1
|
Takada M, Pinnawala UC, Hirano S, Imokawa G. The interleukin-1α stimulated expression of the wrinkle-inducing elastase neprilysin in adult human dermal fibroblasts is mediated via the intracellular signaling axis of ERK/JNK/c-Jun/c-Fos/AP-1. J Dermatol 2025; 52:24-34. [PMID: 39482861 DOI: 10.1111/1346-8138.17520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 09/30/2024] [Accepted: 10/08/2024] [Indexed: 11/03/2024]
Abstract
Neprilysin is a skin wrinkle-inducing membrane bound elastase that is expressed abundantly in UV-exposed and in aged dermal fibroblasts. The overexpression of neprilysin is closely associated with enhanced epithelial-mesenchymal cytokine interactions mainly via interleukin (IL)-1α, which has the distinct potential to stimulate the expression of neprilysin by human dermal fibroblasts (HDFs). The over-expression of neprilysin also accelerates the formation of wrinkles, accompanied by disruptions of the three-dimensional architecture of dermal elastic fibers that are responsible for the loss of skin elasticity. Because the signaling pathway(s) that lead to the IL-1α-stimulated expression of neprilysin in HDFs remain unclear, we characterized the signaling pathway involved, including their related transcription factors, in IL-1α-treated HDFs. Since qRT-PCR analysis revealed that the mRNA expression level of neprilysin is stimulated to a stronger extent in adult HDFs (aHDFs) by IL-1α than in neonatal HDFs, we used aHDFs for the signaling analysis. Western blotting analysis of the phosphorylation of signaling factors revealed that IL-1α significantly stimulated the phosphorylation of ERK1/2, RSK, JNK, p38, MSK1, NFkB, c-Jun, ATF-2, CREB, and STAT3. Analysis using various signaling inhibitors demonstrated that inhibiting ERK and JNK but not p38, MSK1, NFkB, or STAT3 significantly abrogated the IL-1α stimulated expression of neprilysin at the mRNA, protein, and enzyme activity levels. Furthermore, silencing c-Fos significantly down-regulated the IL-1α-increased expression of neprilysin at the protein and enzyme activity levels. These findings strongly suggest that the IL-1α-stimulated expression of neprilysin in aHDFs is mediated via the intracellular signaling axis of ERK/JNK/c-Jun/c-Fos/AP-1.
Collapse
Affiliation(s)
- Mariko Takada
- Center for Bioscience Research and Education, Utsunomiya University, Utsunomiya, Tochigi, Japan
| | - Uma Chandula Pinnawala
- Center for Bioscience Research and Education, Utsunomiya University, Utsunomiya, Tochigi, Japan
| | | | - Genji Imokawa
- Center for Bioscience Research and Education, Utsunomiya University, Utsunomiya, Tochigi, Japan
| |
Collapse
|
2
|
Liang F, Luo YF, Guo Z, Qian Q, Meng XB, Mo ZH. MicroRNA-139-5p mediates BMSCs impairment in diabetes by targeting HOXA9/c-Fos. FASEB J 2023; 37:e22697. [PMID: 36527387 DOI: 10.1096/fj.202201059r] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 10/13/2022] [Accepted: 11/28/2022] [Indexed: 12/23/2022]
Abstract
The properties and functions of BMSCs were altered by the diabetic microenvironment, and its mechanism was not very clear. In recent years, the regulation of the function of BMSCs by microRNA has become a research hotspot, meanwhile, HOX genes also have been focused on and involved in multiple functions of stem cells. In this study, we investigated the role of miR-139-5p in diabetes-induced BMSC impairment. Since HOXA9 may be a target gene of miR-139-5p, we speculated that miR-139-5p/HOXA9 might be involved in regulating the biological characteristics and the function of BMSCs in diabetes. We demonstrated that the miR-139-5p expression was increased in BMSCs derived from STZ-induced diabetic rats. MiR-139-5p mimics were able to inhibit cell proliferation, and migration and promoted senescence and apoptosis in vitro. MiR-139-5p induced the down-regulated expression of HOXA9 and c-Fos in BMSCs derived from normal rats. Moreover, miR-139-5p inhibitors reversed the tendency in diabetic-derived BMSCs. Further, gain-and-loss function experiments indicated that miR-139-5p regulated the functions of BMSCs by targeting HOXA9 and c-Fos. In vivo wound model experiments showed that the downregulation of miR-139-5p further promoted the epithelialization and angiogenesis of diabetic BMSC-mediated skin. In conclusion, induction of miR-139-5p upregulation mediated the impairment of BMSCs through the HOXA9/c-Fos pathway in diabetic rats. Therefore, miR-139-5p/HOXA9 might be an important therapeutic target in treating diabetic BMSCs and diabetic complications in the future.
