1
|
Grosche A, Grosche J, Verkhratsky A. Physiology and pathophysiology of the retinal neuroglia. HANDBOOK OF CLINICAL NEUROLOGY 2025; 210:239-265. [PMID: 40148047 DOI: 10.1016/b978-0-443-19102-2.00017-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/29/2025]
Abstract
Neuroglia of the retina are represented by Müller glia, parenchymal astrocytes, microglia and oligodendrocytes mainly associated with the optic nerve. Müller glia are the most numerous glia, endowed with multiple homeostatic functions and indispensable for the retinal morphofunctional organization. Müller cells integrate retinal neurons into individual functional units (known as retinal columns) and act as a living light guide, transmitting photons to photoreceptors. In pathology, retinal neuroglia undergo complex changes, which include upregulation of neuroprotection, reactive gliosis, and functional asthenia. The balance between all these changes defines the progression and outcome of retinal disorders.
Collapse
Affiliation(s)
- Antje Grosche
- Department of Physiological Genomics, Ludwig-Maximilians-Universität München, München, Germany.
| | | | - Alexei Verkhratsky
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom; Department of Neurosciences, University of the Basque Country UPV/EHU and CIBERNED, Leioa, Bizkaia, Spain; IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
| |
Collapse
|
2
|
Prokai L, Zaman K, Prokai-Tatrai K. Mass spectrometry-based retina proteomics. MASS SPECTROMETRY REVIEWS 2023; 42:1032-1062. [PMID: 35670041 PMCID: PMC9730434 DOI: 10.1002/mas.21786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/28/2022] [Accepted: 04/29/2022] [Indexed: 06/15/2023]
Abstract
A subfield of neuroproteomics, retina proteomics has experienced a transformative growth since its inception due to methodological advances in enabling chemical, biochemical, and molecular biology techniques. This review focuses on mass spectrometry's contributions to facilitate mammalian and avian retina proteomics to catalog and quantify retinal protein expressions, determine their posttranslational modifications, as well as its applications to study the proteome of the retina in the context of biology, health and diseases, and therapy developments.
Collapse
Affiliation(s)
- Laszlo Prokai
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, Texas, USA
| | - Khadiza Zaman
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, Texas, USA
| | - Katalin Prokai-Tatrai
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, Texas, USA
| |
Collapse
|
3
|
Zhu Y, Cao B, Tolone A, Yan J, Christensen G, Arango-Gonzalez B, Ueffing M, Paquet-Durand F. In vitro Model Systems for Studies Into Retinal Neuroprotection. Front Neurosci 2022; 16:938089. [PMID: 35873807 PMCID: PMC9301112 DOI: 10.3389/fnins.2022.938089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 06/20/2022] [Indexed: 11/13/2022] Open
Abstract
Therapy development for neurodegenerative diseases of the retina constitutes a major unmet medical need, and this may be particularly relevant for inherited diseases of the retina, which are largely untreatable to this day. Therapy development necessitates appropriate models to improve the understanding of the underlying degenerative mechanisms, as well as for the testing and evaluation of novel treatment approaches. This review provides an overview of various in vitro model systems used to study retinal neuroprotection. The in vitro methods and technologies discussed range from primary retinal cell cultures and cell lines, to retinal organoids and organotypic retinal explants, to the cultivation of whole eyeballs. The advantages and disadvantages of these methods are compared and evaluated, also in view of the 3R principles (i.e., the refinement, reduction, and replacement of live animal testing), to identify suitable in vitro alternatives for in vivo experimentation. The article further expands on the use of in vitro models to test and evaluate neuroprotective treatments and to aid the development of retinal drug delivery systems. Among the pharmacological agents tested and characterized in vitro are such that interfere with aberrant cyclic guanosine monophosphate (cGMP) -signaling or such that inhibit the activities of poly (ADP-ribose) polymerase (PARP), histone deacetylases (HDAC), calpain-type proteases, as well as unfolded protein response-related stress. We then introduce nanoparticle-based drug delivery systems and discuss how different in vitro systems may be used to assess their efficacy in the treatment of retinal diseases. The summary provides a brief comparison of available in vitro models and relates their advantages and limitations to the various experimental requirements, for instance, for studies into disease mechanisms, novel treatments, or retinal toxicity. In many cases, combinations of different in vitro models may be required to obtain a comprehensive view of the efficacy of a given retinal neuroprotection approach.
