1
|
Liu YY, Wang RJ, Ru SS, Gao F, Liu W, Zhang X. Comparative analysis of phosphorylated proteomes between plerocercoid and adult Spirometra mansoni reveals phosphoproteomic profiles of the medical tapeworm. Parasit Vectors 2024; 17:371. [PMID: 39217359 PMCID: PMC11366163 DOI: 10.1186/s13071-024-06454-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 08/16/2024] [Indexed: 09/04/2024] Open
Abstract
BACKGROUND Plerocercoid larvae of the tapeworm Spirometra mansoni can infect both humans and animals, leading to severe parasitic zoonosis worldwide. Despite ongoing research efforts, our understanding of the developmental process of S. mansoni remains inadequate. To better characterize posttranslational regulation associated with parasite growth, development, and reproduction, a comparative phosphoproteomic study was conducted on the plerocercoid and adult stages of S. mansoni. METHODS In this study, site-specific phosphoproteomic analysis was conducted via 4D label-free quantitative analysis technology to obtain primary information about the overall phosphorylation status of plerocercoids and adults. RESULTS A total of 778 differentially abundant proteins (DAPs) were detected between adults and plerocercoids, of which 704 DAPs were upregulated and only 74 were downregulated. DAPs involved in metabolic activity were upregulated in plerocercoid larvae compared with adults, whereas DAPs associated with binding were upregulated in adults. Gene Ontology (GO) and Kyoto Encyclopedia of Genes (KEGG) analyses indicated that most DAPs involved in signal transduction and environmental information processing pathways were highly active in adults. DAPs upregulated in the plerocercoid group were enriched mainly in metabolic activities. The kinases PKACA, GSK3B, and smMLCK closely interact, suggesting potential active roles in the growth and development of S. mansoni. CONCLUSIONS The dataset presented in this study offers a valuable resource for forthcoming research on signaling pathways as well as new insights into functional studies on the molecular mechanisms of S. mansoni.
Collapse
Affiliation(s)
- Yong Yan Liu
- Department of Parasitology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China
- Department of Clinical Microbiology, The People's Hospital of Xixian, Xinyang, 464300, Henan, China
| | - Rui Jie Wang
- Department of Parasitology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Si Si Ru
- Department of Parasitology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Fei Gao
- Department of Parasitology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Wei Liu
- Research Center for Parasites & Vectors, College of Veterinary Medicine, Hunan Agricultural University, Changsha, 410128, Hunan, China.
| | - Xi Zhang
- Department of Parasitology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China.
| |
Collapse
|
2
|
Tian M, Cai X, Liu Y, Liucong M, Howard-Till R. A practical reference for studying meiosis in the model ciliate Tetrahymena thermophila. MARINE LIFE SCIENCE & TECHNOLOGY 2022; 4:595-608. [PMID: 37078080 PMCID: PMC10077211 DOI: 10.1007/s42995-022-00149-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Accepted: 09/28/2022] [Indexed: 05/03/2023]
Abstract
Meiosis is a critical cell division program that produces haploid gametes for sexual reproduction. Abnormalities in meiosis are often causes of infertility and birth defects (e.g., Down syndrome). Most organisms use a highly specialized zipper-like protein complex, the synaptonemal complex (SC), to guide and stabilize pairing of homologous chromosomes in meiosis. Although the SC is critical for meiosis in many eukaryotes, there are organisms that perform meiosis without a functional SC. However, such SC-less meiosis is poorly characterized. To understand the features of SC-less meiosis and its adaptive significance, the ciliated protozoan Tetrahymena was selected as a model. Meiosis research in Tetrahymena has revealed intriguing aspects of the regulatory programs utilized in its SC-less meiosis, yet additional efforts are needed for obtaining an in-depth comprehension of mechanisms that are associated with the absence of SC. Here, aiming at promoting a wider application of Tetrahymena for meiosis research, we introduce basic concepts and core techniques for studying meiosis in Tetrahymena and then suggest future directions for expanding the current Tetrahymena meiosis research toolbox. These methodologies could be adopted for dissecting meiosis in poorly characterized ciliates that might reveal novel features. Such data will hopefully provide insights into the function of the SC and the evolution of meiosis from a unique perspective. Supplementary Information The online version contains supplementary material available at 10.1007/s42995-022-00149-8.
Collapse
Affiliation(s)
- Miao Tian
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, 266003 China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237 China
- Institute of Human Genetics, CNRS, University of Montpellier, 34090 Montpellier, France
| | - Xia Cai
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, 266003 China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237 China
| | - Yujie Liu
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, 266003 China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237 China
| | - Mingmei Liucong
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, 266003 China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237 China
| | - Rachel Howard-Till
- Department of Molecular and Cellular Biology, University of California Davis, Davis, CA USA
| |
Collapse
|
3
|
Transcriptomic Differences between Free-Living and Parasitic Chilodonella uncinata (Alveolata, Ciliophora). Microorganisms 2022; 10:microorganisms10081646. [PMID: 36014062 PMCID: PMC9416717 DOI: 10.3390/microorganisms10081646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 08/10/2022] [Accepted: 08/13/2022] [Indexed: 11/17/2022] Open
Abstract
Chilodonella uncinata is a facultatively parasitic ciliate, which can opportunistically parasitize on fish gills and fins, and sometimes even cause host mortality. Previous molecular studies of C. uncinata mainly focused on genetic diversity and molecular evolution. There are currently no transcriptome reports studying differences between free-living and parasitic C. uncinata. We addressed this by sequencing transcriptomes of these two C. uncinata lifestyle types using Smart-seq2 and Illumina HiSeq technologies. In total, 1040 differentially expressed genes (DEGs) were identified. Compared with the free-living type, 494 genes of the parasitic type were downregulated and 546 genes were upregulated. These DEGs were identified through BLAST with NCBI-nr, Swiss-Port, and Pfam databases and then annotated by GO enrichment and KEGG pathway analysis. The results showed that parasitism-related genes such as heat shock proteins (HSPs), actin I, and leishmanolysin were significantly upregulated in parasitic C. uncinata. The ciliary-related dynein heavy chain also had a higher expression in parasitic C. uncinata. Furthermore, there were significant differences in the amino acid metabolism, fatty acid metabolism, lipid metabolism, and TCA cycle. This study increases the volume of molecular data available for C. uncinata and contributes to our understanding of the mechanisms underlying the transition from a free-living to a parasitic lifestyle.
