1
|
Kumar JP, Kosek D, Durell SR, Miller Jenkins LM, Debnath S, Coussens NP, Hall MD, Appella DH, Dyda F, Mazur SJ, Appella E. Crystal structure and mechanistic studies of the PPM1D serine/threonine phosphatase catalytic domain. J Biol Chem 2024; 300:107561. [PMID: 39002674 PMCID: PMC11342775 DOI: 10.1016/j.jbc.2024.107561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 06/28/2024] [Accepted: 07/03/2024] [Indexed: 07/15/2024] Open
Abstract
Protein phosphatase 1D (PPM1D, Wip1) is induced by the tumor suppressor p53 during DNA damage response signaling and acts as an oncoprotein in several human cancers. Although PPM1D is a potential therapeutic target, insights into its atomic structure were challenging due to flexible regions unique to this family member. Here, we report the first crystal structure of the PPM1D catalytic domain to 1.8 Å resolution. The structure reveals the active site with two Mg2+ ions bound, similar to other structures. The flap subdomain and B-loop, which are crucial for substrate recognition and catalysis, were also resolved, with the flap forming two short helices and three short β-strands that are followed by an irregular loop. Unexpectedly, a nitrogen-oxygen-sulfur bridge was identified in the catalytic domain. Molecular dynamics simulations and kinetic studies provided further mechanistic insights into the regulation of PPM1D catalytic activity. In particular, the kinetic experiments demonstrated a magnesium concentration-dependent lag in PPM1D attaining steady-state velocity, a feature of hysteretic enzymes that show slow transitions compared with catalytic turnover. All combined, these results advance the understanding of PPM1D function and will support the development of PPM1D-targeted therapeutics.
Collapse
Affiliation(s)
- Jay Prakash Kumar
- Laboratory of Cell Biology, NCI, National Institutes of Health, Bethesda, Maryland, United States
| | - Dalibor Kosek
- Laboratory of Molecular Biology, NIDDK, National Institutes of Health, Bethesda, Maryland, United States
| | - Stewart R Durell
- Laboratory of Cell Biology, NCI, National Institutes of Health, Bethesda, Maryland, United States
| | - Lisa M Miller Jenkins
- Laboratory of Cell Biology, NCI, National Institutes of Health, Bethesda, Maryland, United States
| | - Subrata Debnath
- Laboratory of Cell Biology, NCI, National Institutes of Health, Bethesda, Maryland, United States
| | - Nathan P Coussens
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland, United States
| | - Matthew D Hall
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland, United States
| | - Daniel H Appella
- Laboratory of Bioorganic Chemistry, NIDDK, National Institutes of Health, Bethesda, Maryland, United States
| | - Fred Dyda
- Laboratory of Molecular Biology, NIDDK, National Institutes of Health, Bethesda, Maryland, United States
| | - Sharlyn J Mazur
- Laboratory of Cell Biology, NCI, National Institutes of Health, Bethesda, Maryland, United States
| | - Ettore Appella
- Laboratory of Cell Biology, NCI, National Institutes of Health, Bethesda, Maryland, United States.
| |
Collapse
|
2
|
Xin Y, Foster SW, Makey DM, Parker D, Bradow J, Wang X, Berritt S, Mongillo R, Grinias JP, Kennedy RT. High-Throughput Capillary Liquid Chromatography Using a Droplet Injection and Application to Reaction Screening. Anal Chem 2024; 96:4693-4701. [PMID: 38442211 PMCID: PMC11001260 DOI: 10.1021/acs.analchem.4c00150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2024]
Abstract
The cycle time of a standard liquid chromatography (LC) system is the sum of the time for the chromatographic run and the autosampler injection sequence. Although LC separation times in the 1-10 s range have been demonstrated, injection sequences are commonly >15 s, limiting throughput possible with LC separations. Further, such separations are performed on relatively large bore columns requiring flow rates of ≥5 mL/min, thus generating large volumes of mobile phase waste when used for large scale screening and increasing the difficulty in interfacing to mass spectrometry. Here, a droplet injector system was established that replaces the autosampler with a four-port, two-position valve equipped with a 20 nL internal loop interfaced to a syringe pump and a three-axis positioner to withdraw sample droplets from a well plate. In the system, sample and immiscible fluid are pulled alternately from a well plate into a capillary and then through the injection valve. The valve is actuated when sample fills the loop to allow sequential injection of samples at high throughput. Capillary LC columns with 300 μm inner diameter were used to reduce the consumption of mobile phase and sample. The system achieved 96 separations of 20 nL droplet samples containing 3 components in as little as 8.1 min with 5-s cycle time. This system was coupled to a mass spectrometer through an electrospray ionization source for high-throughput chemical reaction screening.
