1
|
Aubert A, Jung K, Hiroyasu S, Pardo J, Granville DJ. Granzyme serine proteases in inflammation and rheumatic diseases. Nat Rev Rheumatol 2024; 20:361-376. [PMID: 38689140 DOI: 10.1038/s41584-024-01109-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/15/2024] [Indexed: 05/02/2024]
Abstract
Granzymes (granule-secreted enzymes) are a family of serine proteases that have been viewed as redundant cytotoxic enzymes since their discovery more than 30 years ago. Predominantly produced by cytotoxic lymphocytes and natural killer cells, granzymes are delivered into the cytoplasm of target cells through immunological synapses in cooperation with the pore-forming protein perforin. After internalization, granzymes can initiate cell death through the cleavage of intracellular substrates. However, evidence now also demonstrates the existence of non-cytotoxic, pro-inflammatory, intracellular and extracellular functions that are granzyme specific. Under pathological conditions, granzymes can be produced and secreted extracellularly by immune cells as well as by non-immune cells. Depending on the granzyme, accumulation in the extracellular milieu might contribute to inflammation, tissue injury, impaired wound healing, barrier dysfunction, osteoclastogenesis and/or autoantigen generation.
Collapse
Affiliation(s)
- Alexandre Aubert
- International Collaboration on Repair Discoveries (ICORD) Centre; British Columbia Professional Firefighters' Burn and Wound Healing Group, Vancouver Coastal Health Research Institute; Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Karen Jung
- International Collaboration on Repair Discoveries (ICORD) Centre; British Columbia Professional Firefighters' Burn and Wound Healing Group, Vancouver Coastal Health Research Institute; Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Sho Hiroyasu
- Department of Dermatology, Osaka Metropolitan University Graduate School of Medicine, Osaka, Japan
| | - Julian Pardo
- Fundación Instituto de Investigación Sanitaria Aragón (IIS Aragón), Biomedical Research Centre of Aragon (CIBA); Department of Microbiology, Radiology, Paediatrics and Public Health, University of Zaragoza, Zaragoza, Spain
- CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III, Madrid, Spain
| | - David J Granville
- International Collaboration on Repair Discoveries (ICORD) Centre; British Columbia Professional Firefighters' Burn and Wound Healing Group, Vancouver Coastal Health Research Institute; Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada.
- Centre for Heart Lung Innovation, Providence Research, University of British Columbia, Vancouver, British Columbia, Canada.
| |
Collapse
|
2
|
Montalvo MJ, Bandey IN, Rezvan A, Wu KL, Saeedi A, Kulkarni R, Li Y, An X, Sefat KMSR, Varadarajan N. Decoding the mechanisms of chimeric antigen receptor (CAR) T cell-mediated killing of tumors: insights from granzyme and Fas inhibition. Cell Death Dis 2024; 15:109. [PMID: 38307835 PMCID: PMC10837176 DOI: 10.1038/s41419-024-06461-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 01/03/2024] [Accepted: 01/09/2024] [Indexed: 02/04/2024]
Abstract
Chimeric antigen receptor (CAR) T cell show promise in cancer treatments, but their mechanism of action is not well understood. Decoding the mechanisms used by individual T cells can help improve the efficacy of T cells while also identifying mechanisms of T cell failure leading to tumor escape. Here, we used a suite of assays including dynamic single-cell imaging of cell-cell interactions, dynamic imaging of fluorescent reporters to directly track cytotoxin activity in tumor cells, and scRNA-seq on patient infusion products to investigate the cytotoxic mechanisms used by individual CAR T cells in killing tumor cells. We show that surprisingly, overexpression of the Granzyme B (GZMB) inhibitor, protease inhibitor-9 (PI9), does not alter the cytotoxicity mediated by CD19-specific CAR T cells against either the leukemic cell line, NALM6; or the ovarian cancer cell line, SkOV3-CD19. We designed and validated reporters to directly assay T cell delivered GZMB activity in tumor cells and confirmed that while PI9 overexpression inhibits GZMB activity at the molecular level, this is not sufficient to impact the kinetics or magnitude of killing mediated by the CAR T cells. Altering cytotoxicity mediated by CAR T cells required combined inhibition of multiple pathways that are tumor cell specific: (a) B-cell lines like NALM6, Raji and Daudi were sensitive to combined GZMB and granzyme A (GZMA) inhibition; whereas (b) solid tumor targets like SkOV3-CD19 and A375-CD19 (melanoma) were sensitive to combined GZMB and Fas ligand inhibition. We realized the translational relevance of these findings by examining the scRNA-seq profiles of Tisa-cel and Axi-cel infusion products and show a significant correlation between GZMB and GZMA expression at the single-cell level in a T cell subset-dependent manner. Our findings highlight the importance of the redundancy in killing mechanisms of CAR T cells and how this redundancy is important for efficacious T cells.
