferent stimulation (Bezold-Jarisch reflex). This indicated that TNPc possesses the ability to lower blood pressure and facilitate cardiac vagal afferent reflexes but unlike hANP does not produce tachycardia. The 3-dimensional structure of TNPc was well defined within the pharmacophoric disulfide ring, displaying two turn-like regions (RMSD = 1.15 Å). Further, its much greater biological stability together with its selectivity and potency will enhance its usefulness as a biological tool.
Collapse
Affiliation(s)
- Simone Vink
- Institute for Molecular Bioscience, The University of Queensland, St Lucia 4072, Australia
| | - Kalyana Bharati Akondi
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, CH-1211 Geneva, Switzerland
| | - Jean Jin
- Institute for Molecular Bioscience, The University of Queensland, St Lucia 4072, Australia
| | - Kim Poth
- Institute for Molecular Bioscience, The University of Queensland, St Lucia 4072, Australia
| | - Allan M Torres
- Nanoscale Organisation and Dynamics Group, Western Sydney University, Penrith 2759, Australia
| | - Philip W Kuchel
- School of Life and Environmental Sciences, University of Sydney, Sydney 2006, Australia
| | - Sandra L Burke
- Baker Heart and Diabetes Institute, Melbourne 3004, Australia
| | - Geoffrey A Head
- Baker Heart and Diabetes Institute, Melbourne 3004, Australia
| | - Paul F Alewood
- Institute for Molecular Bioscience, The University of Queensland, St Lucia 4072, Australia
| |
Collapse
|
6
|
Phetsanthad A, Vu NQ, Yu Q, Buchberger AR, Chen Z, Keller C, Li L. Recent advances in mass spectrometry analysis of neuropeptides. MASS SPECTROMETRY REVIEWS 2023; 42:706-750. [PMID: 34558119 PMCID: PMC9067165 DOI: 10.1002/mas.21734] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 08/22/2021] [Accepted: 08/28/2021] [Indexed: 05/08/2023]
Abstract
Due to their involvement in numerous biochemical pathways, neuropeptides have been the focus of many recent research studies. Unfortunately, classic analytical methods, such as western blots and enzyme-linked immunosorbent assays, are extremely limited in terms of global investigations, leading researchers to search for more advanced techniques capable of probing the entire neuropeptidome of an organism. With recent technological advances, mass spectrometry (MS) has provided methodology to gain global knowledge of a neuropeptidome on a spatial, temporal, and quantitative level. This review will cover key considerations for the analysis of neuropeptides by MS, including sample preparation strategies, instrumental advances for identification, structural characterization, and imaging; insightful functional studies; and newly developed absolute and relative quantitation strategies. While many discoveries have been made with MS, the methodology is still in its infancy. Many of the current challenges and areas that need development will also be highlighted in this review.
Collapse
Affiliation(s)
- Ashley Phetsanthad
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, WI 53706, USA
| | - Nhu Q. Vu
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, WI 53706, USA
| | - Qing Yu
- School of Pharmacy, University of Wisconsin-Madison, 777 Highland Avenue, Madison, WI 53705, USA
| | - Amanda R. Buchberger
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, WI 53706, USA
| | - Zhengwei Chen
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, WI 53706, USA
| | - Caitlin Keller
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, WI 53706, USA
| | - Lingjun Li
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, WI 53706, USA
- School of Pharmacy, University of Wisconsin-Madison, 777 Highland Avenue, Madison, WI 53705, USA
| |
Collapse
|
7
|
Phetsanthad A, Roycroft C, Li L. Enrichment and fragmentation approaches for enhanced detection and characterization of endogenous glycosylated neuropeptides. Proteomics 2023; 23:e2100375. [PMID: 35906894 PMCID: PMC9884999 DOI: 10.1002/pmic.202100375] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 07/18/2022] [Accepted: 07/22/2022] [Indexed: 02/01/2023]
Abstract
Glycosylated neuropeptides were recently discovered in crustaceans, a model organism with a well-characterized neuroendocrine system. Several workflows exist to characterize enzymatically digested peptides; however, the unique properties of endogenous neuropeptides require methods to be re-evaluated. We investigate the use of hydrophilic interaction liquid chromatography (HILIC) enrichment and different fragmentation methods to further probe the expression of glycosylated neuropeptides in Callinectes sapidus. During the evaluation of HILIC, we observed the necessity of a less aqueous solvent for endogenous peptide samples. This modification enabled the number of detected neuropeptide glycoforms to increase almost two-fold, from 18 to 36. Product ion-triggered electron-transfer/higher-energy collision dissociation enabled the site-specific detection of 55 intact N- and O-linked glycoforms, while the faster stepped collision energy higher-energy collisional dissociation resulted in detection of 25. Additionally, applying this workflow to five neuronal tissues enabled the characterization of 36 more glycoforms of known neuropeptides and 11 more glycoforms of nine putative novel neuropeptides. Overall, the database of glycosylated neuropeptides in crustaceans was largely expanded from 18 to 136 glycoforms of 40 neuropeptides from 10 neuropeptide families. Both macro- and micro-heterogeneity were observed, demonstrating the chemical diversity of this simple invertebrate, establishing a framework to use crustacean to probe modulatory effects of glycosylation on neuropeptides.
Collapse
Affiliation(s)
- Ashley Phetsanthad
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Caroline Roycroft
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
- College of Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Lingjun Li
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
- School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, USA
| |
Collapse
|
8
|
Harvey DJ. Analysis of carbohydrates and glycoconjugates by matrix-assisted laser desorption/ionization mass spectrometry: An update for 2019-2020. MASS SPECTROMETRY REVIEWS 2022:e21806. [PMID: 36468275 DOI: 10.1002/mas.21806] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
This review is the tenth update of the original article published in 1999 on the application of matrix-assisted laser desorption/ionization (MALDI) mass spectrometry to the analysis of carbohydrates and glycoconjugates and brings coverage of the literature to the end of 2020. Also included are papers that describe methods appropriate to analysis by MALDI, such as sample preparation techniques, even though the ionization method is not MALDI. The review is basically divided into three sections: (1) general aspects such as theory of the MALDI process, matrices, derivatization, MALDI imaging, fragmentation, quantification and the use of arrays. (2) Applications to various structural types such as oligo- and polysaccharides, glycoproteins, glycolipids, glycosides and biopharmaceuticals, and (3) other areas such as medicine, industrial processes and glycan synthesis where MALDI is extensively used. Much of the material relating to applications is presented in tabular form. The reported work shows increasing use of incorporation of new techniques such as ion mobility and the enormous impact that MALDI imaging is having. MALDI, although invented nearly 40 years ago is still an ideal technique for carbohydrate analysis and advancements in the technique and range of applications show little sign of diminishing.
Collapse
Affiliation(s)
- David J Harvey
- Nuffield Department of Medicine, Target Discovery Institute, University of Oxford, Oxford, UK
- Department of Chemistry, University of Oxford, Oxford, Oxfordshire, United Kingdom
| |
Collapse
|
9
|
Nyberg M, Terzic D, Ludvigsen TP, Mark PD, Michaelsen NB, Abildstrøm SZ, Engelmann M, Richards AM, Goetze JP. Review A State of Natriuretic Peptide Deficiency. Endocr Rev 2022; 44:379-392. [PMID: 36346821 PMCID: PMC10166265 DOI: 10.1210/endrev/bnac029] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 09/13/2022] [Accepted: 11/04/2022] [Indexed: 11/10/2022]
Abstract
Measurement of natriuretic peptides (NPs) has proven its clinical value as biomarker, especially in the context of heart failure (HF). In contrast, a state partial NP deficiency appears integral to several conditions in which lower NP concentrations in plasma presage overt cardiometabolic disease. Here, obesity and type 2 diabetes have attracted considerable attention. Other factors - including age, sex, race, genetics, and diurnal regulation - affect the NP "armory" and may leave some individuals more prone to development of cardiovascular disease. The molecular maturation of NPs has also proven complex with highly variable O-glycosylation within the biosynthetic precursors. The relevance of this regulatory step in post-translational propeptide maturation has recently become recognized in biomarker measurement/interpretation and cardiovascular pathophysiology. An important proportion of people appear to have reduced effective net NP bioactivity in terms of receptor activation and physiological effects. The state of NP deficiency, then, both entails a potential for further biomarker development and could also offer novel pharmacological possibilities. Alleviating the state of NP deficiency before development of overt cardiometabolic disease in selected patients could be a future path for improving precision medicine.