Collapse
Affiliation(s)
- Yu Zhu
- Cell Death Mechanisms Group, Institute for Ophthalmic Research, University of Tübingen, Tübingen, Germany
- Graduate Training Centre of Neuroscience, University of Tübingen, Tübingen, Germany
| | - Bowen Cao
- Graduate Training Centre of Neuroscience, University of Tübingen, Tübingen, Germany
- Molecular Biology of Retinal Degenerations, Institute for Ophthalmic Research, University of Tübingen, Tübingen, Germany
| | - Arianna Tolone
- Cell Death Mechanisms Group, Institute for Ophthalmic Research, University of Tübingen, Tübingen, Germany
| | - Jie Yan
- Cell Death Mechanisms Group, Institute for Ophthalmic Research, University of Tübingen, Tübingen, Germany
- Graduate Training Centre of Neuroscience, University of Tübingen, Tübingen, Germany
| | - Gustav Christensen
- Cell Death Mechanisms Group, Institute for Ophthalmic Research, University of Tübingen, Tübingen, Germany
- Graduate Training Centre of Neuroscience, University of Tübingen, Tübingen, Germany
| | - Blanca Arango-Gonzalez
- Molecular Biology of Retinal Degenerations, Institute for Ophthalmic Research, University of Tübingen, Tübingen, Germany
| | - Marius Ueffing
- Molecular Biology of Retinal Degenerations, Institute for Ophthalmic Research, University of Tübingen, Tübingen, Germany
- *Correspondence: Marius Ueffing,
| | - François Paquet-Durand
- Cell Death Mechanisms Group, Institute for Ophthalmic Research, University of Tübingen, Tübingen, Germany
- François Paquet-Durand,
| |
Collapse
|
4
|
Tworig JM, Feller MB. Müller Glia in Retinal Development: From Specification to Circuit Integration. Front Neural Circuits 2022; 15:815923. [PMID: 35185477 PMCID: PMC8856507 DOI: 10.3389/fncir.2021.815923] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 12/23/2021] [Indexed: 01/21/2023] Open
Abstract
Müller glia of the retina share many features with astroglia located throughout the brain including maintenance of homeostasis, modulation of neurotransmitter spillover, and robust response to injury. Here we present the molecular factors and signaling events that govern Müller glial specification, patterning, and differentiation. Next, we discuss the various roles of Müller glia in retinal development, which include maintaining retinal organization and integrity as well as promoting neuronal survival, synaptogenesis, and phagocytosis of debris. Finally, we review the mechanisms by which Müller glia integrate into retinal circuits and actively participate in neuronal signaling during development.
Collapse
Affiliation(s)
- Joshua M. Tworig
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, United States
- *Correspondence: Joshua M. Tworig,
| | - Marla B. Feller
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, United States
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA, United States
| |
Collapse
|
5
|
Schmalen A, Lorenz L, Grosche A, Pauly D, Deeg CA, Hauck SM. Proteomic Phenotyping of Stimulated Müller Cells Uncovers Profound Pro-Inflammatory Signaling and Antigen-Presenting Capacity. Front Pharmacol 2021; 12:771571. [PMID: 34776983 PMCID: PMC8585775 DOI: 10.3389/fphar.2021.771571] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 10/12/2021] [Indexed: 01/15/2023] Open
Abstract
Müller cells are the main macroglial cells of the retina exerting a wealth of functions to maintain retinal homoeostasis. Upon pathological changes in the retina, they become gliotic with both protective and detrimental consequences. Accumulating data also provide evidence for a pivotal role of Müller cells in the pathogenesis of diabetic retinopathy (DR). While microglial cells, the resident immune cells of the retina are considered as main players in inflammatory processes associated with DR, the implication of activated Müller cells in chronic retinal inflammation remains to be elucidated. In order to assess the signaling capacity of Müller cells and their role in retinal inflammation, we performed in-depth proteomic analysis of Müller cell proteomes and secretomes after stimulation with INFγ, TNFα, IL-4, IL-6, IL-10, VEGF, TGFβ1, TGFβ2 and TGFβ3. We used both, primary porcine Müller cells and the human Müller cell line MIO-M1 for our hypothesis generating approach. Our results point towards an intense signaling capacity of Müller cells, which reacted in a highly discriminating manner upon treatment with different cytokines. Stimulation of Müller cells resulted in a primarily pro-inflammatory phenotype with secretion of cytokines and components of the complement system. Furthermore, we observed evidence for mitochondrial dysfunction, implying oxidative stress after treatment with the various cytokines. Finally, both MIO-M1 cells and primary porcine Müller cells showed several characteristics of atypical antigen-presenting cells, as they are capable of inducing MHC class I and MHC class II with co-stimulatory molecules. In line with this, they express proteins associated with formation and maturation of phagosomes. Thus, our findings underline the importance of Müller cell signaling in the inflamed retina, indicating an active role in chronic retinal inflammation.