Collapse
Affiliation(s)
- Yue Xin
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Samuel W Foster
- Department of Chemistry and Biochemistry, Rowan University, Glassboro, New Jersey 08028, United States
| | - Devin M Makey
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Deklin Parker
- Department of Chemistry and Biochemistry, Rowan University, Glassboro, New Jersey 08028, United States
| | - James Bradow
- Pfizer Global Research and Development, Eastern Point Road, Groton, Connecticut 06415, United States
| | - Xiaochun Wang
- Pfizer Global Research and Development, Eastern Point Road, Groton, Connecticut 06415, United States
| | - Simon Berritt
- Pfizer Global Research and Development, Eastern Point Road, Groton, Connecticut 06415, United States
| | - Robert Mongillo
- Pfizer Global Research and Development, Eastern Point Road, Groton, Connecticut 06415, United States
| | - James P Grinias
- Department of Chemistry and Biochemistry, Rowan University, Glassboro, New Jersey 08028, United States
| | - Robert T Kennedy
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
- Department of Pharmacology, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
3
|
Robello M, Zheng H, Saha M, George Rosenker KM, Debnath S, Kumar JP, Tagad HD, Mazur SJ, Appella E, Appella DH. Alkyl-substituted N-methylaryl-N'-aryl-4-aminobenzamides: A new series of small molecule inhibitors for Wip1 phosphatase. Eur J Med Chem 2022; 243:114763. [PMID: 36179402 PMCID: PMC9664485 DOI: 10.1016/j.ejmech.2022.114763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 08/26/2022] [Accepted: 09/07/2022] [Indexed: 11/03/2022]
Abstract
The wild-type p53 induced phosphatase 1 (Wip1), a member of the serine/threonine-specific PP2C family, is overexpressed in numerous human cancers. Wip1 dephosphorylates p53 as well as several kinases (such as p38 MAPK, ATM, Chk1, and Chk2) in the DNA damage response pathway that are responsible for maintaining genomic stability and preventing oncogenic transformation. As a result, Wip1 is an attractive target for synthetic inhibitors that could be further developed into therapeutics to treat some cancers. In this study, we report a series of alkyl-substituted N-methylaryl-N'-aryl-4-aminobenzamides and their inhibitory activity of the Wip1 phosphatase. A straightforward synthetic route was developed to synthesize the target compounds from commercially available starting materials. Three different portions (R1, R2, R3) of the core scaffold were extensively modified to examine structure-activity relationships. This study revealed interesting trends about a new molecular scaffold to inhibit Wip1.