Collapse
Affiliation(s)
| | - Dijana Terzic
- Department of Clinical Biochemistry, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | | | - Peter D Mark
- Department of Clinical Biochemistry, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | | | | | | | - A Mark Richards
- Division of Cardiology, National University Heart Centre, National University Hospital, Singapore
| | - Jens P Goetze
- Department of Clinical Biochemistry, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark.,Department of Biomedical Sciences, Faculty of Health, Copenhagen University, Copenhagen, Denmark
| |
Collapse
|
10
|
Abassi Z, Khoury EE, Karram T, Aronson D. Edema formation in congestive heart failure and the underlying mechanisms. Front Cardiovasc Med 2022; 9:933215. [PMID: 36237903 PMCID: PMC9553007 DOI: 10.3389/fcvm.2022.933215] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 09/05/2022] [Indexed: 11/13/2022] Open
Abstract
Congestive heart failure (HF) is a complex disease state characterized by impaired ventricular function and insufficient peripheral blood supply. The resultant reduced blood flow characterizing HF promotes activation of neurohormonal systems which leads to fluid retention, often exhibited as pulmonary congestion, peripheral edema, dyspnea, and fatigue. Despite intensive research, the exact mechanisms underlying edema formation in HF are poorly characterized. However, the unique relationship between the heart and the kidneys plays a central role in this phenomenon. Specifically, the interplay between the heart and the kidneys in HF involves multiple interdependent mechanisms, including hemodynamic alterations resulting in insufficient peripheral and renal perfusion which can lead to renal tubule hypoxia. Furthermore, HF is characterized by activation of neurohormonal factors including renin-angiotensin-aldosterone system (RAAS), sympathetic nervous system (SNS), endothelin-1 (ET-1), and anti-diuretic hormone (ADH) due to reduced cardiac output (CO) and renal perfusion. Persistent activation of these systems results in deleterious effects on both the kidneys and the heart, including sodium and water retention, vasoconstriction, increased central venous pressure (CVP), which is associated with renal venous hypertension/congestion along with increased intra-abdominal pressure (IAP). The latter was shown to reduce renal blood flow (RBF), leading to a decline in the glomerular filtration rate (GFR). Besides the activation of the above-mentioned vasoconstrictor/anti-natriuretic neurohormonal systems, HF is associated with exceptionally elevated levels of atrial natriuretic peptide (ANP) and brain natriuretic peptide (BNP). However, the supremacy of the deleterious neurohormonal systems over the beneficial natriuretic peptides (NP) in HF is evident by persistent sodium and water retention and cardiac remodeling. Many mechanisms have been suggested to explain this phenomenon which seems to be multifactorial and play a major role in the development of renal hyporesponsiveness to NPs and cardiac remodeling. This review focuses on the mechanisms underlying the development of edema in HF with reduced ejection fraction and refers to the therapeutic maneuvers applied today to overcome abnormal salt/water balance characterizing HF.
Collapse
Affiliation(s)
- Zaid Abassi
- Department of Physiology, Bruce Rappaport Faculty of Medicine, Technion–Israel Institute of Technology, Haifa, Israel
- Department of Laboratory Medicine, Rambam Health Care Campus, Haifa, Israel
- *Correspondence: Zaid Abassi,
| | - Emad E. Khoury
- Department of Physiology, Bruce Rappaport Faculty of Medicine, Technion–Israel Institute of Technology, Haifa, Israel
| | - Tony Karram
- Department of Vascular Surgery and Kidney Transplantation, Rambam Health Care Campus, Haifa, Israel
| | - Doron Aronson
- Department of Cardiology, Rambam Health Care Campus, Haifa, Israel
| |
Collapse
|
11
|
Petraina A, Nogales C, Krahn T, Mucke H, Lüscher TF, Fischmeister R, Kass DA, Burnett JC, Hobbs AJ, Schmidt HHHW. Cyclic GMP modulating drugs in cardiovascular diseases: mechanism-based network pharmacology. Cardiovasc Res 2022; 118:2085-2102. [PMID: 34270705 PMCID: PMC9302891 DOI: 10.1093/cvr/cvab240] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 07/14/2021] [Indexed: 12/13/2022] Open
Abstract
Mechanism-based therapy centred on the molecular understanding of disease-causing pathways in a given patient is still the exception rather than the rule in medicine, even in cardiology. However, recent successful drug developments centred around the second messenger cyclic guanosine-3'-5'-monophosphate (cGMP), which is regulating a number of cardiovascular disease modulating pathways, are about to provide novel targets for such a personalized cardiovascular therapy. Whether cGMP breakdown is inhibited or cGMP synthesis is stimulated via guanylyl cyclases or their upstream regulators in different cardiovascular disease phenotypes, the outcomes seem to be so far uniformly protective. Thus, a network of cGMP-modulating drugs has evolved that act in a mechanism-based, possibly causal manner in a number of cardiac conditions. What remains a challenge is the detection of cGMPopathy endotypes amongst cardiovascular disease phenotypes. Here, we review the growing clinical relevance of cGMP and provide a glimpse into the future on how drugs interfering with this pathway may change how we treat and diagnose cardiovascular diseases altogether.
Collapse
Affiliation(s)
- Alexandra Petraina
- Department of Pharmacology and Personalised Medicine, School for Mental Health and Neuroscience, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht University, Universiteitssingel 50, 6229 ER Maastricht, The Netherlands
| | - Cristian Nogales
- Department of Pharmacology and Personalised Medicine, School for Mental Health and Neuroscience, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht University, Universiteitssingel 50, 6229 ER Maastricht, The Netherlands
| | - Thomas Krahn
- Department of Pharmacology and Personalised Medicine, School for Mental Health and Neuroscience, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht University, Universiteitssingel 50, 6229 ER Maastricht, The Netherlands
| | - Hermann Mucke
- H.M. Pharma Consultancy, Enenkelstrasse 28/32, A-1160, Vienna, Austria
| | - Thomas F Lüscher
- Royal Brompton & Harefield Hospitals, Heart Division and National Heart and Lung Institute, Guy Scadding Building, Imperial College, Dovehouse Street London SW3 6LY, United Kingdom
- Center for Molecular Cardiology, Schlieren Campus, University of Zurich, Wagistreet 12, CH-8952 Schlieren, Switzerland
| | - Rodolphe Fischmeister
- INSERM UMR-S 1180, Faculty of Pharmacy, Université Paris-Saclay, F-92296 Châtenay-Malabry, France
| | - David A Kass
- Division of Cardiology, Department of Medicine, Ross Research Building, Rm 858, Johns Hopkins Medical Institutions, 720 Rutland Avenue, Baltimore, MD 21205, USA
| | - John C Burnett
- Department of Cardiovascular Medicine, Mayo Clinic, 200 First St. SW, Rochester, MN 55905, USA
| | - Adrian J Hobbs
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, EC1M 6BQ, London, UK
| | - Harald H H W Schmidt
- Department of Pharmacology and Personalised Medicine, School for Mental Health and Neuroscience, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht University, Universiteitssingel 50, 6229 ER Maastricht, The Netherlands
| |
Collapse
|
12
|
Goetze JP, Bartels ED, Shalmi TW, Andraud-Dang L, Rehfeld JF. Biochemistry of the Endocrine Heart. BIOLOGY 2022; 11:biology11070971. [PMID: 36101352 PMCID: PMC9311610 DOI: 10.3390/biology11070971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 06/22/2022] [Accepted: 06/24/2022] [Indexed: 11/25/2022]
Abstract
Simple Summary Besides being a muscle and an electrochemically active organ, the heart is a true endocrine organ. As endocrine cells, cardiac myocytes possess all the needed chemical necessities for translation, post-translational modifications, and complex peptide proteolysis. In addition, intracellular granules in the cells contain not only peptides destined for secretion but also important granin molecules involved in maintaining a regulated secretory pathway. In this review, we highlight the biochemical phenotype of the endocrine heart, recapitulating that the cardiac myocytes are truly and fully capable endocrine cells. Abstract Production and release of natriuretic peptides and other vasoactive peptides are tightly regulated in mammalian physiology and involved in cardiovascular homeostasis. As endocrine cells, the cardiac myocytes seem to possess almost all known chemical necessities for translation, post-translational modifications, and complex peptide proteolysis. In several ways, intracellular granules in the cells contain not only peptides destined for secretion but also important granin molecules involved in maintaining a regulated secretory pathway. In this review, we will highlight the biochemical phenotype of the endocrine heart recapitulating that the cardiac myocytes are capable endocrine cells. Understanding the basal biochemistry of the endocrine heart in producing and secreting peptides to circulation could lead to new discoveries concerning known peptide products as well as hitherto unidentified cardiac peptide products. In perspective, studies on natriuretic peptides in the heart have shown that the post-translational phase of gene expression is not only relevant for human physiology but may prove implicated also in the development and, perhaps one day, cure of human cardiovascular disease.