Collapse
Affiliation(s)
- Fang Liang
- Department of Endocrinology, Third Xiangya Hospital of Central South University and Diabetic Foot Research Center of Central South University, Changsha, China
| | - Yu-Fang Luo
- Department of Endocrinology, Third Xiangya Hospital of Central South University and Diabetic Foot Research Center of Central South University, Changsha, China
| | - Zi Guo
- Department of Endocrinology, Third Xiangya Hospital of Central South University and Diabetic Foot Research Center of Central South University, Changsha, China
| | - Qiang Qian
- Department of Endocrinology, Third Xiangya Hospital of Central South University and Diabetic Foot Research Center of Central South University, Changsha, China
| | - Xu-Biao Meng
- Department of Endocrinology, Haikou People's Hospital & Haikou Affiliated Hospital of Central South University Xiangya School of Medicine, Haikou, China
| | - Zhao-Hui Mo
- Department of Endocrinology, Third Xiangya Hospital of Central South University and Diabetic Foot Research Center of Central South University, Changsha, China
| |
Collapse
|
3
|
Chen W, Chen W, Liu P, Qian S, Tao S, Huang M, Xu W, Li C, Chen X, Lin H, Qin Z, Lu J, Xie S. Role of lncRNA Has2os in Skeletal Muscle Differentiation and Regeneration. Cells 2022; 11:3497. [PMID: 36359891 PMCID: PMC9655701 DOI: 10.3390/cells11213497] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 10/28/2022] [Accepted: 11/03/2022] [Indexed: 09/26/2023] Open
Abstract
Long non-coding RNAs (lncRNAs) regulate a series of physiological processes and play an important role in development, metabolism and disease. Our previous studies showed that lncRNAs involved in skeletal muscle differentiation. Here, we demonstrated that lncRNA Has2os is highly expressed in skeletal muscle and significantly elevated during skeletal cell differentiation. The knockdown of Has2os inhibited myocyte fusion and impeded the expression of the myogenic factors MyHC and Mef2C. Mechanically, Has2os regulates skeletal muscle differentiation by inhibiting the JNK/MAPK signaling pathway. Furthermore, we also revealed that Has2os is involved in the early stage of regeneration after muscle injury, and the JNK/MAPK signaling pathway is activated at both protein and mRNA levels during early repair. Our results demonstrate the new function of lncRNA Has2os, which plays crucial roles during skeletal muscle differentiation and muscle regeneration, providing a basis for the therapy of lncRNA-related muscle diseases.
Collapse
Affiliation(s)
- Wanxin Chen
- Biotherapy Center, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510630, China
| | - Weicai Chen
- Biotherapy Center, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510630, China
| | - Peng Liu
- Laboratory Medicine, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510630, China
| | - Shiyu Qian
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou 510632, China
| | - Shuang Tao
- Biotherapy Center, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510630, China
| | - Mengchun Huang
- Biotherapy Center, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510630, China
| | - Wanyi Xu
- Biotherapy Center, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510630, China
| | - Cuiping Li
- Biotherapy Center, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510630, China
| | - Xiaoyan Chen
- Biotherapy Center, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510630, China
| | - Huizhu Lin
- Biotherapy Center, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510630, China
| | - Zhenshu Qin
- Department of Trauma Orthopaedics, Chenzhou First People’s Hospital Affiliated to South China University, Chenzhou 423000, China
| | - Jianxi Lu
- Biotherapy Center, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510630, China
| | - Shujuan Xie
- Biotherapy Center, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510630, China
- Vaccine Research Institute of Sun Yat-Sen University, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510630, China
| |
Collapse
|
4
|
Liu Z, Liu Y, Liu M, Gong Q, Shi A, Li X, Bai X, Guan X, Hao B, Liu F, Zhou X, Yuan H. PD-L1 Inhibits T Cell-Induced Cytokines and Hyaluronan Expression via the CD40-CD40L Pathway in Orbital Fibroblasts From Patients With Thyroid Associated Ophthalmopathy. Front Immunol 2022; 13:849480. [PMID: 35619700 PMCID: PMC9128409 DOI: 10.3389/fimmu.2022.849480] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 04/19/2022] [Indexed: 12/01/2022] Open
Abstract