Collapse
|
4
|
Identification and utilization of a mutated 60S ribosomal subunit coding gene as an effective and cost-efficient selection marker for Tetrahymena genetic manipulation. Int J Biol Macromol 2022; 204:1-8. [PMID: 35122796 DOI: 10.1016/j.ijbiomac.2022.01.188] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 01/26/2022] [Accepted: 01/28/2022] [Indexed: 01/05/2023]
Abstract
Since the onset of molecular biology, the ciliate Tetrahymena thermophila has been one of the most convenient single-celled model eukaryotes for genetics, biochemistry, and cell biology. Particularly, thanks to the availability of several different selection markers, it is possible to knock out or knock in genes at multiple genetic loci simultaneously in Tetrahymena, which makes it an excellent model ciliate for tackling complex regulatory mechanisms. Despite these selection markers are efficient for genetic manipulation, the costly drugs used for selection have highlighted the urgent demand for an additional cost-efficient and effective selection marker. Here, we found that a mutated 60S ribosomal subunit component, RPL36A, confers T. thermophila with cycloheximide resistance. On top of that, we developed a cycloheximide cassette and explored suitable transformation and selection conditions. Using the new cassette, we obtained both knockout and knock-in strains successfully at a relatively low cost. This study also provided the first evidence that a cycloheximide resistance gene can be engineered as a selection marker to completely delete a gene from the highly-polyploid somatic nucleus in Tetrahymena.
Collapse
|
5
|
Liu W, Tang H, Abuzeid AMI, Tan L, Wang A, Wan X, Zhang H, Liu Y, Li G. Protein phosphorylation networks in spargana of Spirometra erinaceieuropaei revealed by phosphoproteomic analysis. Parasit Vectors 2020; 13:248. [PMID: 32404185 PMCID: PMC7218563 DOI: 10.1186/s13071-020-04119-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 05/06/2020] [Indexed: 01/07/2023] Open
Abstract
Background Sparganosis caused by Spirometra erinaceieuropaei spargana is a zoonotic parasitic infection that has been reported in many countries, including China, Japan, Thailand and Korea, as well as European countries and the USA. The biological and clinical significance of the parasite have previously been reported. Although the genomic and transcriptomic analysis of S. erinaceieuropaei provided insightful views about the development and pathogenesis of this species, little knowledge has been acquired in terms of post-translational regulation that is essential for parasite growth, development and reproduction. Here, we performed site-specific phosphoproteomic profiling, with an aim to obtain primary information about the global phosphorylation status of spargana. Results A total of 3228 phosphopeptides and 3461 phosphorylation sites were identified in 1758 spargana proteins. The annotated phosphoproteins were involved in a variety of biological pathways, including cellular (28%), metabolic (20%) and single-organism (17%) processes. The functional enrichment of phosphopeptides by Gene Ontology analysis indicated that most spargana phosphoproteins were related to the cytoskeleton cellular compartment, signaling molecular function, and a variety of biological processes, including a molecular function regulator, guanyl-nucleotide exchange factor activity, protein kinase activities, and calcium ion binding. The highly enriched pathways of phosphorylation proteins include the phosphatidylinositol signaling system, phagosome, endocytosis, inositol phosphate metabolism, terpenoid backbone biosynthesis, and peroxisome. Domain analysis identified an EF-hand domain and pleckstrin homology domain among the key domains. Conclusions To our knowledge, this study performed the first global phosphoproteomic analysis of S. erinaceieuropaei. The dataset reported herein provides a valuable resource for future studies on the signaling pathways of this important zoonotic parasite.![]()
Collapse
Affiliation(s)
- Wei Liu
- Guangdong Provincial Zoonosis Prevention and Control Key Laboratory, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, People's Republic of China.,College of Veterinary Medicine, Hunan Agricultural University, Changsha, 410128, Hunan, People's Republic of China.,The Key Laboratory of Animal Vaccine & Protein Engineering, Changsha, 410128, Hunan, People's Republic of China
| | - Hailin Tang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, Guangdong Province, People's Republic of China
| | - Asmaa M I Abuzeid
- Guangdong Provincial Zoonosis Prevention and Control Key Laboratory, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, People's Republic of China
| | - Lei Tan
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, 410128, Hunan, People's Republic of China.,The Key Laboratory of Animal Vaccine & Protein Engineering, Changsha, 410128, Hunan, People's Republic of China
| | - Aibing Wang
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, 410128, Hunan, People's Republic of China.,The Key Laboratory of Animal Vaccine & Protein Engineering, Changsha, 410128, Hunan, People's Republic of China
| | - Xueping Wan
- Department of Physiology, Medical College of Georgia at Augusta University, Augusta, GA, 30912, USA
| | - Haoji Zhang
- College of Life Science and Engineering, Foshan University, Foshan, 528225, Guangdong Province, People's Republic of China
| | - Yisong Liu
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, 410128, Hunan, People's Republic of China. .,Department of Physiology, Medical College of Georgia at Augusta University, Augusta, GA, 30912, USA.