Collapse
Affiliation(s)
- Jens P Goetze
- Department of Clinical Biochemistry, Rigshospitalet, University of Copenhagen, 9 Blegdamsvej, DK-2100 Copenhagen, Denmark
| | - Emil D Bartels
- Department of Clinical Biochemistry, Rigshospitalet, University of Copenhagen, 9 Blegdamsvej, DK-2100 Copenhagen, Denmark
| | - Theodor W Shalmi
- Department of Clinical Biochemistry, Rigshospitalet, University of Copenhagen, 9 Blegdamsvej, DK-2100 Copenhagen, Denmark
| | - Lilian Andraud-Dang
- Department of Clinical Biochemistry, Rigshospitalet, University of Copenhagen, 9 Blegdamsvej, DK-2100 Copenhagen, Denmark
| | - Jens F Rehfeld
- Department of Clinical Biochemistry, Rigshospitalet, University of Copenhagen, 9 Blegdamsvej, DK-2100 Copenhagen, Denmark
| |
Collapse
|
13
|
Corin: A Key Mediator in Sodium Homeostasis, Vascular Remodeling, and Heart Failure. BIOLOGY 2022; 11:biology11050717. [PMID: 35625445 PMCID: PMC9138375 DOI: 10.3390/biology11050717] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 05/01/2022] [Accepted: 05/05/2022] [Indexed: 12/11/2022]
Abstract
Simple Summary Atrial natriuretic peptide (ANP) is an important hormone that regulates many physiological and pathological processes, including electrolyte and body fluid balance, blood volume and pressure, cardiac channel activity and function, inflammatory response, lipid metabolism, and vascular remodeling. Corin is a transmembrane serine protease that activates ANP. Variants in the CORIN gene are associated with cardiovascular disease, including hypertension, cardiac hypertrophy, atrial fibrillation, heart failure, and preeclampsia. The current data indicate a key role of corin-mediated ANP production and signaling in the maintenance of cardiovascular homeostasis. In this review, we discuss the latest findings regarding the molecular and cellular mechanisms underlying the role of corin in sodium homeostasis, uterine spiral artery remodeling, and heart failure. Abstract Atrial natriuretic peptide (ANP) is a crucial element of the cardiac endocrine function that promotes natriuresis, diuresis, and vasodilation, thereby protecting normal blood pressure and cardiac function. Corin is a type II transmembrane serine protease that is highly expressed in the heart, where it converts the ANP precursor to mature ANP. Corin deficiency prevents ANP activation and causes hypertension and heart disease. In addition to the heart, corin is expressed in other tissues, including those of the kidney, skin, and uterus, where corin-mediated ANP production and signaling act locally to promote sodium excretion and vascular remodeling. These results indicate that corin and ANP function in many tissues via endocrine and autocrine mechanisms. In heart failure patients, impaired natriuretic peptide processing is a common pathological mechanism that contributes to sodium and body fluid retention. In this review, we discuss most recent findings regarding the role of corin in non-cardiac tissues, including the kidney and skin, in regulating sodium homeostasis and body fluid excretion. Moreover, we describe the molecular mechanisms underlying corin and ANP function in supporting orderly cellular events in uterine spiral artery remodeling. Finally, we assess the potential of corin-based approaches to enhance natriuretic peptide production and activity as a treatment of heart failure.
Collapse
|
14
|
Michel T, Nougué H, Cartailler J, Lefèvre G, Sadoune M, Picard F, Cohen-Solal A, Logeart D, Launay JM, Vodovar N. proANP Metabolism Provides New Insights Into Sacubitril/Valsartan Mode of Action. Circ Res 2022; 130:e44-e57. [PMID: 35485239 DOI: 10.1161/circresaha.122.320882] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Sacubitril/valsartan (S/V) treatment is associated with clinical benefits in patients with heart failure with reduced ejection fraction (HFrEF), but its mode of action remains elusive, although it involves the increase of ANP (atrial natriuretic peptide). METHODS AND RESULTS Using a cohort of 73 HFrEF patients treated with S/V and controls, we deciphered the proteolytic cascade that converts proANP into 4 vasoactive peptides, including ANP, which exert vasodilatory actions. We found that proANP processing is sequential and involved meprin B, ECE (endothelin-converting enzyme) 1, and ANPEP (aminopeptidase N). This processing is limited in HFrEF patients when compared with controls via the downregulation of proANP production, corin, and meprin B activities by miR-425 and miR1-3p, resulting in limited production of proANP-derived bioactive peptides. S/V restored or compensated proANP processing by downregulating miR-425 and miR1-3p beyond levels observed in controls, hence increasing levels of proANP-derived bioactive peptides and vasodilation. In contrast, S/V directly and indirectly partially inhibited ECE1 and ANPEP. Consequently, ECE1 partial inhibition resulted in a lower-than-expected increase in ET1 (endothelin 1), tilting the vasoactive balance toward vasodilation, possibly explaining the hypotensive action of S/V. Finally, we show that proANP glycosylation interferes with the midregional proANP assay-a clinical surrogate for proANP production, preventing any pathophysiological interpretation of the results. Finally, the analysis of S/V dose escalation with respect to baseline treatments suggests S/V-specific effects. CONCLUSIONS These findings offer mechanistic evidence to the natriuretic peptide-defective state in HFrEF, which is improved by S/V. These data also strongly suggest that S/V increases plasma ANP by multiple mechanisms that involve the indirect regulation of 2 microRNAs, besides its protection from NEP (neprilysin) cleavage. Altogether, these data provide new insights on HFrEF pathophysiology and the mode of action of S/V.
Collapse
Affiliation(s)
- Thibault Michel
- Inserm UMR-S 942, Université Paris Cité, France (T.M., H.N., J.C., M.S., A.C.-S., D.L., J.-M.L., N.V.)
| | - Hélène Nougué
- Inserm UMR-S 942, Université Paris Cité, France (T.M., H.N., J.C., M.S., A.C.-S., D.L., J.-M.L., N.V.).,Department of Anaesthesiology and Intensive Care Unit, Hôpital Lariboisière, Paris, France (H.N., J.C.)
| | - Jérôme Cartailler
- Inserm UMR-S 942, Université Paris Cité, France (T.M., H.N., J.C., M.S., A.C.-S., D.L., J.-M.L., N.V.).,Department of Anaesthesiology and Intensive Care Unit, Hôpital Lariboisière, Paris, France (H.N., J.C.)
| | - Guillaume Lefèvre
- AP-HP, Hôpital Tenon, Biochemistry Department, Sorbonne Université, Paris, France (G.L.)
| | - Malha Sadoune
- Inserm UMR-S 942, Université Paris Cité, France (T.M., H.N., J.C., M.S., A.C.-S., D.L., J.-M.L., N.V.)
| | - François Picard
- Heart Failure Unit, Haut-Lévêque Hospital, Pessac, France (F.P.)
| | - Alain Cohen-Solal
- Inserm UMR-S 942, Université Paris Cité, France (T.M., H.N., J.C., M.S., A.C.-S., D.L., J.-M.L., N.V.).,Department of Cardiology, Lariboisière Hospital, Paris, France (A.C.-S., D.L.)
| | - Damien Logeart
- Inserm UMR-S 942, Université Paris Cité, France (T.M., H.N., J.C., M.S., A.C.-S., D.L., J.-M.L., N.V.).,Department of Cardiology, Lariboisière Hospital, Paris, France (A.C.-S., D.L.)
| | - Jean-Marie Launay
- Inserm UMR-S 942, Université Paris Cité, France (T.M., H.N., J.C., M.S., A.C.-S., D.L., J.-M.L., N.V.)
| | - Nicolas Vodovar
- Inserm UMR-S 942, Université Paris Cité, France (T.M., H.N., J.C., M.S., A.C.-S., D.L., J.-M.L., N.V.)
| |
Collapse
|
15
|
Zhong X, D’Antona AM, Scarcelli JJ, Rouse JC. New Opportunities in Glycan Engineering for Therapeutic Proteins. Antibodies (Basel) 2022; 11:5. [PMID: 35076453 PMCID: PMC8788452 DOI: 10.3390/antib11010005] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 12/22/2021] [Accepted: 12/31/2021] [Indexed: 11/17/2022] Open
Abstract
Glycans as sugar polymers are important metabolic, structural, and physiological regulators for cellular and biological functions. They are often classified as critical quality attributes to antibodies and recombinant fusion proteins, given their impacts on the efficacy and safety of biologics drugs. Recent reports on the conjugates of N-acetyl-galactosamine and mannose-6-phosphate for lysosomal degradation, Fab glycans for antibody diversification, as well as sialylation therapeutic modulations and O-linked applications, have been fueling the continued interest in glycoengineering. The current advancements of the human glycome and the development of a comprehensive network in glycosylation pathways have presented new opportunities in designing next-generation therapeutic proteins.
Collapse
Affiliation(s)
- Xiaotian Zhong
- BioMedicine Design, Medicinal Sciences, Pfizer Worldwide R&D, 610 Main Street, Cambridge, MA 02139, USA;
| | - Aaron M. D’Antona
- BioMedicine Design, Medicinal Sciences, Pfizer Worldwide R&D, 610 Main Street, Cambridge, MA 02139, USA;
| | - John J. Scarcelli
- BioProcess R&D, Biotherapeutics Pharmaceutical Sciences, Medicinal Sciences, Pfizer Worldwide R&D, 1 Burtt Road, Andover, MA 01810, USA;
| | - Jason C. Rouse
- Analytical R&D, Biotherapeutics Pharmaceutical Sciences, Medicinal Sciences, Pfizer Worldwide R&D, 1 Burtt Road, Andover, MA 01810, USA;
| |
Collapse
|
16
|
|
17
|
Chen HH, Wan SH, Iyer SR, Cannone V, Sangaralingham SJ, Nuetel J, Burnett JC. First-in-Human Study of MANP: A Novel ANP (Atrial Natriuretic Peptide) Analog in Human Hypertension. Hypertension 2021; 78:1859-1867. [PMID: 34657445 DOI: 10.1161/hypertensionaha.121.17159] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Horng H Chen
- Cardiorenal Research Laboratory, Department of Cardiovascular Medicine, Mayo Clinic, Rochester MN (H.H.C., S.R.I., J.S., J.C.B.)
| | - Siu-Hin Wan
- Division of Cardiology, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas (S.-H.W.)
| | - Seethalakshmi R Iyer
- Cardiorenal Research Laboratory, Department of Cardiovascular Medicine, Mayo Clinic, Rochester MN (H.H.C., S.R.I., J.S., J.C.B.)
| | - Valentina Cannone
- Department of Internal Medicine, University of Parma, Parma, Italy (V.C.)
| | - S Jeson Sangaralingham
- Cardiorenal Research Laboratory, Department of Cardiovascular Medicine, Mayo Clinic, Rochester MN (H.H.C., S.R.I., J.S., J.C.B.)