Collapse
Affiliation(s)
- Melisa J Montalvo
- William A. Brookshire Department of Chemical and Biomolecular Engineering, University of Houston, Houston, TX, USA
| | - Irfan N Bandey
- William A. Brookshire Department of Chemical and Biomolecular Engineering, University of Houston, Houston, TX, USA
| | - Ali Rezvan
- William A. Brookshire Department of Chemical and Biomolecular Engineering, University of Houston, Houston, TX, USA
| | - Kwan-Ling Wu
- William A. Brookshire Department of Chemical and Biomolecular Engineering, University of Houston, Houston, TX, USA
| | - Arash Saeedi
- William A. Brookshire Department of Chemical and Biomolecular Engineering, University of Houston, Houston, TX, USA
| | - Rohan Kulkarni
- William A. Brookshire Department of Chemical and Biomolecular Engineering, University of Houston, Houston, TX, USA
| | - Yongshuai Li
- William A. Brookshire Department of Chemical and Biomolecular Engineering, University of Houston, Houston, TX, USA
| | - Xingyue An
- William A. Brookshire Department of Chemical and Biomolecular Engineering, University of Houston, Houston, TX, USA
| | - K M Samiur Rahman Sefat
- William A. Brookshire Department of Chemical and Biomolecular Engineering, University of Houston, Houston, TX, USA
| | - Navin Varadarajan
- William A. Brookshire Department of Chemical and Biomolecular Engineering, University of Houston, Houston, TX, USA.
| |
Collapse
|
3
|
Phair I, Sumoreeah M, Scott N, Spinelli L, Arthur J. IL-33 induces granzyme C expression in murine mast cells via an MSK1/2-CREB-dependent pathway. Biosci Rep 2022; 42:BSR20221165. [PMID: 36342273 PMCID: PMC9727205 DOI: 10.1042/bsr20221165] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 10/27/2022] [Accepted: 11/07/2022] [Indexed: 10/10/2023] Open
Abstract
Granzymes comprise a group of proteases involved in the killing of infected or cancerous cells by the immune system. Although best studied in T cells and natural killer (NK) cells, they are also expressed in some innate immune cells. Granzymes B and C are encoded in the mouse chymase locus that also encodes a number of mast cell-specific proteases. In line with this, mast cells can express granzyme B, although how this is regulated and their ability to express other granzymes is less well studied. We therefore examined how IL-33, a cytokine able to activate mast cells but not induce degranulation, regulated granzyme B and C levels in mast cells. Granzyme C, but not B, mRNA was strongly up-regulated in bone marrow-derived mast cells following IL-33 stimulation and there was a corresponding increase in granzyme C protein. These increases in both granzyme C mRNA and protein were blocked by a combination of the p38α/β MAPK inhibitor VX745 and the MEK1/2 inhibitor PD184352, which blocks the activation of ERK1/2. ERK1/2 and p38α activate the downstream kinases, mitogen and stress-activated kinases (MSK) 1 and 2, and IL-33 stimulated the phosphorylation of MSK1 and its substrate CREB in an ERK1/2 and p38-dependent manner. The promoter for granzyme C contains a potential CREB-binding site. Bone marrow-derived mast cells from either MSK1/2 double knockout or CREB Ser133Ala knockin mice were unable to up-regulate granzyme C. Together these results indicate that IL-33-induced granzyme C expression in mast cells is regulated by an MSK1/2-CREB-dependent pathway.