| | - Guoqing Li
- Guangdong Provincial Zoonosis Prevention and Control Key Laboratory, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, People's Republic of China.
| |
Collapse
|
6
|
Garg J, Saettone A, Nabeel-Shah S, Cadorin M, Ponce M, Marquez S, Pu S, Greenblatt J, Lambert JP, Pearlman RE, Fillingham J. The Med31 Conserved Component of the Divergent Mediator Complex in Tetrahymena thermophila Participates in Developmental Regulation. Curr Biol 2019; 29:2371-2379.e6. [PMID: 31280994 DOI: 10.1016/j.cub.2019.06.052] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 05/18/2019] [Accepted: 06/18/2019] [Indexed: 11/24/2022]
Abstract
Mediator is a large protein complex required for basal and regulated expression of most RNA polymerase II (RNAP II)-transcribed genes, in part due to its interaction with and phosphorylation of the conserved C-terminal domain (CTD) of Rpb1 [1, 2]. Mediator has been implicated in many aspects of gene expression including chromatin looping [3], higher-order chromatin folding [4], mRNA processing [5] and export [6], and transcriptional memory [7]. Mediator is thought to have played a major role during eukaryotic diversification [8, 9], although its function remains unknown in evolutionarily deep branching eukaryotes lacking canonical CTD heptad repeats. We used the ciliate protozoan Tetrahymena thermophila as a model organism whose genome encodes a highly divergent Rpb1 lacking canonical CTD heptad repeats. We endogenously tagged the Med31 subunit of the Mediator complex and performed affinity purification coupled with mass spectrometry (AP-MS) to identify Mediator subunits. We found that Med31 physically interacts with a large number of proteins (>20), several of which share similarities to canonical Mediator subunits in yeast and humans as well as Tetrahymena-specific proteins. Furthermore, Med31 ChIP-seq analysis suggested a global role for Mediator in transcription regulation. We demonstrated that MED31 knockdown in growing Tetrahymena results in the ectopic expression of developmental genes important for programmed DNA rearrangements. In addition, indirect immunofluorescence revealed Med31 localization in meiotic micronuclei, implicating Mediator in RNAPII-dependent ncRNA transcription. Our results reveal structural and functional insights and implicate Mediator as an ancient cellular machinery for transcription regulation with a possible involvement in global transcription of ncRNAs.
Collapse
Affiliation(s)
- Jyoti Garg
- Department of Biology, York University, 4700 Keele Street, Toronto, ON M3J 1P3, Canada
| | - Alejandro Saettone
- Department of Chemistry and Biology, Ryerson University, 350 Victoria Street, Toronto, ON M5B 2K3, Canada
| | - Syed Nabeel-Shah
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada; Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1, Canada
| | - Matthew Cadorin
- Department of Chemistry and Biology, Ryerson University, 350 Victoria Street, Toronto, ON M5B 2K3, Canada
| | - Marcelo Ponce
- SciNet HPC Consortium, University of Toronto, 661 University Avenue, Suite 1140, Toronto, ON M5G 1M1, Canada
| | - Susanna Marquez
- Department of Biology, York University, 4700 Keele Street, Toronto, ON M3J 1P3, Canada
| | - Shuye Pu
- Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1, Canada
| | - Jack Greenblatt
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada; Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1, Canada
| | - Jean-Philippe Lambert
- Department of Molecular Medicine and Cancer Research Centre, Université Laval, Quebec, QC, Canada; CHU de Québec Research Center, CHUL, 2705 Laurier Boulevard, Quebec, QC G1V 4G2, Canada
| | - Ronald E Pearlman
- Department of Biology, York University, 4700 Keele Street, Toronto, ON M3J 1P3, Canada
| | - Jeffrey Fillingham
- Department of Chemistry and Biology, Ryerson University, 350 Victoria Street, Toronto, ON M5B 2K3, Canada.
| |
Collapse
|
7
|
Bradley D, Beltrao P. Evolution of protein kinase substrate recognition at the active site. PLoS Biol 2019; 17:e3000341. [PMID: 31233486 PMCID: PMC6611643 DOI: 10.1371/journal.pbio.3000341] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 07/05/2019] [Accepted: 06/12/2019] [Indexed: 02/05/2023] Open
Abstract
Protein kinases catalyse the phosphorylation of target proteins, controlling most cellular processes. The specificity of serine/threonine kinases is partly determined by interactions with a few residues near the phospho-acceptor residue, forming the so-called kinase-substrate motif. Kinases have been extensively duplicated throughout evolution, but little is known about when in time new target motifs have arisen. Here, we show that sequence variation occurring early in the evolution of kinases is dominated by changes in specificity-determining residues. We then analysed kinase specificity models, based on known target sites, observing that specificity has remained mostly unchanged for recent kinase duplications. Finally, analysis of phosphorylation data from a taxonomically broad set of 48 eukaryotic species indicates that most phosphorylation motifs are broadly distributed in eukaryotes but are not present in prokaryotes. Overall, our results suggest that the set of eukaryotes kinase motifs present today was acquired around the time of the eukaryotic last common ancestor and that early expansions of the protein kinase fold rapidly explored the space of possible target motifs.