| | | | - John C Burnett
- Cardiorenal Research Laboratory, Department of Cardiovascular Medicine, Mayo Clinic, Rochester MN (H.H.C., S.R.I., J.S., J.C.B.)
| |
Collapse
|
18
|
Mao G, Zheng S, Li J, Liu X, Zhou Q, Cao J, Zhang Q, Zheng L, Wang L, Qi C. Glipizide Combined with ANP Suppresses Breast Cancer Growth and Metastasis by Inhibiting Angiogenesis through VEGF/VEGFR2 Signaling. Anticancer Agents Med Chem 2021; 22:1735-1741. [PMID: 34515012 DOI: 10.2174/1871520621666210910085733] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 07/17/2021] [Accepted: 07/26/2021] [Indexed: 12/24/2022]
Abstract
BACKGROUND Breast cancer is one of the most common cancers worldwide among women, and angiogenesis has an important effect on its growth and metastasis. Glipizide, which is a widely used drug for type 2 diabetes mellitus, has been reported to inhibit tumor growth and metastasis by upregulating the expression of natriuretic peptide receptor A (NPRA). Atrial natriuretic peptide (ANP), the receptor of NPRA, plays an important role in angiogenesis. The purpose of this study was to explore the effect of glipizide combined with ANP on breast cancer growth and metastasis. METHODS To investigate the effect of glipizide combined with ANP on breast cancer, glipizide, ANP or glipizide combined with ANP was intraperitoneally injected into MMTV-PyMT mice. To explore whether the anticancer efficacy of glipizide combined with ANP was correlated with angiogenesis, a tube formation assay was performed. RESULTS Glipizide combined with ANP was found to inhibit breast cancer growth and metastasis in MMTV-PyMT mice, which spontaneously develop breast cancer. Furthermore, the inhibitory effect of ANP combined with glipizide was better than that of glipizide alone. ANP combined with glipizide significantly inhibited tube formation of human umbilical vein endothelial cells (HUVECs) by suppressing vascular endothelial growth factor (VEGF)/VEGFR2 (vascular endothelial growth factor receptor 2) signaling. CONCLUSIONS These results demonstrate that glipizide combined with ANP has a greater potential than glipizide alone to be repurposed as effective agents for the treatment of breast cancer by targeting tumor-induced angiogenesis.
Collapse
Affiliation(s)
- Guanquan Mao
- Institute of Basic Medical Sciences, School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, Guangdong 510006. China
| | - Shuting Zheng
- Institute of Basic Medical Sciences, School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, Guangdong 510006. China
| | - Jinlian Li
- Institute of Basic Medical Sciences, School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, Guangdong 510006. China
| | - Xiaohua Liu
- Institute of Basic Medical Sciences, School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, Guangdong 510006. China
| | - Qin Zhou
- Institute of Basic Medical Sciences, School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, Guangdong 510006. China
| | - Jinghua Cao
- Institute of Basic Medical Sciences, School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, Guangdong 510006. China
| | - Qianqian Zhang
- Institute of Basic Medical Sciences, School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, Guangdong 510006. China
| | - Lingyun Zheng
- Institute of Basic Medical Sciences, School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, Guangdong 510006. China
| | - Lijing Wang
- Institute of Basic Medical Sciences, School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, Guangdong 510006. China
| | - Cuiling Qi
- Institute of Basic Medical Sciences, School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, Guangdong 510006. China
| |
Collapse
|
19
|
Nikpour M, Nilsson J, Persson A, Noborn F, Vorontsov E, Larson G. Proteoglycan profiling of human, rat and mouse insulin-secreting cells. Glycobiology 2021; 31:916-930. [PMID: 33997891 PMCID: PMC8434799 DOI: 10.1093/glycob/cwab035] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 03/27/2021] [Accepted: 04/12/2021] [Indexed: 11/30/2022] Open
Abstract
Proteoglycans (PGs) are proteins with glycosaminoglycan (GAG) chains, such as chondroitin sulfate (CS) or heparan sulfate (HS), attached to serine residues. We have earlier shown that prohormones can carry CS, constituting a novel class of PGs. The mapping of GAG modifications of proteins in endocrine cells may thus assist us in delineating possible roles of PGs in endocrine cellular physiology. With this aim, we applied a glycoproteomic approach to identify PGs, their GAG chains and their attachment sites in insulin-secreting cells. Glycopeptides carrying GAG chains were enriched from human pancreatic islets, rat (INS-1 832/13) and mouse (MIN6, NIT-1) insulinoma cell lines by exchange chromatography, depolymerized with GAG lyases, and analyzed by nanoflow liquid chromatography tandem mass spectrometry. We identified CS modifications of chromogranin-A (CgA), islet amyloid polypeptide, secretogranin-1 and secretogranin-2, immunoglobulin superfamily member 10, and protein AMBP. Additionally, we identified two HS-modified prohormones (CgA and secretogranin-1), which was surprising, as prohormones are not typically regarded as HSPGs. For CgA, the glycosylation site carried either CS or HS, making it a so-called hybrid site. Additional HS sites were found on syndecan-1, syndecan-4, nerurexin-2, protein NDNF and testican-1. These results demonstrate that several prohormones, and other constituents of the insulin-secreting cells are PGs. Cell-targeted mapping of the GAG glycoproteome forms an important basis for better understanding of endocrine cellular physiology, and the novel CS and HS sites presented here provide important knowledge for future studies.
Collapse
Affiliation(s)
- Mahnaz Nikpour
- Department of Laboratory Medicine, Sahlgrenska Academy, University of Gothenburg, Bruna Stråket 16, SE 413 45 Gothenburg, Sweden
| | - Jonas Nilsson
- Department of Laboratory Medicine, Sahlgrenska Academy, University of Gothenburg, Bruna Stråket 16, SE 413 45 Gothenburg, Sweden
- Proteomics Core Facility, Sahlgrenska Academy, University of Gothenburg, Medicinaregatan 9E, SE 405 30 Gothenburg, Sweden
- Laboratory of Clinical Chemistry, Sahlgrenska University Hospital, Bruna Stråket 16, SE 413 45 Gothenburg, Sweden
| | - Andrea Persson
- Department of Laboratory Medicine, Sahlgrenska Academy, University of Gothenburg, Bruna Stråket 16, SE 413 45 Gothenburg, Sweden
| | - Fredrik Noborn
- Department of Laboratory Medicine, Sahlgrenska Academy, University of Gothenburg, Bruna Stråket 16, SE 413 45 Gothenburg, Sweden
| | - Egor Vorontsov
- Proteomics Core Facility, Sahlgrenska Academy, University of Gothenburg, Medicinaregatan 9E, SE 405 30 Gothenburg, Sweden
| | - Göran Larson
- Department of Laboratory Medicine, Sahlgrenska Academy, University of Gothenburg, Bruna Stråket 16, SE 413 45 Gothenburg, Sweden
- Proteomics Core Facility, Sahlgrenska Academy, University of Gothenburg, Medicinaregatan 9E, SE 405 30 Gothenburg, Sweden
- Laboratory of Clinical Chemistry, Sahlgrenska University Hospital, Bruna Stråket 16, SE 413 45 Gothenburg, Sweden
| |
Collapse
|
20
|
Wandall HH, Nielsen MAI, King-Smith S, de Haan N, Bagdonaite I. Global functions of O-glycosylation: promises and challenges in O-glycobiology. FEBS J 2021; 288:7183-7212. [PMID: 34346177 DOI: 10.1111/febs.16148] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 07/23/2021] [Accepted: 08/03/2021] [Indexed: 12/13/2022]
Abstract
Mucin type O-glycosylation is one of the most diverse types of glycosylation, playing essential roles in tissue development and homeostasis. In complex organisms, O-GalNAc glycans comprise a substantial proportion of the glycocalyx, with defined functions in hemostatic, gastrointestinal, and respiratory systems. Furthermore, O-GalNAc glycans are important players in host-microbe interactions, and changes in O-glycan composition are associated with certain diseases and metabolic conditions, which in some instances can be used for diagnosis or therapeutic intervention. Breakthroughs in O-glycobiology have gone hand in hand with the development of new technologies, such as advancements in mass spectrometry, as well as facilitation of genetic engineering in mammalian cell lines. High-throughput O-glycoproteomics have enabled us to draw a comprehensive map of O-glycosylation, and mining this information has supported the definition and confirmation of functions related to site-specific O-glycans. This includes protection from proteolytic cleavage, as well as modulation of binding affinity or receptor function. Yet, there is still much to discover, and among the important next challenges will be to define the context-dependent functions of O-glycans in different stages of cellular differentiation, cellular metabolism, host-microbiome interactions, and in disease. In this review, we present the achievements and the promises in O-GalNAc glycobiology driven by technological advances in analytical methods, genetic engineering, and systems biology.