Collapse
Affiliation(s)
- Adrian Schmalen
- Research Unit Protein Science and Metabolomics and Proteomics Core, Helmholtz Center Munich, German Research Center for Environmental Health (GmbH), Neuherberg, Germany.,Chair of Physiology, Department of Veterinary Sciences, LMU Munich, Martinsried, Germany
| | - Lea Lorenz
- Chair of Physiology, Department of Veterinary Sciences, LMU Munich, Martinsried, Germany
| | - Antje Grosche
- Department of Physiological Genomics, Biomedical Center, LMU Munich, Martinsried, Germany
| | - Diana Pauly
- Experimental Ophthalmology, Philipps-University Marburg, Marburg, Germany.,Department of Ophthalmology, University Hospital Regensburg, Regensburg, Germany
| | - Cornelia A Deeg
- Chair of Physiology, Department of Veterinary Sciences, LMU Munich, Martinsried, Germany
| | - Stefanie M Hauck
- Research Unit Protein Science and Metabolomics and Proteomics Core, Helmholtz Center Munich, German Research Center for Environmental Health (GmbH), Neuherberg, Germany
| |
Collapse
|
6
|
Musada GR, Dvoriantchikova G, Myer C, Ivanov D, Bhattacharya SK, Hackam AS. The effect of extrinsic Wnt/β-catenin signaling in Muller glia on retinal ganglion cell neurite growth. Dev Neurobiol 2020; 80:98-110. [PMID: 32267608 DOI: 10.1002/dneu.22741] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 03/04/2020] [Accepted: 03/31/2020] [Indexed: 12/23/2022]
Abstract
Muller glia are the predominant glial cell type in the retina, and they structurally and metabolically support retinal neurons. Wnt/β-catenin signaling pathways play essential roles in the central nervous system, including glial and neuronal differentiation, axonal growth, and neuronal regeneration. We previously demonstrated that Wnt signaling activation in retinal ganglion cells (RGC) induces axonal regeneration after injury. However, whether Wnt signaling within the adjacent Muller glia plays an axongenic role is not known. In this study, we characterized the effect of Wnt signaling in Muller glia on RGC neurite growth. Primary Muller glia and RGC cells were grown in transwell co-cultures and adenoviral constructs driving Wnt regulatory genes were used to activate and inhibit Wnt signaling specifically in primary Muller glia. Our results demonstrated that activation of Wnt signaling in Muller glia significantly increased RGC average neurite length and branch site number. In addition, the secretome of Muller glia after induction or inhibition of Wnt signaling was characterized using protein profiling of conditioned media by Q Exactive mass spectrometry. The Muller glia secretome after activation of Wnt signaling had distinct and more numerous proteins involved in regulation of axon extension, axon projection and cell adhesion. Furthermore, we showed highly redundant expression of Wnt signaling ligands in Muller glia and Frizzled receptors in RGCs and Muller glia. Therefore, this study provides new information about potential neurite growth promoting molecules in the Muller glia secretome, and identified Wnt-dependent target proteins that may mediate the axonal growth.