Collapse
Affiliation(s)
- David Bradley
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Cambridge, United Kingdom
| | - Pedro Beltrao
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Cambridge, United Kingdom
| |
Collapse
|
8
|
Saettone A, Nabeel-Shah S, Garg J, Lambert JP, Pearlman RE, Fillingham J. Functional Proteomics of Nuclear Proteins in Tetrahymena thermophila: A Review. Genes (Basel) 2019; 10:E333. [PMID: 31052454 PMCID: PMC6562869 DOI: 10.3390/genes10050333] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 04/23/2019] [Accepted: 04/25/2019] [Indexed: 12/14/2022] Open
Abstract
Identification and characterization of protein complexes and interactomes has been essential to the understanding of fundamental nuclear processes including transcription, replication, recombination, and maintenance of genome stability. Despite significant progress in elucidation of nuclear proteomes and interactomes of organisms such as yeast and mammalian systems, progress in other models has lagged. Protists, including the alveolate ciliate protozoa with Tetrahymena thermophila as one of the most studied members of this group, have a unique nuclear biology, and nuclear dimorphism, with structurally and functionally distinct nuclei in a common cytoplasm. These features have been important in providing important insights about numerous fundamental nuclear processes. Here, we review the proteomic approaches that were historically used as well as those currently employed to take advantage of the unique biology of the ciliates, focusing on Tetrahymena, to address important questions and better understand nuclear processes including chromatin biology of eukaryotes.
Collapse
Affiliation(s)
- Alejandro Saettone
- Department of Chemistry and Biology, Ryerson University, 350 Victoria Street, Toronto, ON M5B 2K3, Canada.
| | - Syed Nabeel-Shah
- Department of Molecular Genetics, University of Toronto, 1 King's College Circle, Toronto, ON M5S 1A8, Canada.
| | - Jyoti Garg
- Department of Biology, York University, 4700 Keele Street, Toronto, ON M3J 1P3, Canada.
| | - Jean-Philippe Lambert
- Department of Molecular Medicine and Cancer Research Centre, Université Laval, Quebec, QC, G1V 0A6, Canada.
- CHU de Québec Research Center, CHUL, 2705 Boulevard Laurier, Quebec, QC, G1V 4G2, Canada
| | - Ronald E Pearlman
- Department of Biology, York University, 4700 Keele Street, Toronto, ON M3J 1P3, Canada.
| | - Jeffrey Fillingham
- Department of Chemistry and Biology, Ryerson University, 350 Victoria Street, Toronto, ON M5B 2K3, Canada.
| |
Collapse
|
9
|
Ghorai P, Irfan M, Narula A, Datta A. A comprehensive analysis of Candida albicans phosphoproteome reveals dynamic changes in phosphoprotein abundance during hyphal morphogenesis. Appl Microbiol Biotechnol 2018; 102:9731-9743. [PMID: 30121747 DOI: 10.1007/s00253-018-9303-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 08/01/2018] [Accepted: 08/02/2018] [Indexed: 12/18/2022]
Abstract
The morphological plasticity of Candida albicans is a virulence determinant as the hyphal form has significant roles in the infection process. Recently, phosphoregulation of proteins through phosphorylation and dephosphorylation events has gained importance in studying the regulation of pathogenicity at the molecular level. To understand the importance of phosphorylation in hyphal morphogenesis, global analysis of the phosphoproteome was performed after hyphal induction with elevated temperature, serum, and N-acetyl-glucosamine (GlcNAc) treatments. The study identified 60, 20, and 53 phosphoproteins unique to elevated temperature-, serum-, and GlcNAc-treated conditions, respectively. Distribution of unique phosphorylation sites sorted by the modified amino acids revealed that predominant phosphorylation occurs in serine, followed by threonine and tyrosine residues in all the datasets. However, the frequency distribution of phosphorylation sites in the proteins varied with treatment conditions. Further, interaction network-based functional annotation of protein kinases of C. albicans as well as identified phosphoproteins was performed, which demonstrated the interaction of kinases with phosphoproteins during filamentous growth. Altogether, the present findings will serve as a base for further functional studies in the aspects of protein kinase-target protein interaction in effectuating phosphorylation of target proteins, and delineating the downstream signaling networks linked to virulence characteristics of C. albicans.
Collapse
Affiliation(s)
- Priyanka Ghorai
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India.,Department of Biotechnology, School of Chemical and Life Sciences, Jamia Hamdard, Hamdard Nagar, New Delhi, 110062, India
| | - Mohammad Irfan
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Alka Narula
- Department of Biotechnology, School of Chemical and Life Sciences, Jamia Hamdard, Hamdard Nagar, New Delhi, 110062, India
| | - Asis Datta
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India.