Collapse
Affiliation(s)
- Iain R. Phair
- Division of Cell Signalling and Immunology, School of Life Sciences, University of Dundee, Dundee DD1 5EH, U.K
| | - Megan C. Sumoreeah
- Division of Cell Signalling and Immunology, School of Life Sciences, University of Dundee, Dundee DD1 5EH, U.K
| | - Niamh Scott
- Division of Cell Signalling and Immunology, School of Life Sciences, University of Dundee, Dundee DD1 5EH, U.K
| | - Laura Spinelli
- Division of Cell Signalling and Immunology, School of Life Sciences, University of Dundee, Dundee DD1 5EH, U.K
| | - J. Simon C. Arthur
- Division of Cell Signalling and Immunology, School of Life Sciences, University of Dundee, Dundee DD1 5EH, U.K
| |
Collapse
|
4
|
Dubchak E, Obasanmi G, Zeglinski MR, Granville DJ, Yeung SN, Matsubara JA. Potential role of extracellular granzyme B in wet age-related macular degeneration and fuchs endothelial corneal dystrophy. Front Pharmacol 2022; 13:980742. [PMID: 36204224 PMCID: PMC9531149 DOI: 10.3389/fphar.2022.980742] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 08/16/2022] [Indexed: 11/13/2022] Open
Abstract
Age-related ocular diseases are the leading cause of blindness in developed countries and constitute a sizable socioeconomic burden worldwide. Age-related macular degeneration (AMD) and Fuchs endothelial corneal dystrophy (FECD) are some of the most common age-related diseases of the retina and cornea, respectively. AMD is characterized by a breakdown of the retinal pigment epithelial monolayer, which maintains retinal homeostasis, leading to retinal degeneration, while FECD is characterized by degeneration of the corneal endothelial monolayer, which maintains corneal hydration status, leading to corneal edema. Both AMD and FECD pathogenesis are characterized by disorganized local extracellular matrix (ECM) and toxic protein deposits, with both processes linked to aberrant protease activity. Granzyme B (GrB) is a serine protease traditionally known for immune-mediated initiation of apoptosis; however, it is now recognized that GrB is expressed by a variety of immune and non-immune cells and aberrant extracellular localization of GrB substantially contributes to various age-related pathologies through dysregulated cleavage of ECM, tight junction, and adherens junction proteins. Despite growing recognition of GrB involvement in multiple age-related pathologies, its role in AMD and FECD remains poorly understood. This review summarizes the pathophysiology of, and similarities between AMD and FECD, outlines the current knowledge of the role of GrB in AMD and FECD, as well as hypothesizes putative contributions of GrB to AMD and FECD pathogenesis and highlights the therapeutic potential of pharmacologically inhibiting GrB as an adjunctive treatment for AMD and FECD.
Collapse
Affiliation(s)
- Eden Dubchak
- Department of Ophthalmology and Visual Sciences, University of British Columbia (UBC), Vancouver, BC, Canada
| | - Gideon Obasanmi
- Department of Ophthalmology and Visual Sciences, University of British Columbia (UBC), Vancouver, BC, Canada
| | - Matthew R. Zeglinski
- ICORD Centre and Department of Pathology and Laboratory Medicine, Vancouver Coastal Health Research Institute, UBC, Vancouver, BC, Canada
| | - David J. Granville
- ICORD Centre and Department of Pathology and Laboratory Medicine, Vancouver Coastal Health Research Institute, UBC, Vancouver, BC, Canada
| | - Sonia N. Yeung
- Department of Ophthalmology and Visual Sciences, University of British Columbia (UBC), Vancouver, BC, Canada
| | - Joanne A. Matsubara
- Department of Ophthalmology and Visual Sciences, University of British Columbia (UBC), Vancouver, BC, Canada
- *Correspondence: Joanne A. Matsubara,
| |
Collapse
|
5
|
Screening of small molecule libraries using combined text mining, ligand- and target-driven based approaches for identification of novel granzyme H inhibitors. J Mol Graph Model 2021; 105:107876. [PMID: 33744783 DOI: 10.1016/j.jmgm.2021.107876] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 02/17/2021] [Accepted: 02/18/2021] [Indexed: 11/23/2022]