Collapse
Affiliation(s)
- Hans H Wandall
- Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, Copenhagen Center for Glycomics, University of Copenhagen, Copenhagen, Denmark
| | - Mathias A I Nielsen
- Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, Copenhagen Center for Glycomics, University of Copenhagen, Copenhagen, Denmark
| | - Sarah King-Smith
- Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, Copenhagen Center for Glycomics, University of Copenhagen, Copenhagen, Denmark
| | - Noortje de Haan
- Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, Copenhagen Center for Glycomics, University of Copenhagen, Copenhagen, Denmark
| | - Ieva Bagdonaite
- Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, Copenhagen Center for Glycomics, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
21
|
Sauer CS, Phetsanthad A, Riusech OL, Li L. Developing mass spectrometry for the quantitative analysis of neuropeptides. Expert Rev Proteomics 2021; 18:607-621. [PMID: 34375152 PMCID: PMC8522511 DOI: 10.1080/14789450.2021.1967146] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 08/09/2021] [Indexed: 12/22/2022]
Abstract
INTRODUCTION Neuropeptides are signaling molecules originating in the neuroendocrine system that can act as neurotransmitters and hormones in many biochemical processes. Their exact function is difficult to characterize, however, due to dependence on concentration, post-translational modifications, and the presence of other comodulating neuropeptides. Mass spectrometry enables sensitive, accurate, and global peptidomic analyses that can profile neuropeptide expression changes to understand their roles in many biological problems, such as neurodegenerative disorders and metabolic function. AREAS COVERED We provide a brief overview of the fundamentals of neuropeptidomic research, limitations of existing methods, and recent progress in the field. This review is focused on developments in mass spectrometry and encompasses labeling strategies, post-translational modification analysis, mass spectrometry imaging, and integrated multi-omic workflows, with discussion emphasizing quantitative advancements. EXPERT OPINION Neuropeptidomics is critical for future clinical research with impacts in biomarker discovery, receptor identification, and drug design. While advancements are being made to improve sensitivity and accuracy, there is still room for improvement. Better quantitative strategies are required for clinical analyses, and these methods also need to be amenable to mass spectrometry imaging, post-translational modification analysis, and multi-omics to facilitate understanding and future treatment of many diseases.
Collapse
Affiliation(s)
- Christopher S. Sauer
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, WI 53706, USA
| | - Ashley Phetsanthad
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, WI 53706, USA
| | - Olga L. Riusech
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, WI 53706, USA
| | - Lingjun Li
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, WI 53706, USA
- School of Pharmacy, University of Wisconsin-Madison, 777 Highland Avenue, Madison, WI 53075, USA
| |
Collapse
|
22
|
Bäck N, Mains RE, Eipper BA. PAM: diverse roles in neuroendocrine cells, cardiomyocytes, and green algae. FEBS J 2021; 289:4470-4496. [PMID: 34089560 DOI: 10.1111/febs.16049] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 04/28/2021] [Accepted: 06/02/2021] [Indexed: 12/13/2022]
Abstract
Our understanding of the ways in which peptides are used for communication in the nervous and endocrine systems began with the identification of oxytocin, vasopressin, and insulin, each of which is stored in electron-dense granules, ready for release in response to an appropriate stimulus. For each of these peptides, entry of its newly synthesized precursor into the ER lumen is followed by transport through the secretory pathway, exposing the precursor to a sequence of environments and enzymes that produce the bioactive products stored in mature granules. A final step in the biosynthesis of many peptides is C-terminal amidation by peptidylglycine α-amidating monooxygenase (PAM), an ascorbate- and copper-dependent membrane enzyme that enters secretory granules along with its soluble substrates. Biochemical and cell biological studies elucidated the highly conserved mechanism for amidated peptide production and raised many questions about PAM trafficking and the effects of PAM on cytoskeletal organization and gene expression. Phylogenetic studies and the discovery of active PAM in the ciliary membranes of Chlamydomonas reinhardtii, a green alga lacking secretory granules, suggested that a PAM-like enzyme was present in the last eukaryotic common ancestor. While the catalytic features of human and C. reinhardtii PAM are strikingly similar, the trafficking of PAM in C. reinhardtii and neuroendocrine cells and secretion of its amidated products differ. A comparison of PAM function in neuroendocrine cells, atrial myocytes, and C. reinhardtii reveals multiple ways in which altered trafficking allows PAM to accomplish different tasks in different species and cell types.
Collapse
Affiliation(s)
- Nils Bäck
- Department of Anatomy, University of Helsinki, Finland
| | - Richard E Mains
- Department of Neuroscience, UConn Health, Farmington, CT, USA
| | - Betty A Eipper
- Department of Molecular Biology and Biophysics, UConn Health, Farmington, CT, USA
| |
Collapse
|
23
|
Kjeldsen SAS, Hansen LH, Esser N, Mongovin S, Winther-Sørensen M, Galsgaard KD, Hunt JE, Kissow H, Ceutz FR, Terzic D, Mark PD, Plomgaard P, Goetze JP, Goossens GH, Blaak EE, Deacon CF, Rosenkilde MM, Zraika S, Holst JJ, Wewer Albrechtsen NJ. Neprilysin Inhibition Increases Glucagon Levels in Humans and Mice With Potential Effects on Amino Acid Metabolism. J Endocr Soc 2021; 5:bvab084. [PMID: 34337276 PMCID: PMC8317634 DOI: 10.1210/jendso/bvab084] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Indexed: 01/12/2023] Open
Abstract
Context Inhibitors of the protease neprilysin (NEP) are used for treating heart failure, but are also linked to improvements in metabolism. NEP may cleave proglucagon-derived peptides, including the glucose and amino acid (AA)-regulating hormone glucagon. Studies investigating NEP inhibition on glucagon metabolism are warranted. Objective This work aims to investigate whether NEP inhibition increases glucagon levels. Methods Plasma concentrations of glucagon and AAs were measured in eight healthy men during a mixed meal with and without a single dose of the NEP inhibitor/angiotensin II type 1 receptor antagonist, sacubitril/valsartan (194 mg/206 mg). Long-term effects of sacubitril/valsartan (8 weeks) were investigated in individuals with obesity (n = 7). Mass spectrometry was used to investigate NEP-induced glucagon degradation, and the derived glucagon fragments were tested pharmacologically in cells transfected with the glucagon receptor (GCGR). Genetic deletion or pharmacological inhibition of NEP with or without concomitant GCGR antagonism was tested in mice to evaluate effects on AA metabolism. Results In healthy men, a single dose of sacubitril/valsartan significantly increased postprandial concentrations of glucagon by 228%, concomitantly lowering concentrations of AAs including glucagonotropic AAs. Eight-week sacubitril/valsartan treatment increased fasting glucagon concentrations in individuals with obesity. NEP cleaved glucagon into 5 inactive fragments (in vitro). Pharmacological NEP inhibition protected both exogenous and endogenous glucagon in mice after an AA challenge, while NEP-deficient mice showed elevated fasting and AA-stimulated plasma concentrations of glucagon and urea compared to controls. Conclusion NEP cleaves glucagon, and inhibitors of NEP result in hyperglucagonemia and may increase postprandial AA catabolism without affecting glycemia.
Collapse
Affiliation(s)
- Sasha A S Kjeldsen
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen,Denmark.,Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen,Denmark
| | - Lasse H Hansen
- Department of Clinical Biochemistry, Copenhagen University Hospital, Rigshospitalet, 2100 Copenhagen, Denmark.,Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Nathalie Esser
- Department of Medicine, Division of Metabolism, Endocrinology and Nutrition, University of Washington, Seattle, Washington 98195-6426, USA.,Veterans Affairs Puget Sound Health Care System, Seattle, Washington 98108, USA
| | - Steve Mongovin
- Veterans Affairs Puget Sound Health Care System, Seattle, Washington 98108, USA
| | - Marie Winther-Sørensen
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen,Denmark
| | - Katrine D Galsgaard
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen,Denmark.,Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Jenna E Hunt
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen,Denmark.,Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Hannelouise Kissow
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen,Denmark.,Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Frederik R Ceutz
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen,Denmark
| | - Dijana Terzic
- Department of Clinical Biochemistry, Copenhagen University Hospital, Rigshospitalet, 2100 Copenhagen, Denmark
| | - Peter D Mark
- Department of Clinical Biochemistry, Copenhagen University Hospital, Rigshospitalet, 2100 Copenhagen, Denmark
| | - Peter Plomgaard
- Department of Clinical Biochemistry, Copenhagen University Hospital, Rigshospitalet, 2100 Copenhagen, Denmark.,Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Jens P Goetze
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen,Denmark.,Department of Clinical Biochemistry, Copenhagen University Hospital, Rigshospitalet, 2100 Copenhagen, Denmark
| | - Gijs H Goossens
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, Maastricht, the Netherlands
| | - Ellen E Blaak
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, Maastricht, the Netherlands
| | - Carolyn F Deacon
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen,Denmark
| | - Mette M Rosenkilde
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen,Denmark.,Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Sakeneh Zraika
- Department of Medicine, Division of Metabolism, Endocrinology and Nutrition, University of Washington, Seattle, Washington 98195-6426, USA.,Veterans Affairs Puget Sound Health Care System, Seattle, Washington 98108, USA
| | - Jens J Holst
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen,Denmark.,Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Nicolai J Wewer Albrechtsen
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen,Denmark.,Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen,Denmark.,Department of Clinical Biochemistry, Copenhagen University Hospital, Rigshospitalet, 2100 Copenhagen, Denmark
| |
Collapse
|
24
|
Augustyniak D, Kramarska E, Mackiewicz P, Orczyk-Pawiłowicz M, Lundy FT. Mammalian Neuropeptides as Modulators of Microbial Infections: Their Dual Role in Defense versus Virulence and Pathogenesis. Int J Mol Sci 2021; 22:ijms22073658. [PMID: 33915818 PMCID: PMC8036953 DOI: 10.3390/ijms22073658] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 03/28/2021] [Accepted: 03/30/2021] [Indexed: 02/07/2023] Open
Abstract
The regulation of infection and inflammation by a variety of host peptides may represent an evolutionary failsafe in terms of functional degeneracy and it emphasizes the significance of host defense in survival. Neuropeptides have been demonstrated to have similar antimicrobial activities to conventional antimicrobial peptides with broad-spectrum action against a variety of microorganisms. Neuropeptides display indirect anti-infective capacity via enhancement of the host’s innate and adaptive immune defense mechanisms. However, more recently concerns have been raised that some neuropeptides may have the potential to augment microbial virulence. In this review we discuss the dual role of neuropeptides, perceived as a double-edged sword, with antimicrobial activity against bacteria, fungi, and protozoa but also capable of enhancing virulence and pathogenicity. We review the different ways by which neuropeptides modulate crucial stages of microbial pathogenesis such as adhesion, biofilm formation, invasion, intracellular lifestyle, dissemination, etc., including their anti-infective properties but also detrimental effects. Finally, we provide an overview of the efficacy and therapeutic potential of neuropeptides in murine models of infectious diseases and outline the intrinsic host factors as well as factors related to pathogen adaptation that may influence efficacy.