| |
Collapse
|
10
|
Phosphorylation-Dependent Targeting of Tetrahymena HP1 to Condensed Chromatin. mSphere 2016; 1:mSphere00142-16. [PMID: 27579368 PMCID: PMC4999919 DOI: 10.1128/msphere.00142-16] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2016] [Accepted: 07/25/2016] [Indexed: 01/16/2023] Open
Abstract
Compacting the genome to various degrees influences processes that use DNA as a template, such as gene transcription and replication. This project was aimed at learning more about the cellular mechanisms that control genome compaction. Posttranslational modifications of proteins involved in genome condensation are emerging as potentially important points of regulation. To help elucidate protein modifications and how they affect the function of condensation proteins, we investigated the phosphorylation of the chromatin protein called Hhp1 in the ciliated protozoan Tetrahymena thermophila. This is one of the first functional investigations of these modifications of a nonhistone chromatin condensation protein that acts on the ciliate genome, and discoveries will aid in identifying common, evolutionarily conserved strategies that control the dynamic compaction of genomes. The evolutionarily conserved proteins related to heterochromatin protein 1 (HP1), originally described in Drosophila, are well known for their roles in heterochromatin assembly and gene silencing. Targeting of HP1 proteins to specific chromatin locales is mediated, at least in part, by the HP1 chromodomain, which binds to histone H3 methylated at lysine 9 that marks condensed regions of the genome. Mechanisms that regulate HP1 targeting are emerging from studies with yeast and metazoans and point to roles for posttranslational modifications. Here, we report that modifications of an HP1 homolog (Hhp1) in the ciliate model Tetrahymena thermophila correlated with the physiological state and with nuclear differentiation events involving the restructuring of chromatin. Results support the model in which Hhp1 chromodomain binds lysine 27-methylated histone H3, and we show that colocalization with this histone mark depends on phosphorylation at a single Cdc2/Cdk1 kinase site in the “hinge region” adjacent to the chromodomain. These findings help elucidate important functional roles of reversible posttranslational modifications of proteins in the HP1 family, in this case, regulating the targeting of a ciliate HP1 to chromatin regions marked with methylated H3 lysine 27. IMPORTANCE Compacting the genome to various degrees influences processes that use DNA as a template, such as gene transcription and replication. This project was aimed at learning more about the cellular mechanisms that control genome compaction. Posttranslational modifications of proteins involved in genome condensation are emerging as potentially important points of regulation. To help elucidate protein modifications and how they affect the function of condensation proteins, we investigated the phosphorylation of the chromatin protein called Hhp1 in the ciliated protozoan Tetrahymena thermophila. This is one of the first functional investigations of these modifications of a nonhistone chromatin condensation protein that acts on the ciliate genome, and discoveries will aid in identifying common, evolutionarily conserved strategies that control the dynamic compaction of genomes.
Collapse
|
11
|
Phosphorylation of an HP1-like protein is a prerequisite for heterochromatin body formation in Tetrahymena DNA elimination. Proc Natl Acad Sci U S A 2016; 113:9027-32. [PMID: 27466409 DOI: 10.1073/pnas.1606012113] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Multiple heterochromatic loci are often clustered into a higher order nuclear architecture called a heterochromatin body in diverse eukaryotes. Although phosphorylation of Heterochromatin Protein 1 (HP1) family proteins regulates heterochromatin dynamics, its role in heterochromatin bodies remains unknown. We previously reported that dephosphorylation of the HP1-like protein Pdd1p is required for the formation of heterochromatin bodies during the process of programmed DNA elimination in the ciliated protozoan Tetrahymena Here, we show that the heterochromatin body component Jub4p is required for Pdd1p phosphorylation, heterochromatin body formation, and DNA elimination. Moreover, our analyses of unphosphorylatable Pdd1p mutants demonstrate that Pdd1p phosphorylation is required for heterochromatin body formation and DNA elimination, whereas it is dispensable for local heterochromatin assembly. Therefore, both phosphorylation and the following dephosphorylation of Pdd1p are necessary to facilitate the formation of heterochromatin bodies. We suggest that Jub4p-mediated phosphorylation of Pdd1p creates a chromatin environment that is a prerequisite for subsequent heterochromatin body assembly and DNA elimination.
Collapse
|
12
|
Kataoka K, Mochizuki K. Phosphorylation of an HP1-like Protein Regulates Heterochromatin Body Assembly for DNA Elimination. Dev Cell 2015; 35:775-88. [PMID: 26688337 PMCID: PMC4695338 DOI: 10.1016/j.devcel.2015.11.017] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Revised: 08/29/2015] [Accepted: 11/17/2015] [Indexed: 01/06/2023]
Abstract
Heterochromatic loci are often assembled into higher-order heterochromatin bodies in diverse eukaryotes. However, the formation and biological roles of heterochromatin bodies are poorly understood. In the ciliated protozoan Tetrahymena, de novo heterochromatin body formation is accompanied by programmed DNA elimination. Here, we show that the heterochromatin body component Jub1p promotes heterochromatin body formation and dephosphorylation of the Heterochromatin Protein 1-like protein Pdd1p. Through the mutagenesis of the phosphorylated residues of Pdd1p, we demonstrate that Pdd1p dephosphorylation promotes the electrostatic interaction between Pdd1p and RNA in vitro and heterochromatin body formation in vivo. We therefore propose that heterochromatin body is assembled by the Pdd1p-RNA interaction. Pdd1p dephosphorylation and Jub1p are required for heterochromatin body formation and DNA elimination but not for local heterochromatin assembly, indicating that heterochromatin body plays an essential role in DNA elimination.