Abstract
Granzymes are serine proteases synthesized by CTL and NK cells. Five granzyme genes (GzmA, -B, -H, -K, -M) are present in humans, which are located at three different chromosomal loci. Being serine proteases, the binding pocket constitutes a catalytic triad (i.e., His59, Asp103 and Ser197). Granzymes are released into target (cancerous and virally infected) cells by a specialized process known as granule exocytosis pathway. After internalization, these proteases initiate apoptosis. Granzymes are also involved in other non-apoptotic immune associated roles like ECM remodeling, cytokine modulation, killing of pathogens through generation of phagosomes. Their intracellular activity is regulated by specialized inhibitors knows as SERPINs. However, if these proteases are secreted in excess into the extracellular environment, their regulation becomes important as otherwise they start self-damage to the tissues thereby worsening the disease conditions. Efforts are being made to identify potential inhibitors for regulation of these proteases in an extracellular environment. Physiological and synthetic inhibitors have been reported against some members however there is no known inhibitor against extracellular human GzmH. Thus, in the current study, we investigated small molecule databases for the identification of potential molecules having the ability to inhibit GzmH by combined molecular simulations, which can ultimately be used as a potential therapeutic agent.
Collapse
|
6
|
Ahmad J, Ikram S, Hafeez AB, Durdagi S. Physics-driven identification of clinically approved and investigation drugs against human neutrophil serine protease 4 (NSP4): A virtual drug repurposing study. J Mol Graph Model 2020; 101:107744. [PMID: 33032202 DOI: 10.1016/j.jmgm.2020.107744] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 08/29/2020] [Accepted: 08/31/2020] [Indexed: 01/19/2023]
Abstract
Neutrophils synthesize four immune associated serine proteases: Cathepsin G (CTSG), Elastase (ELANE), Proteinase 3 (PRTN3) and Neutrophil Serine Protease 4 (NSP4). While previously considered to be immune modulators, overexpression of neutrophil serine proteases correlates with various disease conditions. Therefore, identifying novel small molecules that can potentially control or inhibit the proteolytic activity of these proteases is crucial to revert or temper the aggravated disease phenotype. To the best of our knowledge, although there is limited data for inhibitors of other neutrophil protease members, there is no previous clinical study of a synthetic small molecule inhibitor targeting NSP4. In this study, an integrated molecular modeling algorithm was performed within a virtual drug repurposing study to identify novel inhibitors for NSP4, using clinically approved and investigation drugs library (∼8000 compounds). Based on our rigorous filtration, we found that following molecules Becatecarin, Iogulamide, Delprostenate and Iralukast are predicted to block the activity of NSP4 by interacting with core catalytic residues. The selected ligands were energetically more favorable compared to the reference molecule. The result of this study identifies promising molecules as potential lead candidates.
Collapse
Affiliation(s)
- Jamshaid Ahmad
- Center of Biotechnology & Microbiology, University of Peshawar, Pakistan.
| | - Saima Ikram
- Center of Biotechnology & Microbiology, University of Peshawar, Pakistan; Computational Biology and Molecular Simulations Laboratory, Department of Biophysics, School of Medicine, Bahcesehir University, Istanbul, Turkey
| | - Ahmer Bin Hafeez
- Center of Biotechnology & Microbiology, University of Peshawar, Pakistan
| | - Serdar Durdagi
- Computational Biology and Molecular Simulations Laboratory, Department of Biophysics, School of Medicine, Bahcesehir University, Istanbul, Turkey.