Thyroid associated ophthalmopathy (TAO), characterized by T cell infiltration and orbital fibroblast activation, is an organ-specific autoimmune disease which is still short of effective and safety therapeutic drugs. The PD-1/PD-L1 pathway has been reported hindering the progression of Graves’ disease to some extent by inhibiting T cell activity, and tumor therapy with a PD-1 inhibitor caused some adverse effects similar to the symptoms of TAO. These findings suggest that the PD-1/PD-L1 pathway may be associated with the pathogenesis of TAO. However, it remains unknown whether the PD-1/PD-L1 pathway is involved in orbital fibroblast activation. Here, we show that orbital fibroblasts from patients with TAO do not express PD-L1. Based on in vitro OF-T cell co-culture system, exogenous PD-L1 weakens T cell-induced orbital fibroblast activation by inhibiting T cell activity, resulting in reduced production of sICAM-1, IL-6, IL-8, and hyaluronan. Additionally, exogenous PD-L1 treatment also inhibits the expression of CD40 and the phosphorylation levels of MAPK and NF-κB pathways in orbital fibroblasts of the OF-T cell co-culture system. Knocking down CD40 with CD40 siRNA or down-regulating the phosphorylation levels of MAPK and NF-κB pathways with SB203580, PD98059, SP600125, and PDTC can both reduce the expression of these cytokines and hyaluronan. Our study demonstrates that the orbital immune tolerance deficiency caused by the lack of PD-L1 in orbital fibroblasts may be one of the causes for the active orbital inflammation in TAO patients, and the utilization of exogenous PD-L1 to reconstruct the orbital immune tolerance microenvironment may be a potential treatment strategy for TAO.
Collapse
Affiliation(s)
- Zhibin Liu
- Department of Ophthalmology, Daping Hospital, Army Medical University, Chongqing, China
| | - Yao Liu
- Department of Ophthalmology, Daping Hospital, Army Medical University, Chongqing, China
| | - Mingming Liu
- Department of Ophthalmology, Daping Hospital, Army Medical University, Chongqing, China
| | - Qingjia Gong
- Department of Ophthalmology, Daping Hospital, Army Medical University, Chongqing, China
| | - Anjie Shi
- Department of Ophthalmology, Daping Hospital, Army Medical University, Chongqing, China
| | - Xiuhong Li
- Department of Ophthalmology, Daping Hospital, Army Medical University, Chongqing, China.,Department of Ortibal Surgery, Chongqing Aier Hospital, Chongqing, China
| | - Xu Bai
- Department of Ophthalmology, Daping Hospital, Army Medical University, Chongqing, China
| | - Xiaoyue Guan
- Department of Ophthalmology, Daping Hospital, Army Medical University, Chongqing, China
| | - Bing Hao
- Department of Ophthalmology, Daping Hospital, Army Medical University, Chongqing, China
| | - Feila Liu
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, China
| | - Xing Zhou
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, China.,Department of Pharmacy, Chongqing Hospital of Traditional Chinese Medicine, Chongqing, China.,Chongqing Key Laboratory of Medicinal Chemistry & Molecular Pharmacology, Chongqing University of Technology, Chongqing, China
| | - Hongfeng Yuan
- Department of Ophthalmology, Daping Hospital, Army Medical University, Chongqing, China.,Department of Ortibal Surgery, Chongqing Aier Hospital, Chongqing, China
| |
Collapse
|
5
|
Marunaka K, Shu S, Kobayashi M, Goto M, Katsuta Y, Yoshino Y, Ikari A. Elevation of Hyaluronan Synthase by Magnesium Supplementation Mediated through the Activation of GSK3 and CREB in Human Keratinocyte-Derived HaCaT Cells. Int J Mol Sci 2021; 23:ijms23010071. [PMID: 35008494 PMCID: PMC8744730 DOI: 10.3390/ijms23010071] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 12/20/2021] [Accepted: 12/20/2021] [Indexed: 01/10/2023] Open
Abstract
Skin barrier damage is present in the patients with hereditary disorders of the magnesium channel, but the molecular mechanism has not been fully understood. We found that the expressions of hyaluronan synthase (HAS), HAS2 and HAS3 are influenced by MgCl2 concentration in human keratinocyte-derived HaCaT cells. The exposure of cells to a high concentration (5.8 mM) of MgCl2 induced the elevation of HAS2/3 expression, which was inhibited by mRNA knockdown of nonimprinted in Prader-Willi/Angelman syndrome-like domain containing 4 (NIPAL4). Similarly, the content of hyaluronic acid (HA) was changed according to MgCl2 concentration and the expression of NIPAL4. The MgCl2 supplementation increased the reporter activities of HAS2/3, which were inhibited by NIPAL4 knockdown, indicating that the expressions of HAS2/3 are up-regulated at the transcriptional level. The reporter activities and mRNA levels of HAS2/3, and the production of HA were inhibited by CHIR-99021, a glycogen synthase kinase-3 (GSK3) inhibitor, and naphthol AS-E, a cyclic AMP-response element binding protein (CREB) inhibitor. Furthermore, the mutation in putative CREB-binding sites of promoter region in HAS2/3 genes inhibited the MgCl2 supplementation-induced elevation of promoter activity. Our results indicate that the expressions of HAS2/3 are up-regulated by MgCl2 supplementation in HaCaT cells mediated through the activation of GSK3 and CREB. Magnesium may play a pivotal role in maintaining the skin barrier function and magnesium supplementation may be useful to enhance moisturization and wound repair in the skin.