Collapse
Affiliation(s)
- Ganeswara Rao Musada
- Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Galina Dvoriantchikova
- Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Ciara Myer
- Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Dmitry Ivanov
- Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Sanjoy K Bhattacharya
- Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Abigail S Hackam
- Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL, USA
| |
Collapse
|
7
|
Blond F, Léveillard T. Functional Genomics of the Retina to Elucidate its Construction and Deconstruction. Int J Mol Sci 2019; 20:E4922. [PMID: 31590277 PMCID: PMC6801968 DOI: 10.3390/ijms20194922] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 10/01/2019] [Indexed: 12/20/2022] Open
Abstract
The retina is the light sensitive part of the eye and nervous tissue that have been used extensively to characterize the function of the central nervous system. The retina has a central position both in fundamental biology and in the physiopathology of neurodegenerative diseases. We address the contribution of functional genomics to the understanding of retinal biology by reviewing key events in their historical perspective as an introduction to major findings that were obtained through the study of the retina using genomics, transcriptomics and proteomics. We illustrate our purpose by showing that most of the genes of interest for retinal development and those involved in inherited retinal degenerations have a restricted expression to the retina and most particularly to photoreceptors cells. We show that the exponential growth of data generated by functional genomics is a future challenge not only in terms of storage but also in terms of accessibility to the scientific community of retinal biologists in the future. Finally, we emphasize on novel perspectives that emerge from the development of redox-proteomics, the new frontier in retinal biology.
Collapse
Affiliation(s)
- Frédéric Blond
- Department of Genetics, Sorbonne Université, INSERM, CNRS, Institut de la Vision, 17 rue Moreau, F-75012 Paris, France.
| | - Thierry Léveillard
- Department of Genetics, Sorbonne Université, INSERM, CNRS, Institut de la Vision, 17 rue Moreau, F-75012 Paris, France.
| |
Collapse
|
8
|
Abstract
Osteopontin (OPN) is a secreted glycosylated phosphoprotein that influences cell survival, inflammation, migration, and homeostasis after injury. As the role of OPN in the retina remains unclear, this study issue was addressed by aiming to study how the absence of OPN in knock-out mice affects the retina and the influence of age on these effects. The study focused on retinal ganglion cells (RGCs) and glial cells (astrocytes, Müller cells, and resident microglia) in 3- and 20-month-old mice. The number of RGCs in the retina was quantified and the area occupied by astrocytes was measured. In addition, the morphology of Müller cells and microglia was examined in retinal sections. The deficiency in OPN reduces RGC density by 25.09% at 3 months of age and by 60.37% at 20 months of age. The astrocyte area was also reduced by 51.01% in 3-month-old mice and by 57.84% at 20 months of age, although Müller glia and microglia did not seem to be affected by the lack of OPN. This study demonstrates the influence of OPN on astrocytes and RGCs, whereby the absence of OPN in the retina diminishes the area occupied by astrocytes and produces a secondary reduction in the number of RGCs. Accordingly, OPN could be a target to develop therapies to combat neurodegenerative diseases and astrocytes may represent a key mediator of such effects.
Collapse
|
9
|
Ruzafa N, Pereiro X, Lepper MF, Hauck SM, Vecino E. A Proteomics Approach to Identify Candidate Proteins Secreted by Müller Glia that Protect Ganglion Cells in the Retina. Proteomics 2018; 18:e1700321. [PMID: 29645351 DOI: 10.1002/pmic.201700321] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Revised: 11/20/2017] [Indexed: 12/27/2022]
Abstract
The retinal Müller glial cells, can enhance the survival and activity of neurons, especially of retinal ganglion cells (RGCs), which are the neurons affected in diseases such as glaucoma, diabetes, and retinal ischemia. It has been demonstrated that Müller glia release neurotrophic factors that support RGC survival, yet many of these factors remain to be elucidated. To define these neurotrophic factors, a quantitative proteomic approach was adopted aiming at identifying neuroprotective proteins. First, the conditioned medium from porcine Müller cells cultured in vitro under three different conditions were isolated and these conditioned media were tested for their capacity to promote survival of primary adult RGCs in culture. Mass spectrometry was used to identify and quantify proteins in the conditioned medium, and osteopontin (SPP1), clusterin (CLU), and basigin (BSG) were selected as candidate neuroprotective factors. SPP1 and BSG significantly enhance RGC survival in vitro, indicating that the survival-promoting activity of the Müller cell secretome is multifactorial, and that SPP1 and BSG contribute to this activity. Thus, the quantitative proteomics strategy identify proteins secreted by Müller glia that are potentially novel neuroprotectants, and it may also serve to identify other bioactive proteins or molecular markers.