Collapse
Affiliation(s)
- Daria Augustyniak
- Department of Pathogen Biology and Immunology, Faculty of Biology, University of Wroclaw, 51-148 Wroclaw, Poland;
- Correspondence: ; Tel.: +48-71-375-6296
| | - Eliza Kramarska
- Department of Pathogen Biology and Immunology, Faculty of Biology, University of Wroclaw, 51-148 Wroclaw, Poland;
- Institute of Biostructures and Bioimaging, Consiglio Nazionale delle Ricerche, 80134 Napoli, Italy
| | - Paweł Mackiewicz
- Department of Bioinformatics and Genomics, Faculty of Biotechnology, University of Wroclaw, 50-383 Wroclaw, Poland;
| | | | - Fionnuala T. Lundy
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen’s University Belfast, Belfast BT9 7BL, UK;
| |
Collapse
|
25
|
Rehfeld JF, Goetze JP. Processing-independent analysis (PIA): a method for quantitation of the total peptide-gene expression. Peptides 2021; 135:170427. [PMID: 33069691 DOI: 10.1016/j.peptides.2020.170427] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 10/06/2020] [Accepted: 10/10/2020] [Indexed: 12/26/2022]
Abstract
The translational product of protein-coding genes undergoes extensive posttranslational modifications. The modifications ensure an increased molecular and functional diversity at protein- and peptide-level. Prohormones are small pro-proteins that are expressed in many cell types, for instance endocrine cells, immune cells, myocytes and neurons. Here they mature to bioactive peptides (cytokines, hormones, growth factors, and neurotransmitters) that are released from the cells in an often regulated manner. The posttranslational processing of prohormones is cell-specific, however, and may vary during evolution and disease. Therefore, it is often inadequate to measure just a single peptide fragment as marker of endocrine, immune, and neuronal functions. In order to meet this challenge, we developed years back a simple "processing-independent analysis" (PIA) for accurate quantification of the total pro-protein product - irrespective of the degree and nature of the posttranslational processing. This review provides an overview of the PIA principle and describes examples of PIA results in different peptide systems.
Collapse
Affiliation(s)
- Jens F Rehfeld
- Department of Clinical Biochemistry, Rigshospitalet, University of Copenhagen, Denmark.
| | - Jens P Goetze
- Department of Clinical Biochemistry, Rigshospitalet, University of Copenhagen, Denmark
| |
Collapse
|
26
|
Mucin-Type O-GalNAc Glycosylation in Health and Disease. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1325:25-60. [PMID: 34495529 DOI: 10.1007/978-3-030-70115-4_2] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Mucin-type GalNAc O-glycosylation is one of the most abundant and unique post-translational modifications. The combination of proteome-wide mapping of GalNAc O-glycosylation sites and genetic studies with knockout animals and genome-wide analyses in humans have been instrumental in our understanding of GalNAc O-glycosylation. Combined, such studies have revealed well-defined functions of O-glycans at single sites in proteins, including the regulation of pro-protein processing and proteolytic cleavage, as well as modulation of receptor functions and ligand binding. In addition to isolated O-glycans, multiple clustered O-glycans have an important function in mammalian biology by providing structural support and stability of mucins essential for protecting our inner epithelial surfaces, especially in the airways and gastrointestinal tract. Here the many O-glycans also provide binding sites for both endogenous and pathogen-derived carbohydrate-binding proteins regulating critical developmental programs and helping maintain epithelial homeostasis with commensal organisms. Finally, O-glycan changes have been identified in several diseases, most notably in cancer and inflammation, where the disease-specific changes can be used for glycan-targeted therapies. This chapter will review the biosynthesis, the biology, and the translational perspectives of GalNAc O-glycans.
Collapse
|
27
|
Global view of human protein glycosylation pathways and functions. Nat Rev Mol Cell Biol 2020; 21:729-749. [PMID: 33087899 DOI: 10.1038/s41580-020-00294-x] [Citation(s) in RCA: 716] [Impact Index Per Article: 143.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/24/2020] [Indexed: 02/07/2023]
Abstract
Glycosylation is the most abundant and diverse form of post-translational modification of proteins that is common to all eukaryotic cells. Enzymatic glycosylation of proteins involves a complex metabolic network and different types of glycosylation pathways that orchestrate enormous amplification of the proteome in producing diversity of proteoforms and its biological functions. The tremendous structural diversity of glycans attached to proteins poses analytical challenges that limit exploration of specific functions of glycosylation. Major advances in quantitative transcriptomics, proteomics and nuclease-based gene editing are now opening new global ways to explore protein glycosylation through analysing and targeting enzymes involved in glycosylation processes. In silico models predicting cellular glycosylation capacities and glycosylation outcomes are emerging, and refined maps of the glycosylation pathways facilitate genetic approaches to address functions of the vast glycoproteome. These approaches apply commonly available cell biology tools, and we predict that use of (single-cell) transcriptomics, genetic screens, genetic engineering of cellular glycosylation capacities and custom design of glycoprotein therapeutics are advancements that will ignite wider integration of glycosylation in general cell biology.
Collapse
|
28
|
Daniel EJP, las Rivas M, Lira-Navarrete E, García-García A, Hurtado-Guerrero R, Clausen H, Gerken TA. Ser and Thr acceptor preferences of the GalNAc-Ts vary among isoenzymes to modulate mucin-type O-glycosylation. Glycobiology 2020; 30:910-922. [PMID: 32304323 PMCID: PMC7581654 DOI: 10.1093/glycob/cwaa036] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 03/30/2020] [Accepted: 04/12/2020] [Indexed: 12/12/2022] Open
Abstract
A family of polypeptide GalNAc-transferases (GalNAc-Ts) initiates mucin-type O-glycosylation, transferring GalNAc onto hydroxyl groups of Ser and Thr residues of target substrates. The 20 GalNAc-T isoenzymes in humans are classified into nine subfamilies according to sequence similarity. GalNAc-Ts select their sites of glycosylation based on weak and overlapping peptide sequence motifs, as well prior substrate O-GalNAc glycosylation at sites both remote (long-range) and neighboring (short-range) the acceptor. Together, these preferences vary among GalNAc-Ts imparting each isoenzyme with its own unique specificity. Studies on the first identified GalNAc-Ts showed Thr acceptors were preferred over Ser acceptors; however studies comparing Thr vs. Ser glycosylation across the GalNAc-T family are lacking. Using a series of identical random peptide substrates, with single Thr or Ser acceptor sites, we determined the rate differences (Thr/Ser rate ratio) between Thr and Ser substrate glycosylation for 12 isoenzymes (representing 7 GalNAc-T subfamilies). These Thr/Ser rate ratios varied across subfamilies, ranging from ~2 to ~18 (for GalNAc-T4/GalNAc-T12 and GalNAc-T3/GalNAc-T6, respectively), while nearly identical Thr/Ser rate ratios were observed for isoenzymes within subfamilies. Furthermore, the Thr/Ser rate ratios did not appreciably vary over a series of fixed sequence substrates of different relative activities, suggesting the ratio is a constant for each isoenzyme against single acceptor substrates. Finally, based on GalNAc-T structures, the different Thr/Ser rate ratios likely reflect differences in the strengths of the Thr acceptor methyl group binding to the active site pocket. With this work, another activity that further differentiates substrate specificity among the GalNAc-Ts has been identified.