Collapse
Affiliation(s)
- Kensuke Kataoka
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Dr. Bohr-Gasse 3, 1030 Vienna, Austria
| | - Kazufumi Mochizuki
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Dr. Bohr-Gasse 3, 1030 Vienna, Austria.
| |
Collapse
|
13
|
Rajapakse K, Drobne D, Kastelec D, Kogej K, Makovec D, Gallampois C, Amelina H, Danielsson G, Fanedl L, Marinsek-Logar R, Cristobal S. Proteomic analyses of early response of unicellular eukaryotic microorganism Tetrahymena thermophila exposed to TiO₂ particles. Nanotoxicology 2015; 10:542-56. [PMID: 26524663 DOI: 10.3109/17435390.2015.1091107] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Key biological functions involved in cell survival have been studied to understand the difference between the impact of exposure to TiO2 nanoparticles (TiO2-NPs) and their bulk counterparts (bulk-TiO2). By selecting a unicellular eukaryotic model organism and applying proteomic analysis an overview of the possible impact of exposure could be obtained. In this study, we investigated the early response of unicellular eukaryotic protozoan Tetrahymena thermophila exposed to TiO2-NPs or bulk-TiO2 particles at subtoxic concentrations for this organism. The proteomic analysis based on 2DE + nLC-ESI-MS/MS revealed 930 distinct protein spots, among which 77 were differentially expressed and 18 were unambiguously identified. We identified alterations in metabolic pathways, including lipid and fatty acid metabolism, purine metabolism and energetic metabolism, as well as salt stress and protein degradation. This proteomic study is consistent with our previous findings, where the early response of T. thermophila to subtoxic concentrations of TiO2 particles included alterations in lipid and fatty acid metabolism and ion regulation. The response to the lowest TiO2-NPs concentration differed significantly from the response to higher TiO2-NPs concentration and both bulk-TiO2 concentrations. Alterations on the physiological landscape were significant after exposure to both nano- and bulk-TiO2; however, no toxic effects were evidenced even at very high exposure concentrations. This study confirms the relevance of the alteration of the lipid profile and lipid metabolism in understanding the early impact of TiO2-NPs in eukaryotic cells, for example, phagocytosing cells like macrophages and ciliated cells in the respiratory epithelium.
Collapse
Affiliation(s)
| | | | | | - K Kogej
- d Faculty of Chemistry and Chemical Technology , University of Ljubljana , Ljubljana , Slovenia
| | - D Makovec
- e Jožef Stefan Institute , Ljubljana , Slovenia
| | - C Gallampois
- f Department of Clinical and Experimental Medicine , Cell Biology, Medical Faculty, Linköping University , Linköping , Sweden
| | - H Amelina
- g Department of Biochemistry and Biophysics , Stockholm University , Stockholm , Sweden
| | - G Danielsson
- g Department of Biochemistry and Biophysics , Stockholm University , Stockholm , Sweden
| | - L Fanedl
- h Biotechnical Faculty, Department of Animal Science , University of Ljubjana , Slovenia , and
| | - R Marinsek-Logar
- h Biotechnical Faculty, Department of Animal Science , University of Ljubjana , Slovenia , and
| | - S Cristobal
- f Department of Clinical and Experimental Medicine , Cell Biology, Medical Faculty, Linköping University , Linköping , Sweden .,i Department of Physiology , Faculty of Medicine and Dentistry, IKERBASQUE, Basque Foundation for Science, University of the Basque Country , Leioa , Spain
| |
Collapse
|
14
|
Plattner H. Signalling in ciliates: long- and short-range signals and molecular determinants for cellular dynamics. Biol Rev Camb Philos Soc 2015; 92:60-107. [PMID: 26487631 DOI: 10.1111/brv.12218] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Revised: 07/28/2015] [Accepted: 08/21/2015] [Indexed: 12/30/2022]
Abstract
In ciliates, unicellular representatives of the bikont branch of evolution, inter- and intracellular signalling pathways have been analysed mainly in Paramecium tetraurelia, Paramecium multimicronucleatum and Tetrahymena thermophila and in part also in Euplotes raikovi. Electrophysiology of ciliary activity in Paramecium spp. is a most successful example. Established signalling mechanisms include plasmalemmal ion channels, recently established intracellular Ca2+ -release channels, as well as signalling by cyclic nucleotides and Ca2+ . Ca2+ -binding proteins (calmodulin, centrin) and Ca2+ -activated enzymes (kinases, phosphatases) are involved. Many organelles are endowed with specific molecules cooperating in signalling for intracellular transport and targeted delivery. Among them are recently specified soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs), monomeric GTPases, H+ -ATPase/pump, actin, etc. Little specification is available for some key signal transducers including mechanosensitive Ca2+ -channels, exocyst complexes and Ca2+ -sensor proteins for vesicle-vesicle/membrane interactions. The existence of heterotrimeric G-proteins and of G-protein-coupled receptors is still under considerable debate. Serine/threonine kinases dominate by far over tyrosine kinases (some predicted by phosphoproteomic analyses). Besides short-range signalling, long-range signalling also exists, e.g. as firmly installed microtubular transport rails within epigenetically determined patterns, thus facilitating targeted vesicle delivery. By envisaging widely different phenomena of signalling and subcellular dynamics, it will be shown (i) that important pathways of signalling and cellular dynamics are established already in ciliates, (ii) that some mechanisms diverge from higher eukaryotes and (iii) that considerable uncertainties still exist about some essential aspects of signalling.