Collapse
Affiliation(s)
- Noelia Ruzafa
- Department of Cell Biology and Histology, University of Basque Country UPV/EHU, Leioa, 48940, Vizcaya, Spain
| | - Xandra Pereiro
- Department of Cell Biology and Histology, University of Basque Country UPV/EHU, Leioa, 48940, Vizcaya, Spain
| | - Marlen F Lepper
- Research Unit Protein Science, Helmholtz Zentrum München, German Research Center for Environmental Health GmbH, Neuherberg, D-80939, Germany
| | - Stefanie M Hauck
- Research Unit Protein Science, Helmholtz Zentrum München, German Research Center for Environmental Health GmbH, Neuherberg, D-80939, Germany
| | - Elena Vecino
- Department of Cell Biology and Histology, University of Basque Country UPV/EHU, Leioa, 48940, Vizcaya, Spain
| |
Collapse
|
10
|
Retinal organotypic culture – A candidate for research on retinas. Tissue Cell 2018; 51:1-7. [DOI: 10.1016/j.tice.2018.01.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Revised: 01/26/2018] [Accepted: 01/29/2018] [Indexed: 01/09/2023]
|
11
|
Zalis MC, Johansson S, Englund-Johansson U. Immunocytochemical Profiling of Cultured Mouse Primary Retinal Cells. J Histochem Cytochem 2017; 65:223-239. [PMID: 28151698 PMCID: PMC5407564 DOI: 10.1369/0022155416689675] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Primary retinal cell cultures and immunocytochemistry are important experimental platforms in ophthalmic research. Translation of retinal cells from their native environment to the in vitro milieu leads to cellular stress, jeopardizing their in vivo phenotype features. Moreover, the specificity and stability of many retinal immunochemical markers are poorly evaluated in retinal cell cultures. Hence, we here evaluated the expression profile of 17 retinal markers, that is, recoverin, rhodopsin, arrestin, Chx10, PKC, DCX, CRALBP, GS, vimentin, TPRV4, RBPMS, Brn3a, β-tubulin III, NeuN, MAP2, GFAP, and synaptophysin. At 7 and 18 days of culture, the marker expression profiles of mouse postnatal retinal cells were compared with their age-matched in vivo retinas. We demonstrate stable in vitro expression of all markers, except for arrestin and CRALBP. Differences in cellular expression and location of some markers were observed, both over time in culture and compared with the age-matched retina. We hypothesize that these differences are likely culture condition dependent. Taken together, we suggest a thorough evaluation of the antibodies in specific culture settings, before extrapolating the in vitro results to an in vivo setting. Moreover, the identification of specific cell types may require a combination of different genes expressed or markers with structural information.
