1
|
Jordan MR, Oakley GG, Mayo LD, Balakrishnan L, Turchi JJ. The effect of replication protein A inhibition and post-translational modification on ATR kinase signaling. Sci Rep 2024; 14:19791. [PMID: 39187637 PMCID: PMC11347632 DOI: 10.1038/s41598-024-70589-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 08/19/2024] [Indexed: 08/28/2024] Open
Abstract
The ATR kinase responds to elevated levels of single-stranded DNA (ssDNA) to activate the G2/M checkpoint, regulate origin utilization, preserve fork stability, and allow DNA repair to ensure genome integrity. The intrinsic replication stress in cancer cells makes this pathway an attractive therapeutic target. The ssDNA that drives ATR signaling is sensed by the ssDNA-binding protein replication protein A (RPA), which acts as a platform for ATRIP recruitment and subsequent ATR activation by TopBP1. We have developed chemical RPA inhibitors (RPAi) that block RPA-ssDNA interactions (RPA-DBi) and RPA protein-protein interactions (RPA-PPIi); both activities are required for ATR activation. Here, we biochemically reconstitute the ATR kinase signaling pathway and demonstrate that RPA-DBi and RPA-PPIi abrogate ATR-dependent phosphorylation of target proteins with selectivity advantages over active site ATR inhibitors. We demonstrate that RPA post-translational modifications (PTMs) impact ATR kinase activation but do not alter sensitivity to RPAi. Specifically, phosphorylation of RPA32 and TopBP1 stimulate, while RPA70 acetylation does not affect ATR phosphorylation of target proteins. Collectively, this work reveals the RPAi mechanism of action to inhibit ATR signaling that can be regulated by RPA PTMs and offers insight into the anti-cancer activity of ATR pathway-targeted cancer therapeutics.
Collapse
Affiliation(s)
- Matthew R Jordan
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, 64202, USA
| | - Greg G Oakley
- Department of Oral Biology, University of Nebraska Medical Center, Lincoln, NE, 68583, USA
| | - Lindsey D Mayo
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Lata Balakrishnan
- Department of Biology, School of Science, Indiana University Indianapolis, Indianapolis, IN, 46202, USA
| | - John J Turchi
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, 64202, USA.
- NERx Biosciences Inc., Indianapolis, IN, 46202, USA.
| |
Collapse
|
2
|
Jordan MR, Oakley GG, Mayo LD, Balakrishnan L, Turchi JJ. The Effect of Replication Protein A Inhibition and Post-Translational Modification on ATR Kinase Signaling. RESEARCH SQUARE 2024:rs.3.rs-4570504. [PMID: 39108493 PMCID: PMC11302688 DOI: 10.21203/rs.3.rs-4570504/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 08/11/2024]
Abstract
The ATR kinase responds to elevated levels of single-stranded DNA (ssDNA) to activate the G2/M checkpoint, regulate origin utilization, preserve fork stability, and allow DNA repair towards ensuring genome integrity. The intrinsic replication stress in cancer cells makes this pathway an attractive therapeutic target. The ssDNA that drives ATR signaling is sensed by the ssDNA-binding protein replication protein A (RPA), which acts as a platform for ATRIP recruitment and subsequent ATR activation by TopBP1. We have developed chemical RPA inhibitors (RPAi) that block RPA-ssDNA interactions, termed RPA-DBi, and RPA protein-protein interactions, termed RPA-PPIi; both activities are required for ATR activation. Here, we employ a biochemically reconstituted ATR kinase signaling pathway and demonstrate that both RPA-DBi and RPA-PPIi abrogate ATR-dependent phosphorylation of downstream target proteins. We demonstrate that RPA post-translational modifications (PTMs) impact ATR kinase activation but do not alter sensitivity to RPAi. Specifically, phosphorylation of RPA32 and TopBP1 stimulate, while RPA70 acetylation has no effect on ATR phosphorylation of target proteins. Collectively, this work reveals the RPAi mechanism of action to inhibit ATR signaling that can be regulated by RPA PTMs and offers insight into the anti-cancer activity of ATR pathway targeted cancer therapeutics.