| |
Collapse
|
7
|
Ikram S, Ahmad J, Durdagi S. Screening of FDA approved drugs for finding potential inhibitors against Granzyme B as a potent drug-repurposing target. J Mol Graph Model 2019; 95:107462. [PMID: 31786094 DOI: 10.1016/j.jmgm.2019.107462] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Revised: 09/12/2019] [Accepted: 09/29/2019] [Indexed: 10/25/2022]
Abstract
Granzyme B is one of the best-characterized and extensively studied member of cytotoxic lymphocytes (CL) proteases. Initially, it is thought to be involved in eliminating virally infected or cancerous cells by using a specialized mechanism through which they are internalized into target cells. In the last decade, however this dimension has changed as there are several reports show that not only CL but also other immune cells can also synthesize Granzyme B. This leads to the possibility of the presence of these proteases in extracellular environment. Being active protease, it then raises the possibility of damaging host tissues as evident from the available reported literature. In many instances, Granzyme B is directly involved in pathogenicity, however in others, it contributes to the disease severity as their over expression makes the clinical situation quite worse which ultimately leads to the chronic state of the disease. Serine protease inhibitor-9 is a natural known intracellular inhibitor of Granzyme B, however there is less data available about the potential inhibitors that can regulate its activity in an extracellular environment. Current study is an effort to identify potential novel inhibitors of Granzyme B. For this aim, drug repurposing study was performed. Around 7900 FDA approved drugs were screened using both ligand- and target-driven approaches. Initially, all molecules were docked using induced fit docking (IFD) approach and selected 318 high-docking scored molecules were used in short (1-ns) molecular dynamics (MD) simulations. Based on MM/GBSA binding free energy calculations, 6 compounds were selected and used in long (100-ns) MD simulations. These compounds were then used in binary QSAR analysis. Therapeutic activity potentials of studied compounds were investigated by Clarivate Analytics's MetaCore/MetaDrug platform which uses binary QSAR models. It is developed based on manually curated database of molecular interactions, molecular pathways, gene-disease associations, chemical metabolism and toxicity information. Results of selected compounds were compared with a positive control molecule. Current drug repurposing study is a step ahead in finding potential lead compounds by screening database of FDA approved molecules. We have identified novel inhibitors (Tannic acid, Mupirocin, Phytonadiol sodium diphosphate, Cefpiramide, Xenazoic acid) that have potential to decrease the activity of Granzyme B.
Collapse
Affiliation(s)
- Saima Ikram
- Center of Biotechnology & Microbiology, University of Peshawar, Pakistan; Computational Biology and Molecular Simulations Laboratory, Department of Biophysics, School of Medicine, Bahcesehir University, Istanbul, Turkey
| | - Jamshaid Ahmad
- Center of Biotechnology & Microbiology, University of Peshawar, Pakistan.
| | - Serdar Durdagi
- Computational Biology and Molecular Simulations Laboratory, Department of Biophysics, School of Medicine, Bahcesehir University, Istanbul, Turkey.
| |
Collapse
|
8
|
Sirota FL, Maurer-Stroh S, Eisenhaber B, Eisenhaber F. Single-residue posttranslational modification sites at the N-terminus, C-terminus or in-between: To be or not to be exposed for enzyme access. Proteomics 2016; 15:2525-46. [PMID: 26038108 PMCID: PMC4745020 DOI: 10.1002/pmic.201400633] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2014] [Revised: 04/17/2015] [Accepted: 05/29/2015] [Indexed: 11/30/2022]
Abstract
Many protein posttranslational modifications (PTMs) are the result of an enzymatic reaction. The modifying enzyme has to recognize the substrate protein's sequence motif containing the residue(s) to be modified; thus, the enzyme's catalytic cleft engulfs these residue(s) and the respective sequence environment. This residue accessibility condition principally limits the range where enzymatic PTMs can occur in the protein sequence. Non‐globular, flexible, intrinsically disordered segments or large loops/accessible long side chains should be preferred whereas residues buried in the core of structures should be void of what we call canonical, enzyme‐generated PTMs. We investigate whether PTM sites annotated in UniProtKB (with MOD_RES/LIPID keys) are situated within sequence ranges that can be mapped to known 3D structures. We find that N‐ or C‐termini harbor essentially exclusively canonical PTMs. We also find that the overwhelming majority of all other PTMs are also canonical though, later in the protein's life cycle, the PTM sites can become buried due to complex formation. Among the remaining cases, some can be explained (i) with autocatalysis, (ii) with modification before folding or after temporary unfolding, or (iii) as products of interaction with small, diffusible reactants. Others require further research how these PTMs are mechanistically generated in vivo.