Collapse
Affiliation(s)
- Marina C Zalis
- Division of Ophthalmology, Department of Clinical Sciences in Lund, Lund University, Lund, Sweden (MCZ, SJ, UEJ)
| | - Sebastian Johansson
- Division of Ophthalmology, Department of Clinical Sciences in Lund, Lund University, Lund, Sweden (MCZ, SJ, UEJ)
| | - Ulrica Englund-Johansson
- Division of Ophthalmology, Department of Clinical Sciences in Lund, Lund University, Lund, Sweden (MCZ, SJ, UEJ)
| |
Collapse
|
12
|
Ly A, Merl-Pham J, Priller M, Gruhn F, Senninger N, Ueffing M, Hauck SM. Proteomic Profiling Suggests Central Role Of STAT Signaling during Retinal Degeneration in the rd10 Mouse Model. J Proteome Res 2016; 15:1350-9. [PMID: 26939627 DOI: 10.1021/acs.jproteome.6b00111] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The rd10 mouse is a model of retinitis pigmentosa characterized by the dysfunction of a rod-photoreceptor-specific phosphodiesterase. Compared to the rd1 mouse, retinal degeneration in the rd10 mouse begins later in age with a milder phenotype, making it ideal for investigating cell death and neuroprotective mechanisms. Alterations in the rd10 retina proteome at pre-, peak-, and postdegenerative time points were examined using a modified high-recovery filter-aided sample preparation (FASP) method in combination with label-free quantitative mass spectrometry, generating a proteomic data set on almost 3000 proteins. Our data confirmed a period of protein expression similar to age-matched wild-type mice predegeneration, with decreases in proteins associated with phototransduction and increases in signaling proteins at peak- and postdegenerative stages. A total of 57 proteins were differentially expressed in the rd10 retinae during peak-degeneration, compared to those in wild-type mice after stringent FDR correction (q < 0.05). Network analysis separated these proteins into one cluster of down-regulated photoreceptor proteins and one of up-regulated signaling proteins centered around GFAP, STAT3, and STAT1. This is the first study to identify alterations in STAT1 in the rd10 mouse, which were confirmed with gene expression and immunoblotting experiments, underpinning the efficacy of our approach. This unique proteomic data set on protein dynamics during retinal degeneration could serve as an information source for vision research in the future.
Collapse
Affiliation(s)
- Alice Ly
- Research Unit Protein Science, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH) , Neuherberg, D-85764 Germany.,Research Unit Analytical Pathology, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH) , Neuherberg, D-85764 Germany
| | - Juliane Merl-Pham
- Research Unit Protein Science, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH) , Neuherberg, D-85764 Germany
| | - Markus Priller
- Research Unit Protein Science, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH) , Neuherberg, D-85764 Germany
| | - Fabian Gruhn
- Research Unit Protein Science, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH) , Neuherberg, D-85764 Germany
| | - Nicole Senninger
- Research Unit Protein Science, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH) , Neuherberg, D-85764 Germany
| | - Marius Ueffing
- Research Unit Protein Science, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH) , Neuherberg, D-85764 Germany.,Centre of Ophthalmology, Institute for Ophthalmic Research, University of Tübingen , Tübingen, 72076 Germany
| | - Stefanie M Hauck
- Research Unit Protein Science, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH) , Neuherberg, D-85764 Germany
| |
Collapse
|
13
|
Chaki M, Shekariesfahlan A, Ageeva A, Mengel A, von Toerne C, Durner J, Lindermayr C. Identification of nuclear target proteins for S-nitrosylation in pathogen-treated Arabidopsis thaliana cell cultures. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2015; 238:115-26. [PMID: 26259180 DOI: 10.1016/j.plantsci.2015.06.011] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Revised: 06/05/2015] [Accepted: 06/08/2015] [Indexed: 05/18/2023]
Abstract
Nitric oxide (NO) is a significant signalling molecule involved in the regulation of many different physiological processes in plants. One of the most imperative regulatory modes of action of NO is protein S-nitrosylation--the covalent attachment of an NO group to the sulfur atom of cysteine residues. In this study, we focus on S-nitrosylation of Arabidopsis nuclear proteins after pathogen infection. After treatment of Arabidopsis suspension cell cultures with pathogens, nuclear proteins were extracted and treated with the S-nitrosylating agent S-nitrosoglutathione (GSNO). A biotin switch assay was performed and biotin-labelled proteins were purified by neutravidin affinity chromatography and identified by mass spectrometry. A total of 135 proteins were identified, whereas nuclear localization has been described for 122 proteins of them. 117 of these proteins contain at least one cysteine residue. Most of the S-nitrosylated candidates were involved in protein and RNA metabolism, stress response, and cell organization and division. Interestingly, two plant-specific histone deacetylases were identified suggesting that nitric oxide regulated epigenetic processes in plants. In sum, this work provides a new collection of targets for protein S-nitrosylation in Arabidopsis and gives insight into the regulatory function of NO in the nucleus during plant defense response. Moreover, our data extend the knowledge on the regulatory function of NO in events located in the nucleus.