Collapse
Affiliation(s)
| | - Matilde las Rivas
- BIFI and Laboratorio de Microscopías Avanzada (LMA), University of Zaragoza, Mariano Esquillor s/n, Campus Rio Ebro, Edificio I+D, Zaragoza, 50018, Spain
| | - Erandi Lira-Navarrete
- BIFI and Laboratorio de Microscopías Avanzada (LMA), University of Zaragoza, Mariano Esquillor s/n, Campus Rio Ebro, Edificio I+D, Zaragoza, 50018, Spain
| | - Ana García-García
- BIFI and Laboratorio de Microscopías Avanzada (LMA), University of Zaragoza, Mariano Esquillor s/n, Campus Rio Ebro, Edificio I+D, Zaragoza, 50018, Spain
| | - Ramon Hurtado-Guerrero
- BIFI and Laboratorio de Microscopías Avanzada (LMA), University of Zaragoza, Mariano Esquillor s/n, Campus Rio Ebro, Edificio I+D, Zaragoza, 50018, Spain
- Department of Cellular and Molecular Medicine, Faculty of Health Sciences, Copenhagen Center for Glycomics (CCG), University of Copenhagen, Copenhagen N DK-2200, Denmark
- Department of Dentistry, Faculty of Health Sciences, Copenhagen Center for Glycomics (CCG), University of Copenhagen, Copenhagen N DK-2200, Denmark
- Fundación ARAID, Zaragoza, 50018, Spain
| | - Henrik Clausen
- Department of Cellular and Molecular Medicine, Faculty of Health Sciences, Copenhagen Center for Glycomics (CCG), University of Copenhagen, Copenhagen N DK-2200, Denmark
- Department of Dentistry, Faculty of Health Sciences, Copenhagen Center for Glycomics (CCG), University of Copenhagen, Copenhagen N DK-2200, Denmark
| | - Thomas A Gerken
- Department of Biochemistry, Case Western Reserve University, Cleveland, OH 44106, USA
- Department of Chemistry, Case Western Reserve University, Cleveland, OH 44106, USA
- Department of Pediatrics, Case Western Reserve University, Cleveland, OH 44106, USA
| |
Collapse
|
29
|
Seifert GJ. On the Potential Function of Type II Arabinogalactan O-Glycosylation in Regulating the Fate of Plant Secretory Proteins. FRONTIERS IN PLANT SCIENCE 2020; 11:563735. [PMID: 33013983 PMCID: PMC7511660 DOI: 10.3389/fpls.2020.563735] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 08/24/2020] [Indexed: 05/04/2023]
Abstract
In a plant-specific mode of protein glycosylation, various sugars and glycans are attached to hydroxyproline giving rise to a variety of diverse O-glycoproteins. The sub-family of arabinogalactan proteins is implicated in a multitude of biological functions, however, the mechanistic role of O-glycosylation on AGPs by type II arabinogalactans is largely elusive. Some models suggest roles of the O-glycans such as in ligand-receptor interactions and as localized calcium ion store. Structurally different but possibly analogous types of protein O-glycosylation exist in animal and yeast models and roles for O-glycans were suggested in determining the fate of O-glycoproteins by affecting intracellular sorting or proteolytic activation and degradation. At present, only few examples exist that describe how the fate of artificial and endogenous arabinogalactan proteins is affected by O-glycosylation with type II arabinogalactans. In addition to other roles, these glycans might act as a molecular determinant for cellular localization and protein lifetime of many endogenous proteins.
Collapse
Affiliation(s)
- Georg J. Seifert
- Department of Applied Genetics and Cell Biology, Institute of Plant Biotechnology and Cell biology, University of Natural Resources and Life Sciences Vienna, Vienna, Austria
| |
Collapse
|
30
|
Madsen TD, Hansen LH, Hintze J, Ye Z, Jebari S, Andersen DB, Joshi HJ, Ju T, Goetze JP, Martin C, Rosenkilde MM, Holst JJ, Kuhre RE, Goth CK, Vakhrushev SY, Schjoldager KT. An atlas of O-linked glycosylation on peptide hormones reveals diverse biological roles. Nat Commun 2020; 11:4033. [PMID: 32820167 PMCID: PMC7441158 DOI: 10.1038/s41467-020-17473-1] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 07/02/2020] [Indexed: 12/17/2022] Open
Abstract
Peptide hormones and neuropeptides encompass a large class of bioactive peptides that regulate physiological processes like anxiety, blood glucose, appetite, inflammation and blood pressure. Here, we execute a focused discovery strategy to provide an extensive map of O-glycans on peptide hormones. We find that almost one third of the 279 classified peptide hormones carry O-glycans. Many of the identified O-glycosites are conserved and are predicted to serve roles in proprotein processing, receptor interaction, biodistribution and biostability. We demonstrate that O-glycans positioned within the receptor binding motifs of members of the neuropeptide Y and glucagon families modulate receptor activation properties and substantially extend peptide half-lives. Our study highlights the importance of O-glycosylation in the biology of peptide hormones, and our map of O-glycosites in this large class of biomolecules serves as a discovery platform for an important class of molecules with potential opportunities for drug designs.
Collapse
Affiliation(s)
- Thomas D Madsen
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3, DK-2200, Copenhagen N, Denmark
| | - Lasse H Hansen
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3, DK-2200, Copenhagen N, Denmark.,Department of Clinical Biochemistry, Rigshospitalet, University of Copenhagen, Blegdamsvej 9, DK-2100, Copenhagen O, Denmark
| | - John Hintze
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3, DK-2200, Copenhagen N, Denmark
| | - Zilu Ye
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3, DK-2200, Copenhagen N, Denmark
| | - Shifa Jebari
- Biofisika Institute (UPV/EHU, CSIC), Departamento de Bioquímica, Universidad del País Vasco, Bilbao, 48080, Spain
| | - Daniel B Andersen
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3, DK-2200, Copenhagen N, Denmark.,Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3, DK-2200, Copenhagen N, Denmark
| | - Hiren J Joshi
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3, DK-2200, Copenhagen N, Denmark
| | - Tongzhong Ju
- Office of Biotechnology Products, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD, 20993, USA
| | - Jens P Goetze
- Department of Clinical Biochemistry, Rigshospitalet, University of Copenhagen, Blegdamsvej 9, DK-2100, Copenhagen O, Denmark.,Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3, DK-2200, Copenhagen N, Denmark
| | - Cesar Martin
- Office of Biotechnology Products, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD, 20993, USA
| | - Mette M Rosenkilde
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3, DK-2200, Copenhagen N, Denmark
| | - Jens J Holst
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3, DK-2200, Copenhagen N, Denmark.,Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3, DK-2200, Copenhagen N, Denmark
| | - Rune E Kuhre
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3, DK-2200, Copenhagen N, Denmark.,Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3, DK-2200, Copenhagen N, Denmark
| | - Christoffer K Goth
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3, DK-2200, Copenhagen N, Denmark
| | - Sergey Y Vakhrushev
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3, DK-2200, Copenhagen N, Denmark
| | - Katrine T Schjoldager
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3, DK-2200, Copenhagen N, Denmark.
| |
Collapse
|
31
|
Peptidylglycine α-amidating monooxygenase is required for atrial secretory granule formation. Proc Natl Acad Sci U S A 2020; 117:17820-17831. [PMID: 32661174 DOI: 10.1073/pnas.2004410117] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The discovery of atrial secretory granules and the natriuretic peptides stored in them identified the atrium as an endocrine organ. Although neither atrial nor brain natriuretic peptide (ANP, BNP) is amidated, the major membrane protein in atrial granules is peptidylglycine α-amidating monooxygenase (PAM), an enzyme essential for amidated peptide biosynthesis. Mice lacking cardiomyocyte PAM (Pam Myh6-cKO/cKO) are viable, but a gene dosage-dependent drop in atrial ANP and BNP content occurred. Ultrastructural analysis of adult Pam Myh6-cKO/cKO atria revealed a 13-fold drop in the number of secretory granules. When primary cultures of Pam 0-Cre-cKO/cKO atrial myocytes (no Cre recombinase, PAM floxed) were transduced with Cre-GFP lentivirus, PAM protein levels dropped, followed by a decline in ANP precursor (proANP) levels. Expression of exogenous PAM in Pam Myh6-cKO/cKO atrial myocytes produced a dose-dependent rescue of proANP content; strikingly, this response did not require the monooxygenase activity of PAM. Unlike many prohormones, atrial proANP is stored intact. A threefold increase in the basal rate of proANP secretion by Pam Myh6-cKO/cKO myocytes was a major contributor to its reduced levels. While proANP secretion was increased following treatment of control cultures with drugs that block the activation of Golgi-localized Arf proteins and COPI vesicle formation, proANP secretion by Pam Myh6-cKO/cKO myocytes was unaffected. In cells lacking secretory granules, expression of exogenous PAM led to the accumulation of fluorescently tagged proANP in the cis-Golgi region. Our data indicate that COPI vesicle-mediated recycling of PAM from the cis-Golgi to the endoplasmic reticulum plays an essential role in the biogenesis of proANP containing atrial granules.
Collapse
|
32
|
Rehfeld JF. Bad kits in the diagnosis of endocrine tumors. INTERNATIONAL JOURNAL OF ENDOCRINE ONCOLOGY 2020. [DOI: 10.2217/ije-2020-0003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Affiliation(s)
- Jens F Rehfeld
- Department of Clinical Biochemistry, Rigshospitalet, University of Copenhagen, DK-2100, Copenhagen, Denmark
| |
Collapse
|
33
|
Abstract
Investigations into the mixed muscle-secretory phenotype of cardiomyocytes from the atrial appendages of the heart led to the discovery that these cells produce, in a regulated manner, two polypeptide hormones - the natriuretic peptides - referred to as atrial natriuretic factor or atrial natriuretic peptide (ANP) and brain or B-type natriuretic peptide (BNP), thereby demonstrating an endocrine function for the heart. Studies on the gene encoding ANP (NPPA) initiated the field of modern research into gene regulation in the cardiovascular system. Additionally, ANP and BNP were found to be the natural ligands for cell membrane-bound guanylyl cyclase receptors that mediate the effects of natriuretic peptides through the generation of intracellular cGMP, which interacts with specific enzymes and ion channels. Natriuretic peptides have many physiological actions and participate in numerous pathophysiological processes. Important clinical entities associated with natriuretic peptide research include heart failure, obesity and systemic hypertension. Plasma levels of natriuretic peptides have proven to be powerful diagnostic and prognostic biomarkers of heart disease. Development of pharmacological agents that are based on natriuretic peptides is an area of active research, with vast potential benefits for the treatment of cardiovascular disease.