Collapse
Affiliation(s)
- Marco Robello
- Laboratory of Bioorganic Chemistry, NIDDK, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD, 20892, United States
| | - Hongchao Zheng
- Laboratory of Bioorganic Chemistry, NIDDK, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD, 20892, United States
| | - Mrinmoy Saha
- Laboratory of Bioorganic Chemistry, NIDDK, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD, 20892, United States
| | - Kara M George Rosenker
- Laboratory of Bioorganic Chemistry, NIDDK, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD, 20892, United States
| | - Subrata Debnath
- Laboratory of Cell Biology, NCI, National Institutes of Health, Bethesda, MD, 20892, United States
| | - Jay Prakash Kumar
- Laboratory of Cell Biology, NCI, National Institutes of Health, Bethesda, MD, 20892, United States
| | - Harichandra D Tagad
- Laboratory of Cell Biology, NCI, National Institutes of Health, Bethesda, MD, 20892, United States
| | - Sharlyn J Mazur
- Laboratory of Cell Biology, NCI, National Institutes of Health, Bethesda, MD, 20892, United States
| | - Ettore Appella
- Laboratory of Cell Biology, NCI, National Institutes of Health, Bethesda, MD, 20892, United States
| | - Daniel H Appella
- Laboratory of Bioorganic Chemistry, NIDDK, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD, 20892, United States.
| |
Collapse
|
4
|
Clausse V, Fang Y, Tao D, Tagad HD, Sun H, Wang Y, Karavadhi S, Lane K, Shi ZD, Vasalatiy O, LeClair CA, Eells R, Shen M, Patnaik S, Appella E, Coussens NP, Hall MD, Appella DH. Discovery of Novel Small-Molecule Scaffolds for the Inhibition and Activation of WIP1 Phosphatase from a RapidFire Mass Spectrometry High-Throughput Screen. ACS Pharmacol Transl Sci 2022; 5:993-1006. [PMID: 36268125 PMCID: PMC9578142 DOI: 10.1021/acsptsci.2c00147] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Indexed: 11/28/2022]
Abstract
Wild-type P53-induced phosphatase 1 (WIP1), also known as PPM1D or PP2Cδ, is a serine/threonine protein phosphatase induced by P53 after genotoxic stress. WIP1 inhibition has been proposed as a therapeutic strategy for P53 wild-type cancers in which it is overexpressed, but this approach would be ineffective in P53-negative cancers. Furthermore, there are several cancers with mutated P53 where WIP1 acts as a tumor suppressor. Therefore, activating WIP1 phosphatase might also be a therapeutic strategy, depending on the P53 status. To date, no specific, potent WIP1 inhibitors with appropriate pharmacokinetic properties have been reported, nor have WIP1-specific activators. Here, we report the discovery of new WIP1 modulators from a high-throughput screen (HTS) using previously described orthogonal biochemical assays suitable for identifying both inhibitors and activators. The primary HTS was performed against a library of 102 277 compounds at a single concentration using a RapidFire mass spectrometry assay. Hits were further evaluated over a range of 11 concentrations with both the RapidFire MS assay and an orthogonal fluorescence-based assay. Further biophysical, biochemical, and cell-based studies of confirmed hits revealed a WIP1 activator and two inhibitors, one competitive and one uncompetitive. These new scaffolds are prime candidates for optimization which might enable inhibitors with improved pharmacokinetics and a first-in-class WIP1 activator.