Collapse
Affiliation(s)
- Helmut Plattner
- Department of Biology, University of Konstanz, PO Box M625, 78457, Konstanz, Germany
| |
Collapse
|
15
|
Chen Z, Zhan J, Chen Y, Yang M, He C, Ge F, Wang Q. Effects of Phosphorylation of β Subunits of Phycocyanins on State Transition in the Model Cyanobacterium Synechocystis sp. PCC 6803. PLANT & CELL PHYSIOLOGY 2015; 56:1997-2013. [PMID: 26315596 DOI: 10.1093/pcp/pcv118] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Accepted: 08/09/2015] [Indexed: 05/22/2023]
Abstract
Synechocystis sp. PCC 6803 (hereafter Synechocystis) is a model cyanobacterium and has been used extensively for studies concerned with photosynthesis and environmental adaptation. Although dozens of protein kinases and phosphatases with specificity for Ser/Thr/Tyr residues have been predicted, only a few substrate proteins are known in Synechocystis. In this study, we report 194 in vivo phosphorylation sites from 149 proteins in Synechocystis, which were identified using a combination of peptide pre-fractionation, TiO(2) enrichment and liquid chromatograpy-tandem mass spectrometry (LC-MS/MS) analysis. These phosphorylated proteins are implicated in diverse biological processes, such as photosynthesis. Among all identified phosphoproteins involved in photosynthesis, the β subunits of phycocyanins (CpcBs) were found to be phosphorylated on Ser22, Ser49, Thr94 and Ser154. Four non-phosphorylated mutants were constructed by using site-directed mutagenesis. The in vivo characterization of the cpcB mutants showed a slower growth under high light irradiance and displayed fluorescence quenching to a lower level and less efficient energy transfer inside the phycobilisome (PBS). Notably, the non-phosphorylated mutants exhibited a slower state transition than the wild type. The current results demonstrated that the phosphorylation status of CpcBs affects the energy transfer and state transition of photosynthesis in Synechocystis. This study provides novel insights into the molecular mechanisms of protein phosphorylation in the regulation of photosynthesis in cyanobacteria and may facilitate the elucidation of the entire regulatory network by linking kinases to their physiological substrates.
Collapse
Affiliation(s)
- Zhuo Chen
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, Hubei, China These authors contributed equally to this work.
| | - Jiao Zhan
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, Hubei, China University of Chinese Academy of Sciences, Beijing 100094, China These authors contributed equally to this work.
| | - Ying Chen
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, Hubei, China
| | - Mingkun Yang
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, Hubei, China
| | - Chenliu He
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, Hubei, China
| | - Feng Ge
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, Hubei, China
| | - Qiang Wang
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, Hubei, China
| |
Collapse
|
16
|
Sun Y, Yuan K, Zhang P, Ma R, Zhang QW, Tian XS. Crosstalk analysis of pathways in breast cancer using a network model based on overlapping differentially expressed genes. Exp Ther Med 2015; 10:743-748. [PMID: 26622386 DOI: 10.3892/etm.2015.2527] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Accepted: 05/07/2015] [Indexed: 12/30/2022] Open
Abstract
Multiple signal transduction pathways can affect each other considerably through crosstalk. However, the presence and extent of this phenomenon have not been rigorously studied. The aim of the present study was to identify strong and normal interactions between pathways in breast cancer and determine the main pathway. Five sets of breast cancer data were downloaded from the high-throughput Gene Expression Omnibus (GEO) and analyzed to identify differentially expressed (DE) genes using the Rank Product (RankProd) method. A list of pathways with differential expression was obtained by gene set enrichment analysis (GSEA) of the Kyoto Encyclopedia of Genes and Genomes (KEGG) database. The DE genes that overlapped between pathways were identified and a crosstalk network diagram based on the overlap of DE genes was constructed. A total of 1,464 DE genes and 26 pathways were identified. In addition, the number of DE genes that overlapped between specific pathways were determined, and the greatest degree of overlap was between the extracellular matrix (ECM)-receptor interaction and Focal adhesion pathways, which had 22 overlapping DE genes. Weighted pathway analysis of the crosstalk between pathways identified that Pathways in cancer was the main pathway in breast cancer.
Collapse
Affiliation(s)
- Yong Sun
- Department of Breast and Thyroid Surgery, Shandong Provincial Hospital, Shandong University, Jinan, Shandong 250021, P.R. China ; Department of General Surgery, Laiwu Hospital Affiliated to Taishan Medical College, Laiwu, Shandong 271100, P.R. China
| | - Kai Yuan
- Department of Breast Surgery, Shandong Provincial Qianfoshan Hospital, Shandong University, P.R. China
| | - Peng Zhang
- Department of General Surgery, Laiwu Hospital Affiliated to Taishan Medical College, Laiwu, Shandong 271100, P.R. China
| | - Rong Ma
- Department of Breast Surgery, Qilu Hospital, Shandong University, Jinan, Shandong 250014, P.R. China
| | - Qi-Wen Zhang
- Department of General Surgery, Laiwu Hospital Affiliated to Taishan Medical College, Laiwu, Shandong 271100, P.R. China
| | - Xing-Song Tian
- Department of Breast and Thyroid Surgery, Shandong Provincial Hospital, Shandong University, Jinan, Shandong 250021, P.R. China
| |
Collapse
|
17
|
Pagano GJ, King RS, Martin LM, Hufnagel LA. The unique N-terminal insert in the ribosomal protein, phosphoprotein P0, of Tetrahymena thermophila: Bioinformatic evidence for an interaction with 26S rRNA. Proteins 2015; 83:1078-90. [PMID: 25820769 DOI: 10.1002/prot.24800] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Revised: 02/27/2015] [Accepted: 03/20/2015] [Indexed: 11/11/2022]
Abstract
Phosphoprotein P0 (P0) is part of the stalk complex of the eukaryotic large ribosomal subunit necessary for recruiting elongation factors. While the P0 sequence is highly conserved, our group noted a 15-16 residue insert exclusive to the P0s of ciliated protists, including Tetrahymena thermophila. We hypothesized that this insert may have a function unique in ciliated protists, such as stalk regulation via phosphorylation of the insert. Almost no mention of this insert exists in the literature, and although the T. thermophila ribosome has been crystallized, there is limited structural data for Tetrahymena's P0 (TtP0) and its insert. To investigate the structure and function of the TtP0 insert, we performed in silico analyses. The TtP0 sequence was scanned with phosphorylation site prediction tools to detect the likelihood of phosphorylation in the insert. TtP0's sequence was also used to produce a homology model of the N-terminal domain of TtP0, including the insert. When the insert was modeled in the context of the 26S rRNA, it associated with a region identified as expansion segment 7B (ES7B), suggesting a potential functional interaction between ES7B and the insert in T. thermophila. We were not able to obtain sufficient data to determine whether a similar relationship exists in other ciliated protists. This study lays the groundwork for future experimental studies to verify the presence of TtP0 insert/ES7 interactions in Tetrahymena, and to explore their functional significance during protein synthesis.