Collapse
|
3
|
Liao Z, Cui X, Luo X, Ma Q, Wei Y, Liang M, Xu H. Exposure of farmed fish to petroleum hydrocarbon pollution and the recovery process: A simulation experiment with tiger puffer Takifugu rubripes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 913:169743. [PMID: 38163595 DOI: 10.1016/j.scitotenv.2023.169743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 12/24/2023] [Accepted: 12/26/2023] [Indexed: 01/03/2024]
Abstract
Petroleum hydrocarbon (PH) pollution threatens both wild and farmed marine fish. How this pollution affects the nutrient metabolism in fish and whether this effect can be recovered have not been well-known. The present study aimed to evaluate these effects with a feeding trial on tiger puffer, an important farmed species in Asia. In a 6-week feeding trial conducted in indoor flow-through water, fish were fed a control diet (C) or diets supplemented with diesel oil (0.02 % and 0.2 % of dry matter, named LD and HD, respectively). Following this feeding trial was a 4-week recovery period, during which all fish were fed a same normal commercial feed. At the end of the 6-week feeding trial, dietary PH significantly decreased the fish growth and lipid content. The PH significantly accumulated in fish tissues, in particular the liver, and caused damages in all tissues examined in terms of histology, anti-oxidation status, and serum biochemical changes. Dietary PH also changed the volatile flavor compound profile in the muscle. The hepatic transcriptome assay showed that the HD diet tended to inhibit the DNA replication, cell cycle and lipid synthesis, but to stimulate the transcription of genes related to liver protection/repair and lipid catabolism. The 4-week recovery period to some extent mitigated the damage caused by PH. After the recovery period, the inter-group differences in some parameters disappeared. However, the differences in lipid content, anti-oxidase activity, liver PH concentration, and histological structure still existed. In addition, differences in cellular chemical homeostasis and cytokine-cytokine receptor interaction at the transcriptional level can still be observed, indicated by the hepatic transcriptome assay. In conclusion, 6 weeks of dietary PH exposure significantly impaired the growth performance and health status of farmed tiger puffer, and a short-term recovery period (4 weeks) was not sufficient to completely mitigate this impairment.
Collapse
Affiliation(s)
- Zhangbin Liao
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
| | - Xishuai Cui
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
| | - Xing Luo
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
| | - Qiang Ma
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
| | - Yuliang Wei
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; Functional Laboratory for Marine Fisheries Science and Food Production Processes, Laoshang Laboratory, Qingdao 266237, China
| | - Mengqing Liang
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; Functional Laboratory for Marine Fisheries Science and Food Production Processes, Laoshang Laboratory, Qingdao 266237, China
| | - Houguo Xu
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; Functional Laboratory for Marine Fisheries Science and Food Production Processes, Laoshang Laboratory, Qingdao 266237, China.
| |
Collapse
|
4
|
Fousek-Schuller VJ, Borgstahl GEO. The Intriguing Mystery of RPA Phosphorylation in DNA Double-Strand Break Repair. Genes (Basel) 2024; 15:167. [PMID: 38397158 PMCID: PMC10888239 DOI: 10.3390/genes15020167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/23/2024] [Accepted: 01/25/2024] [Indexed: 02/25/2024] Open
Abstract
Human Replication Protein A (RPA) was historically discovered as one of the six components needed to reconstitute simian virus 40 DNA replication from purified components. RPA is now known to be involved in all DNA metabolism pathways that involve single-stranded DNA (ssDNA). Heterotrimeric RPA comprises several domains connected by flexible linkers and is heavily regulated by post-translational modifications (PTMs). The structure of RPA has been challenging to obtain. Various structural methods have been applied, but a complete understanding of RPA's flexible structure, its function, and how it is regulated by PTMs has yet to be obtained. This review will summarize recent literature concerning how RPA is phosphorylated in the cell cycle, the structural analysis of RPA, DNA and protein interactions involving RPA, and how PTMs regulate RPA activity and complex formation in double-strand break repair. There are many holes in our understanding of this research area. We will conclude with perspectives for future research on how RPA PTMs control double-strand break repair in the cell cycle.