Collapse
Affiliation(s)
- Kana Marunaka
- Laboratory of Biochemistry, Department of Biopharmaceutical Sciences, Gifu Pharmaceutical University, Gifu 501-1196, Japan; (K.M.); (S.S.); (M.K.); (Y.Y.)
| | - Shokoku Shu
- Laboratory of Biochemistry, Department of Biopharmaceutical Sciences, Gifu Pharmaceutical University, Gifu 501-1196, Japan; (K.M.); (S.S.); (M.K.); (Y.Y.)
| | - Mao Kobayashi
- Laboratory of Biochemistry, Department of Biopharmaceutical Sciences, Gifu Pharmaceutical University, Gifu 501-1196, Japan; (K.M.); (S.S.); (M.K.); (Y.Y.)
| | - Makiko Goto
- MIRAI Technology Institute, Shiseido Co. Ltd., Kanagawa 220-0011, Japan; (M.G.); (Y.K.)
| | - Yuji Katsuta
- MIRAI Technology Institute, Shiseido Co. Ltd., Kanagawa 220-0011, Japan; (M.G.); (Y.K.)
| | - Yuta Yoshino
- Laboratory of Biochemistry, Department of Biopharmaceutical Sciences, Gifu Pharmaceutical University, Gifu 501-1196, Japan; (K.M.); (S.S.); (M.K.); (Y.Y.)
| | - Akira Ikari
- Laboratory of Biochemistry, Department of Biopharmaceutical Sciences, Gifu Pharmaceutical University, Gifu 501-1196, Japan; (K.M.); (S.S.); (M.K.); (Y.Y.)
- Correspondence: ; Tel./Fax: +81-58-230-8124
| |
Collapse
|
6
|
Pangestuti R, Shin KH, Kim SK. Anti-Photoaging and Potential Skin Health Benefits of Seaweeds. Mar Drugs 2021; 19:172. [PMID: 33809936 PMCID: PMC8004118 DOI: 10.3390/md19030172] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 03/16/2021] [Accepted: 03/20/2021] [Indexed: 12/17/2022] Open
Abstract
The skin health benefits of seaweeds have been known since time immemorial. They are known as potential renewable sources of bioactive metabolites that have unique structural and functional features compared to their terrestrial counterparts. In addition, to the consciousness of green, eco-friendly, and natural skincare and cosmetics products, their extracts and bioactive compounds such as fucoidan, laminarin, carrageenan, fucoxanthin, and mycosporine like amino acids (MAAs) have proven useful in the skincare and cosmetic industries. These bioactive compounds have shown potential anti-photoaging properties. Furthermore, some of these bioactive compounds have been clinically tested and currently available in the market. In this contribution, the recent studies on anti-photoaging properties of extracts and bioactive compounds derived from seaweeds were described and discussed.