Collapse
Affiliation(s)
- Fernanda L Sirota
- Bioinformatics Institute (BII), Agency for Science and Technology (A*STAR), Matrix, Singapore
| | - Sebastian Maurer-Stroh
- Bioinformatics Institute (BII), Agency for Science and Technology (A*STAR), Matrix, Singapore.,School of Biological Sciences (SBS), Nanyang Technological University (NTU), Singapore
| | - Birgit Eisenhaber
- Bioinformatics Institute (BII), Agency for Science and Technology (A*STAR), Matrix, Singapore
| | - Frank Eisenhaber
- Bioinformatics Institute (BII), Agency for Science and Technology (A*STAR), Matrix, Singapore.,Department of Biological Sciences (DBS), National University of Singapore (NUS), Singapore.,School of Computer Engineering (SCE), Nanyang Technological University (NTU), Singapore
| |
Collapse
|
9
|
Chen L, Shan Y, Weng Y, Yuan H, Zhang S, Fan R, Sui Z, Zhang X, Zhang L, Zhang Y. Depletion of internal peptides by site-selective blocking, phosphate labeling, and TiO2 adsorption for in-depth analysis of C-terminome. Anal Bioanal Chem 2016; 408:3867-74. [DOI: 10.1007/s00216-016-9476-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Revised: 03/04/2016] [Accepted: 03/08/2016] [Indexed: 01/18/2023]
|
10
|
Proteomics beyond large-scale protein expression analysis. Curr Opin Biotechnol 2015; 34:162-70. [PMID: 25636126 DOI: 10.1016/j.copbio.2015.01.005] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Revised: 01/14/2015] [Accepted: 01/14/2015] [Indexed: 11/21/2022]
Abstract
Proteomics is commonly referred to as the application of high-throughput approaches to protein expression analysis. Typical results of proteomics studies are inventories of the protein content of a sample or lists of differentially expressed proteins across multiple conditions. Recently, however, an explosion of novel proteomics workflows has significantly expanded proteomics beyond the analysis of protein expression. Targeted proteomics methods, for example, enable the analysis of the fine dynamics of protein systems, such as a specific pathway or a network of interacting proteins, and the determination of protein complex stoichiometries. Structural proteomics tools allow extraction of restraints for structural modeling and identification of structurally altered proteins on a proteome-wide scale. Other variations of the proteomic workflow can be applied to the large-scale analysis of protein activity, location, degradation and turnover. These exciting developments provide new tools for multi-level 'omics' analysis and for the modeling of biological networks in the context of systems biology studies.
Collapse
|
11
|
Plasman K, Demol H, Bird PI, Gevaert K, Van Damme P. Substrate specificities of the granzyme tryptases A and K. J Proteome Res 2014; 13:6067-77. [PMID: 25383893 DOI: 10.1021/pr500968d] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The physiological roles of the granzymes A and K have been debated, especially concerning their involvement in cytotoxic and inflammatory processes. By performing N-terminal COFRADIC assisted N-terminomics on the homologous human granzymes A and K, we here provide detailed data on their substrate repertoires, their specificities, and differences in efficiency by which they cleave their substrates, all of which may aid in elucidating their key substrates. In addition, the so far uncharacterized mouse granzyme K was profiled alongside its human orthologue. While the global primary specificity profiles of these granzymes appear quite similar as they revealed only subtle differences and pointed to substrate occupancies in the P1, P1', and P2' position as the main determinants for substrate recognition, differential analyses unveiled distinguishing substrate subsite features, some of which were confirmed by the more selective cleavage of specifically designed probes.