Collapse
Affiliation(s)
| | - Gloria E. O. Borgstahl
- Eppley Institute for Research in Cancer & Allied Diseases, UNMC, Omaha, NE 68198-6805, USA
| |
Collapse
|
5
|
Yates L, Tannous E, Morgan R, Burgers P, Zhang X. A DNA damage-induced phosphorylation circuit enhances Mec1 ATR Ddc2 ATRIP recruitment to Replication Protein A. Proc Natl Acad Sci U S A 2023; 120:e2300150120. [PMID: 36996117 PMCID: PMC10083555 DOI: 10.1073/pnas.2300150120] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 02/24/2023] [Indexed: 03/31/2023] Open
Abstract
The cell cycle checkpoint kinase Mec1ATR and its integral partner Ddc2ATRIP are vital for the DNA damage and replication stress response. Mec1-Ddc2 "senses" single-stranded DNA (ssDNA) by being recruited to the ssDNA binding Replication Protein A (RPA) via Ddc2. In this study, we show that a DNA damage-induced phosphorylation circuit modulates checkpoint recruitment and function. We demonstrate that Ddc2-RPA interactions modulate the association between RPA and ssDNA and that Rfa1-phosphorylation aids in the further recruitment of Mec1-Ddc2. We also uncover an underappreciated role for Ddc2 phosphorylation that enhances its recruitment to RPA-ssDNA that is important for the DNA damage checkpoint in yeast. The crystal structure of a phosphorylated Ddc2 peptide in complex with its RPA interaction domain provides molecular details of how checkpoint recruitment is enhanced, which involves Zn2+. Using electron microscopy and structural modeling approaches, we propose that Mec1-Ddc2 complexes can form higher order assemblies with RPA when Ddc2 is phosphorylated. Together, our results provide insight into Mec1 recruitment and suggest that formation of supramolecular complexes of RPA and Mec1-Ddc2, modulated by phosphorylation, would allow for rapid clustering of damage foci to promote checkpoint signaling.
Collapse
Affiliation(s)
- Luke A. Yates
- Section of Structural Biology, Department of Infectious Disease, Imperial College London, South Kensington, LondonSW7 2AZ, United Kingdom
| | - Elias A. Tannous
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, Saint Louis, MO63110
| | - R. Marc Morgan
- Department of Life Sciences, Centre for Structural Biology, Imperial College London, South Kensington, LondonSW7 2AZ, United Kingdom
| | - Peter M. Burgers
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, Saint Louis, MO63110
| | - Xiaodong Zhang
- Section of Structural Biology, Department of Infectious Disease, Imperial College London, South Kensington, LondonSW7 2AZ, United Kingdom
| |
Collapse
|
6
|
Kavli B, Iveland TS, Buchinger E, Hagen L, Liabakk NB, Aas PA, Obermann TS, Aachmann FL, Slupphaug G. RPA2 winged-helix domain facilitates UNG-mediated removal of uracil from ssDNA; implications for repair of mutagenic uracil at the replication fork. Nucleic Acids Res 2021; 49:3948-3966. [PMID: 33784377 PMCID: PMC8053108 DOI: 10.1093/nar/gkab195] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 03/04/2021] [Accepted: 03/10/2021] [Indexed: 01/14/2023] Open
Abstract
Uracil occurs at replication forks via misincorporation of deoxyuridine monophosphate (dUMP) or via deamination of existing cytosines, which occurs 2-3 orders of magnitude faster in ssDNA than in dsDNA and is 100% miscoding. Tethering of UNG2 to proliferating cell nuclear antigen (PCNA) allows rapid post-replicative removal of misincorporated uracil, but potential 'pre-replicative' removal of deaminated cytosines in ssDNA has been questioned since this could mediate mutagenic translesion synthesis and induction of double-strand breaks. Here, we demonstrate that uracil-DNA glycosylase (UNG), but not SMUG1 efficiently excises uracil from replication protein A (RPA)-coated ssDNA and that this depends on functional interaction between the flexible winged-helix (WH) domain of RPA2 and the N-terminal RPA-binding helix in UNG. This functional interaction is promoted by mono-ubiquitination and diminished by cell-cycle regulated phosphorylations on UNG. Six other human proteins bind the RPA2-WH domain, all of which are involved in DNA repair and replication fork remodelling. Based on this and the recent discovery of the AP site crosslinking protein HMCES, we propose an integrated model in which templated repair of uracil and potentially other mutagenic base lesions in ssDNA at the replication fork, is orchestrated by RPA. The UNG:RPA2-WH interaction may also play a role in adaptive immunity by promoting efficient excision of AID-induced uracils in transcribed immunoglobulin loci.