Collapse
Affiliation(s)
- Giovanni J Pagano
- Department of Cell and Molecular Biology, University of Rhode Island, Kingston, Rhode Island, 02881
| | - Roberta S King
- Department of Biomedical and Pharmaceutical Sciences, University of Rhode Island, Kingston, Rhode Island, 02881
| | - Lenore M Martin
- Department of Cell and Molecular Biology, University of Rhode Island, Kingston, Rhode Island, 02881
| | - Linda A Hufnagel
- Department of Cell and Molecular Biology, University of Rhode Island, Kingston, Rhode Island, 02881
| |
Collapse
|
18
|
Analysis of the Candida albicans Phosphoproteome. EUKARYOTIC CELL 2015; 14:474-85. [PMID: 25750214 DOI: 10.1128/ec.00011-15] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Accepted: 03/04/2015] [Indexed: 01/19/2023]
Abstract
Candida albicans is an important human fungal pathogen in both immunocompetent and immunocompromised individuals. C. albicans regulation has been studied in many contexts, including morphological transitions, mating competence, biofilm formation, stress resistance, and cell wall synthesis. Analysis of kinase- and phosphatase-deficient mutants has made it clear that protein phosphorylation plays an important role in the regulation of these pathways. In this study, to further our understanding of phosphorylation in C. albicans regulation, we performed a deep analysis of the phosphoproteome in C. albicans. We identified 19,590 unique peptides that corresponded to 15,906 unique phosphosites on 2,896 proteins. The ratios of serine, threonine, and tyrosine phosphosites were 80.01%, 18.11%, and 1.81%, respectively. The majority of proteins (2,111) contained at least two detected phosphorylation sites. Consistent with findings in other fungi, cytoskeletal proteins were among the most highly phosphorylated proteins, and there were differences in Gene Ontology (GO) terms for proteins with serine and threonine versus tyrosine phosphorylation sites. This large-scale analysis identified phosphosites in protein components of Mediator, an important transcriptional coregulatory protein complex. A targeted analysis of the phosphosites in Mediator complex proteins confirmed the large-scale studies, and further in vitro assays identified a subset of these phosphorylations that were catalyzed by Cdk8 (Ssn3), a kinase within the Mediator complex. These data represent the deepest single analysis of a fungal phosphoproteome and lay the groundwork for future analyses of the C. albicans phosphoproteome and specific phosphoproteins.
Collapse
|
19
|
Yıldız MT, Arslanyolu M. In silico identification and characterization of the MAPK family members of unicellular model eukaryote Tetrahymena thermophila. Eur J Protistol 2014; 50:538-50. [DOI: 10.1016/j.ejop.2014.08.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Revised: 08/19/2014] [Accepted: 08/25/2014] [Indexed: 11/29/2022]
|
20
|
Chen Z, Yang MK, Li CY, Wang Y, Zhang J, Wang DB, Zhang XE, Ge F. Phosphoproteomic analysis provides novel insights into stress responses in Phaeodactylum tricornutum, a model diatom. J Proteome Res 2014; 13:2511-23. [PMID: 24712722 DOI: 10.1021/pr401290u] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Protein phosphorylation on serine, threonine, and tyrosine (Ser/Thr/Tyr) is well established as a key regulatory posttranslational modification used in signal transduction to control cell growth, proliferation, and stress responses. However, little is known about its extent and function in diatoms. Phaeodactylum tricornutum is a unicellular marine diatom that has been used as a model organism for research on diatom molecular biology. Although more than 1000 protein kinases and phosphatases with specificity for Ser/Thr/Tyr residues have been predicted in P. tricornutum, no phosphorylation event has so far been revealed by classical biochemical approaches. Here, we performed a global phosphoproteomic analysis combining protein/peptide fractionation, TiO(2) enrichment, and LC-MS/MS analyses. In total, we identified 264 unique phosphopeptides, including 434 in vivo phosphorylated sites on 245 phosphoproteins. The phosphorylated proteins were implicated in the regulation of diverse biological processes, including signaling, metabolic pathways, and stress responses. Six identified phosphoproteins were further validated by Western blotting using phospho-specific antibodies. The functions of these proteins are discussed in the context of signal transduction networks in P. tricornutum. Our results advance the current understanding of diatom biology and will be useful for elucidating the phosphor-relay signaling networks in this model diatom.
Collapse
Affiliation(s)
- Zhuo Chen
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences , Wuhan 430071, China
| | | | | | | | | | | | | | | |
Collapse
|