Collapse
Affiliation(s)
- Ratih Pangestuti
- Director of Research and Development Division for Marine Bio Industry, Indonesian Institute of Sciences (LIPI), West Nusa Tenggara 83352, Indonesia;
| | - Kyung-Hoon Shin
- Department. of Marine Science and Convergence Engineering, College of Science and Technology, Hanyang University, Gyeonggi-do 11558, Korea;
| | - Se-Kwon Kim
- Department. of Marine Science and Convergence Engineering, College of Science and Technology, Hanyang University, Gyeonggi-do 11558, Korea;
| |
Collapse
|
7
|
Terazawa S, Takada M, Sato Y, Nakajima H, Imokawa G. The Attenuated Secretion of Hyaluronan by UVA-Exposed Human Fibroblasts Is Associated with Up- and Downregulation of HYBID and HAS2 Expression via Activated and Inactivated Signaling of the p38/ATF2 and JAK2/STAT3 Cascades. Int J Mol Sci 2021; 22:ijms22042057. [PMID: 33669634 PMCID: PMC7922819 DOI: 10.3390/ijms22042057] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Revised: 02/09/2021] [Accepted: 02/16/2021] [Indexed: 01/12/2023] Open
Abstract
Little is known about the effects on hyaluronan (HA) metabolism of UVA radiation. This study demonstrates that the secretion of HA by human dermal fibroblasts (HDFs) is downregulated by UVA, accompanied by the down- and upregulation of mRNA and protein levels of the HA-synthesizing enzyme (HAS2) and the HA-degrading protein, HYaluronan Binding protein Involved in HA Depolymerization(HYBID), respectively. Signaling analysis revealed that the exposure distinctly elicits activation of the p38/MSK1/CREB/c-Fos/AP-1 axis, the JNK/c-Jun axis, and the p38/ATF-2 axis, but downregulates the phosphorylation of NF-kB and JAK/STAT3. A signal inhibition study demonstrated that the inhibition of p38 significantly abrogates the UVA-accentuated mRNA level of HYBID. Furthermore, the inhibition of STAT3 significantly downregulates the level of HAS2 mRNA in non-UVA exposed HDFs. Analysis using siRNAs demonstrated that transfection of ATF-2 siRNA but not c-Fos siRNA abrogates the increased protein level of HYBID in UVA-exposed HDFs. An inhibitor of protein tyrosine phosphatase but not of protein serine/threonine phosphatase restored the diminished phosphorylation level of STAT3 at Tyr 705, accompanied by a significant abolishing effect on the decreased mRNA expression level of HAS2. Silencing with a protein tyrosine phosphatase PTP-Meg2 siRNA revealed that it abrogates the decreased phosphorylation of STAT3 at Tyr 705 in UVA-exposed HDFs. These findings suggest that the UVA-induced decrease in HA secretion by HDFs is attributable to the down- and upregulation of HAS2 and HYBID expression, respectively, changes that are mainly ascribed to the inactivated signaling of the STAT3 axis due to the activated tyrosine protein phosphatase PTP-Meg2 and the activated signaling of the p38/ATF2 axis, respectively.
Collapse
Affiliation(s)
- Shuko Terazawa
- Center for Bioscience Research & Education, Utsunomiya University, Tochigi 321-8505, Japan; (S.T.); (M.T.); (Y.S.)
| | - Mariko Takada
- Center for Bioscience Research & Education, Utsunomiya University, Tochigi 321-8505, Japan; (S.T.); (M.T.); (Y.S.)
| | - Yoriko Sato
- Center for Bioscience Research & Education, Utsunomiya University, Tochigi 321-8505, Japan; (S.T.); (M.T.); (Y.S.)
| | - Hiroaki Nakajima
- School of Bioscience and Biotechnology, Tokyo University of Technology, Tokyo 192-0982, Japan;
| | - Genji Imokawa
- Center for Bioscience Research & Education, Utsunomiya University, Tochigi 321-8505, Japan; (S.T.); (M.T.); (Y.S.)
- Correspondence: ; Tel.: +81-28-649-5282
| |
Collapse
|
8
|
Cosmeceutical Potential of Grateloupia turuturu: Using Low-Cost Extraction Methodologies to Obtain Added-Value Extracts. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11041650] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The invasive macroalga Grateloupia turuturu is known to contain a diversity of bioactive compounds with different potentialities. Among them are compounds with relevant bioactivities for cosmetics. Considering this, this study aimed to screen bioactivities with cosmeceutical potential, namely, antioxidant, UV absorbance, anti-enzymatic, antimicrobial, and anti-inflammatory activities, as well as photoprotection potential. Extractions with higher concentrations of ethanol resulted in extracts with higher antioxidant activities, while for the anti-enzymatic activity, high inhibition percentages were obtained for elastase and hyaluronidase with almost all extracts. Regarding the antimicrobial activity, all extracts showed to be active against E. coli, S. aureus, and C. albicans. Extracts produced with higher percentages of ethanol were more effective against E. coli and with lower percentages against the other two microorganisms. Several concentrations of each extract were found to be safe for fibroblasts, but no photoprotection capacity was observed. However, one of the aqueous extracts was responsible for reducing around 40% of the nitric oxide production on macrophages, showing its anti-inflammatory potential. This work highlights G. turuturu’s potential in the cosmeceutical field, contributing to the further development of natural formulations for skin protection.
Collapse
|