Collapse
Affiliation(s)
- Bodil Kavli
- Department of Clinical and Molecular Medicine, NTNU Norwegian University of Science and Technology, NO-7491 Trondheim, Norway.,Clinic of Laboratory Medicine, St. Olavs Hospital, Trondheim University Hospital, NO-7006 Trondheim, Norway
| | - Tobias S Iveland
- Department of Clinical and Molecular Medicine, NTNU Norwegian University of Science and Technology, NO-7491 Trondheim, Norway.,Cancer Clinic, St. Olavs Hospital, Trondheim University Hospital, NO-7006 Trondheim, Norway
| | - Edith Buchinger
- NOBIPOL, Department of Biotechnology and Food Science, NTNU Norwegian University of Science and Technology, N-7034 Trondheim, Norway
| | - Lars Hagen
- Department of Clinical and Molecular Medicine, NTNU Norwegian University of Science and Technology, NO-7491 Trondheim, Norway.,Clinic of Laboratory Medicine, St. Olavs Hospital, Trondheim University Hospital, NO-7006 Trondheim, Norway.,PROMEC Proteomics and Modomics Experimental Core at NTNU and the Central Norway Regional Health Authority, NO-7491 Trondheim, Norway
| | - Nina B Liabakk
- Department of Clinical and Molecular Medicine, NTNU Norwegian University of Science and Technology, NO-7491 Trondheim, Norway.,Clinic of Laboratory Medicine, St. Olavs Hospital, Trondheim University Hospital, NO-7006 Trondheim, Norway
| | - Per A Aas
- Department of Clinical and Molecular Medicine, NTNU Norwegian University of Science and Technology, NO-7491 Trondheim, Norway.,Clinic of Laboratory Medicine, St. Olavs Hospital, Trondheim University Hospital, NO-7006 Trondheim, Norway
| | - Tobias S Obermann
- Department of Clinical and Molecular Medicine, NTNU Norwegian University of Science and Technology, NO-7491 Trondheim, Norway.,Clinic of Laboratory Medicine, St. Olavs Hospital, Trondheim University Hospital, NO-7006 Trondheim, Norway
| | - Finn L Aachmann
- NOBIPOL, Department of Biotechnology and Food Science, NTNU Norwegian University of Science and Technology, N-7034 Trondheim, Norway
| | - Geir Slupphaug
- Department of Clinical and Molecular Medicine, NTNU Norwegian University of Science and Technology, NO-7491 Trondheim, Norway.,Clinic of Laboratory Medicine, St. Olavs Hospital, Trondheim University Hospital, NO-7006 Trondheim, Norway.,PROMEC Proteomics and Modomics Experimental Core at NTNU and the Central Norway Regional Health Authority, NO-7491 Trondheim, Norway
| |
Collapse
|