Collapse
Affiliation(s)
- Victor Clausse
- Synthetic
Bioactive Molecules Section, Laboratory of Bioorganic Chemistry, NIDDK, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Yuhong Fang
- National
Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland 20850, United States
| | - Dingyin Tao
- National
Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland 20850, United States
| | - Harichandra D. Tagad
- Laboratory
of Cell Biology, Center for Cancer Research, NCI, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Hongmao Sun
- National
Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland 20850, United States
| | - Yuhong Wang
- National
Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland 20850, United States
| | - Surendra Karavadhi
- National
Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland 20850, United States
| | - Kelly Lane
- Chemistry
and Synthesis Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Rockville, Maryland 20850, United States
| | - Zhen-Dan Shi
- Chemistry
and Synthesis Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Rockville, Maryland 20850, United States
| | - Olga Vasalatiy
- Chemistry
and Synthesis Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Rockville, Maryland 20850, United States
| | - Christopher A. LeClair
- National
Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland 20850, United States
| | - Rebecca Eells
- Reaction
Biology Corporation, 1 Great Valley Parkway, Suite 2, Malvern, Pennsylvania 19355, United States
| | - Min Shen
- National
Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland 20850, United States
| | - Samarjit Patnaik
- National
Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland 20850, United States
| | - Ettore Appella
- Laboratory
of Cell Biology, Center for Cancer Research, NCI, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Nathan P. Coussens
- Molecular
Pharmacology Laboratories, Applied and Developmental Research Directorate, Frederick National Laboratory for Cancer Research, Frederick, Maryland 21702, United States
| | - Matthew D. Hall
- National
Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland 20850, United States
| | - Daniel H. Appella
- Synthetic
Bioactive Molecules Section, Laboratory of Bioorganic Chemistry, NIDDK, National Institutes of Health, Bethesda, Maryland 20892, United States
| |
Collapse
|
5
|
A direct peptide reactivity assay using a high-throughput mass spectrometry screening platform for detection of skin sensitizers. Toxicol Lett 2020; 338:67-77. [PMID: 33290830 DOI: 10.1016/j.toxlet.2020.12.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 11/24/2020] [Accepted: 12/03/2020] [Indexed: 11/23/2022]
Abstract
Chemical-peptide conjugation is the molecular initiating event in skin sensitization. The OECD test guideline uses a high-performance liquid chromatography/ultraviolet (HPLC/UV) detection method to quantify chemical-peptide conjugation in a direct peptide reactivity assay (DPRA), which measures the depletion of two synthetic peptides containing lysine or cysteine residues. To improve assay throughput, sensitivity and accuracy, an automated 384-well plate-based RapidFire solid-phase extraction (SPE) system coupled with tandem mass spectrometry (MS/MS) DPRA was developed and validated in the presence of a newly designed internal standard. Compared to the HPLC/UV-based DPRA, the automated SPE-MS/MS-based DPRA improved throughput from 16 min to 10 s per sample, and substrate peptides usage was reduced from 100 mM to 5 μM. When implementing the SPE-MS/MS-based DPRA into a high-throughput platform, we found 10 compounds that depleted lysine peptide and 24 compounds that depleted cysteine peptide (including 7 unreported chemicals from 55 compounds we tested) in a concentration-response manner. The adduct formation between cysteine and cinnamic aldehyde and ethylene glycol dimethacrylate were further analyzed using high-performance liquid chromatography time-of-flight mass spectrometry (HPLC-TOF-MS) to confirm the conjugation. Overall, the automated SPE-MS/MS-based platform is an efficient, economic, and accurate way to detect skin sensitizers.
Collapse
|
6
|
Shi L, Tian Q, Feng C, Zhang P, Zhao Y. The biological function and the regulatory roles of wild-type p53-induced phosphatase 1 in immune system. Int Rev Immunol 2020; 39:280-291. [PMID: 32696682 DOI: 10.1080/08830185.2020.1795153] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Wild-type p53-induced phosphatase 1 (WIP1) belongs to the protein phosphatase 2C (PP2C) family and is a mammalian serine/threonine specific protein phosphatase to dephosphorylate numerous signaling molecules. Mammalian WIP1 regulates a wide array of targeting molecules and plays key regulatory roles in many cell processes such as DNA damage and repair, cell proliferation, differentiation, apoptosis, and senescence. WIP1 promotes the formation and development of tumors as an oncogene and a negative regulator of p53. It is also involved in the regulation of aging, neurological diseases and immune diseases. Recent studies demonstrated the critical roles of WIP1 in the differentiation and function of immune cells including T cells, neutrophils and macrophages. In the present manuscript, we briefly summarized the expression patterns, biological function and the target molecules and signal pathways of WIP1 and mainly discussed the latest advances on the regulatory effects of WIP1 in the immune system. WIP1 may be a potential target molecule to treat cancers and immune diseases such as allergic asthma.
Collapse
Affiliation(s)
- Lu Shi
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Qianchuan Tian
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Chang Feng
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Peng Zhang
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Yong Zhao
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China.,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|