Collapse
|
34
|
MOHL JONATHONE, GERKEN THOMAS, LEUNG MINGYING. Predicting mucin-type O-Glycosylation using enhancement value products from derived protein features. JOURNAL OF THEORETICAL & COMPUTATIONAL CHEMISTRY 2020; 19:2040003. [PMID: 33208985 PMCID: PMC7671581 DOI: 10.1142/s0219633620400039] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Mucin-type O-glycosylation is one of the most common post-translational modifications of proteins. This glycosylation is initiated in the Golgi by the addition of the sugar N-acetylgalactosamine (GalNAc) onto protein Ser and Thr residues by a family of polypeptide GalNAc transferases. In humans there are 20 isoforms that are differentially expressed across tissues that serve multiple important biological roles. Using random peptide substrates, isoform specific amino acid preferences have been obtained in the form of enhancement values (EV). These EVs alone have previously been used to predict O-glycosylation sites via the web based ISOGlyP (Isoform Specific O-Glycosylation Prediction) tool. Here we explore additional protein features to determine whether these can complement the random peptide derived enhancement values and increase the predictive power of ISOGlyP. The inclusion of additional protein substrate features (such as secondary structure and surface accessibility) was found to increase sensitivity with minimal loss of specificity, when tested with three different published in vivo O-glycoproteomics data sets, thus increasing the overall accuracy of the ISOGlyP predictions.
Collapse
Affiliation(s)
- JONATHON E. MOHL
- Department of Mathematical Sciences and Border Biomedical Research
Center, The University of Texas at El Paso, El Paso, TX 79968, USA
| | - THOMAS GERKEN
- Departments of Biochemistry and Chemistry, Case Western Reserve
University, Cleveland, OH, 44106, USA
| | - MING-YING LEUNG
- Department of Mathematical Sciences and Border Biomedical Research
Center, The University of Texas at El Paso, El Paso, TX 79968, USA
| |
Collapse
|
35
|
Goetze JP, Hansen LH, Terzic D, Dall Mark P. Upgrading hypertension treatment. Am J Physiol Regul Integr Comp Physiol 2020; 318:R1025-R1026. [PMID: 32348155 DOI: 10.1152/ajpregu.00086.2020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Jens P Goetze
- Department of Clinical Biochemistry, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Lasse H Hansen
- Department of Clinical Biochemistry, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark.,Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Dijana Terzic
- Department of Clinical Biochemistry, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Peter Dall Mark
- Department of Clinical Biochemistry, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
36
|
Chandel I, Ten Hagen KG, Panin V. Sweet rescue or surrender of the failing heart? J Biol Chem 2020; 294:12579-12580. [PMID: 31444307 DOI: 10.1074/jbc.h119.010228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Natriuretic peptides (NPs) are hormones involved in maintaining heart health that undergo proteolytic cleavage to become activated. Previous work has shown that O-GalNAc glycans affect their processing and activation. Here, Goetze, Schjoldager, and colleagues now provide comprehensive characterization of O-glycosylation of NPs, revealing that all members of the NP family can be modified by O-GalNAc glycans. Intriguingly, the study discovers glycans in the receptor-binding region of the A-type natriuretic peptide (ANP), demonstrating that they affect both stability and activity of ANP. These results may inform future therapeutic approaches for heart failure using peptide glycoforms.
Collapse
Affiliation(s)
- Ishita Chandel
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas 77843
| | | | - Vlad Panin
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas 77843
| |
Collapse
|
37
|
Ashwood C, Waas M, Weerasekera R, Gundry RL. Reference glycan structure libraries of primary human cardiomyocytes and pluripotent stem cell-derived cardiomyocytes reveal cell-type and culture stage-specific glycan phenotypes. J Mol Cell Cardiol 2020; 139:33-46. [PMID: 31972267 DOI: 10.1016/j.yjmcc.2019.12.012] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 12/23/2019] [Accepted: 12/27/2019] [Indexed: 12/16/2022]
Abstract
Cell surface glycoproteins play critical roles in maintaining cardiac structure and function in health and disease and the glycan-moiety attached to the protein is critical for proper protein folding, stability and signaling [1]. However, despite mounting evidence that glycan structures are key modulators of heart function and must be considered when developing cardiac biomarkers, we currently do not have a comprehensive view of the glycans present in the normal human heart. In the current study, we used porous graphitized carbon liquid chromatography interfaced with mass spectrometry (PGC-LC-MS) to generate glycan structure libraries for primary human heart tissue homogenate, cardiomyocytes (CM) enriched from human heart tissue, and human induced pluripotent stem cell derived CM (hiPSC-CM). Altogether, we established the first reference structure libraries of the cardiac glycome containing 265 N- and O-glycans. Comparing the N-glycome of CM enriched from primary heart tissue to that of heart tissue homogenate, the same pool of N-glycan structures was detected in each sample type but the relative signal of 21 structures significantly differed between samples, with the high mannose class increased in enriched CM. Moreover, by comparing primary CM to hiPSC-CM collected during 20-100 days of differentiation, dynamic changes in the glycan profile throughout in vitro differentiation were observed and differences between primary and hiPSC-CM were revealed. Namely, >30% of the N-glycome significantly changed across these time-points of differentiation and only 23% of the N-glycan structures were shared between hiPSC-CM and primary CM. These observations are an important complement to current genomic, transcriptomic, and proteomic profiling and reveal new considerations for the use and interpretation of hiPSC-CM models for studies of human development, disease, and drug testing. Finally, these data are expected to support future regenerative medicine efforts by informing targets for evaluating the immunogenic potential of hiPSC-CM and harnessing differences between immature, proliferative hiPSC-CM and adult primary CM.
Collapse
Affiliation(s)
- Christopher Ashwood
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Matthew Waas
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Ranjuna Weerasekera
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Rebekah L Gundry
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI 53226, USA; Center for Biomedical Mass Spectrometry Research, Medical College of Wisconsin, Milwaukee, WI 53226, USA.
| |
Collapse
|
38
|
Reginauld SH, Burnett JC. Reply: The Role of miRNAs and lncRNAs in ANP Production Downregulation in Heart Failure. JACC-HEART FAILURE 2020; 8:85. [PMID: 31896422 DOI: 10.1016/j.jchf.2019.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 11/08/2019] [Indexed: 11/25/2022]
|
39
|
Wang W, Gopal S, Pocock R, Xiao Z. Glycan Mimetics from Natural Products: New Therapeutic Opportunities for Neurodegenerative Disease. Molecules 2019; 24:molecules24244604. [PMID: 31888221 PMCID: PMC6943557 DOI: 10.3390/molecules24244604] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 12/12/2019] [Accepted: 12/13/2019] [Indexed: 12/20/2022] Open
Abstract
Neurodegenerative diseases (NDs) affect millions of people worldwide. Characterized by the functional loss and death of neurons, NDs lead to symptoms (dementia and seizures) that affect the daily lives of patients. In spite of extensive research into NDs, the number of approved drugs for their treatment remains limited. There is therefore an urgent need to develop new approaches for the prevention and treatment of NDs. Glycans (carbohydrate chains) are ubiquitous, abundant, and structural complex natural biopolymers. Glycans often covalently attach to proteins and lipids to regulate cellular recognition, adhesion, and signaling. The importance of glycans in both the developing and mature nervous system is well characterized. Moreover, glycan dysregulation has been observed in NDs such as Alzheimer's disease (AD), Huntington's disease (HD), Parkinson's disease (PD), multiple sclerosis (MS), and amyotrophic lateral sclerosis (ALS). Therefore, glycans are promising but underexploited therapeutic targets. In this review, we summarize the current understanding of glycans in NDs. We also discuss a number of natural products that functionally mimic glycans to protect neurons, which therefore represent promising new therapeutic approaches for patients with NDs.
Collapse
|
40
|
Davidovski FS, Goetze JP. ProANP and proBNP in plasma as biomarkers of heart failure. Biomark Med 2019; 13:1129-1135. [PMID: 31468978 DOI: 10.2217/bmm-2019-0158] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Aim: To compare the measurement of proANP and proBNP in plasma for the diagnosis of heart failure. Methods: In the PubMed search, a process of combining subject headings and terms regarding comparison of natriuretic peptides (proANP and proBNP) was performed. Results: 21 abstracts from research articles were screened with 14 articles assessed for eligibility. 11 papers were included for final analysis. We report comparable diagnostic accuracies of N-terminal proBNP and mid-regional proANP. Older methods for proANP measurement seem obsolete. Conclusion: Similar diagnostic performance of proANP and proBNP measurement for the diagnosis of heart failure was identified. Consequently, mid-regional proANP can be used when considering a diagnosis of heart failure.
Collapse
Affiliation(s)
- Filip Soeskov Davidovski
- Department of Clinical Biochemistry, Rigshospitalet, University of Copenhagen Blegdamsvej 9, DK-2100 Copenhagen, Denmark
| | - Jens P Goetze
- Department of Clinical Biochemistry, Rigshospitalet, University of Copenhagen Blegdamsvej 9, DK-2100 Copenhagen, Denmark
| |
Collapse
|