Collapse
Affiliation(s)
- Kim Plasman
- Department of Medical Protein Research, VIB , B-9000 Ghent, Belgium
| | | | | | | | | |
Collapse
|
12
|
Rönnberg E, Calounova G, Sutton VR, Trapani JA, Rollman O, Hagforsen E, Pejler G. Granzyme H is a novel protease expressed by human mast cells. Int Arch Allergy Immunol 2014; 165:68-74. [PMID: 25342632 DOI: 10.1159/000368403] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Accepted: 09/12/2014] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Many of the functions attributed to mast cells depend on the various pro-inflammatory mediators that are secreted upon mast cell activation. These include a panel of mast cell-specific proteases. In addition, recent studies have indicated that murine mast cells also express granzyme D, a protease previously thought to be confined to cytotoxic lymphocytes. Here, we address the human relevance of the latter findings by investigating whether human mast cells express granzyme H, the granzyme that may represent the functional counterpart to murine granzyme D. METHODS Cord blood-derived mast cells, LAD2 cells and skin mast cells in situ were evaluated for their expression of granzymes using quantitative PCR, Western blot analysis and immunostaining. Mast cells were activated by either calcium ionophore stimulation or IgE receptor cross-linking. RESULTS Cord blood-derived mast cells and LAD2 cells were shown to express granzyme H and B mRNA, while granzyme A, K and M expression was undetectable. Mast cell activation by either calcium ionophore or IgE receptor cross-linking caused down-regulated expression of granzyme H. In contrast, granzyme B expression was up-regulated by the same stimuli. Granzyme H expression was also confirmed at the protein level, as shown by both Western blot analysis and confocal microscopy. Further, we show that granzyme H is expressed by human skin mast cells in situ. CONCLUSIONS The present findings implicate granzyme H as a novel protease expressed by human mast cells and support earlier findings obtained in natural killer cells suggesting that granzymes B and H are reciprocally regulated.
Collapse
Affiliation(s)
- Elin Rönnberg
- Department of Anatomy, Physiology and Biochemistry, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | | | | | | | | | | | | |
Collapse
|
13
|
Blessing or curse? Proteomics in granzyme research. Proteomics Clin Appl 2014; 8:351-81. [DOI: 10.1002/prca.201300096] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Revised: 11/29/2013] [Accepted: 12/21/2013] [Indexed: 01/08/2023]
|
14
|
Plasman K, Maurer-Stroh S, Gevaert K, Van Damme P. Holistic View on the Extended Substrate Specificities of Orthologous Granzymes. J Proteome Res 2014; 13:1785-93. [DOI: 10.1021/pr401104b] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Kim Plasman
- Department
of Medical Protein Research, VIB, B-9000 Ghent, Belgium
- Department
of Biochemistry, Ghent University, B-9000 Ghent, Belgium
| | - Sebastian Maurer-Stroh
- Bioinformatics
Institute (BII), Agency for Science, Technology and Research (A*STAR), Singapore 138671
- School
of Biological Sciences (SBS), Nanyang Technological University (NTU), Singapore 637551
| | - Kris Gevaert
- Department
of Medical Protein Research, VIB, B-9000 Ghent, Belgium
- Department
of Biochemistry, Ghent University, B-9000 Ghent, Belgium
| | - Petra Van Damme
- Department
of Medical Protein Research, VIB, B-9000 Ghent, Belgium
- Department
of Biochemistry, Ghent University, B-9000 Ghent, Belgium
| |
Collapse
|
15
|
Joeckel LT, Bird PI. Are all granzymes cytotoxic in vivo? Biol Chem 2014; 395:181-202. [DOI: 10.1515/hsz-2013-0238] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2013] [Accepted: 08/30/2013] [Indexed: 01/01/2023]
Abstract
Abstract
Granzymes are serine proteases mainly found in cytotoxic lymphocytes. The most-studied member of this group is granzyme B, which is a potent cytotoxin that has set the paradigm that all granzymes are cyototoxic. In the last 5 years, this paradigm has become controversial. On one hand, there is a plethora of sometimes contradictory publications showing mainly caspase-independent cytotoxic effects of granzyme A and the so-called orphan granzymes in vitro. On the other hand, there are increasing numbers of reports of granzymes failing to induce cell death in vitro unless very high (potentially supra-physiological) concentrations are used. Furthermore, experiments with granzyme A or granzyme M knock-out mice reveal little or no deficit in their cytotoxic lymphocytes’ killing ability ex vivo, but indicate impairment in the inflammatory response. These findings of non-cytotoxic effects of granzymes challenge dogma, and thus require alternative or additional explanations to be developed of the role of granzymes in defeating pathogens. Here we review evidence for granzyme cytotoxicity, give an overview of their non-cytotoxic functions, and suggest technical improvements for future investigations.
Collapse
|