Collapse
Affiliation(s)
- Mounira Chaki
- Institute of Biochemical Plant Pathology, Helmholtz Zentrum München-German Research Center for Environmental Health, Ingolstädter Landstrasse 1, 85764 Neuherberg, Germany
| | - Azam Shekariesfahlan
- Institute of Biochemical Plant Pathology, Helmholtz Zentrum München-German Research Center for Environmental Health, Ingolstädter Landstrasse 1, 85764 Neuherberg, Germany
| | - Alexandra Ageeva
- Institute of Biochemical Plant Pathology, Helmholtz Zentrum München-German Research Center for Environmental Health, Ingolstädter Landstrasse 1, 85764 Neuherberg, Germany
| | - Alexander Mengel
- Institute of Biochemical Plant Pathology, Helmholtz Zentrum München-German Research Center for Environmental Health, Ingolstädter Landstrasse 1, 85764 Neuherberg, Germany
| | - Christine von Toerne
- Research Unit Protein Science, Helmholtz Zentrum München-German Research Center for Environmental Health, 85764 Neuherberg, Germany
| | - Jörg Durner
- Institute of Biochemical Plant Pathology, Helmholtz Zentrum München-German Research Center for Environmental Health, Ingolstädter Landstrasse 1, 85764 Neuherberg, Germany; Chair of Biochemical Plant Pathology, Technische Universität München, 85354 Freising, Germany
| | - Christian Lindermayr
- Institute of Biochemical Plant Pathology, Helmholtz Zentrum München-German Research Center for Environmental Health, Ingolstädter Landstrasse 1, 85764 Neuherberg, Germany.
| |
Collapse
|
14
|
Grosche A, Hauser A, Lepper MF, Mayo R, von Toerne C, Merl-Pham J, Hauck SM. The Proteome of Native Adult Müller Glial Cells From Murine Retina. Mol Cell Proteomics 2015; 15:462-80. [PMID: 26324419 PMCID: PMC4739667 DOI: 10.1074/mcp.m115.052183] [Citation(s) in RCA: 116] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Indexed: 12/26/2022] Open
Abstract
To date, the proteomic profiling of Müller cells, the dominant macroglia of the retina, has been hampered because of the absence of suitable enrichment methods. We established a novel protocol to isolate native, intact Müller cells from adult murine retinae at excellent purity which retain in situ morphology and are well suited for proteomic analyses. Two different strategies of sample preparation - an in StageTips (iST) and a subcellular fractionation approach including cell surface protein profiling were used for quantitative liquid chromatography-mass spectrometry (LC-MSMS) comparing Müller cell-enriched to depleted neuronal fractions. Pathway enrichment analyses on both data sets enabled us to identify Müller cell-specific functions which included focal adhesion kinase signaling, signal transduction mediated by calcium as second messenger, transmembrane neurotransmitter transport and antioxidant activity. Pathways associated with RNA processing, cellular respiration and phototransduction were enriched in the neuronal subpopulation. Proteomic results were validated for selected Müller cell genes by quantitative real time PCR, confirming the high expression levels of numerous members of the angiogenic and anti-inflammatory annexins and antioxidant enzymes (e.g. paraoxonase 2, peroxiredoxin 1, 4 and 6). Finally, the significant enrichment of antioxidant proteins in Müller cells was confirmed by measurements on vital retinal cells using the oxidative stress indicator CM-H2DCFDA. In contrast to photoreceptors or bipolar cells, Müller cells were most efficiently protected against H2O2-induced reactive oxygen species formation, which is in line with the protein repertoire identified in the proteomic profiling. Our novel approach to isolate intact glial cells from adult retina in combination with proteomic profiling enabled the identification of novel Müller glia specific proteins, which were validated as markers and for their functional impact in glial physiology. This provides the basis to allow the discovery of novel glial specializations and will enable us to elucidate the role of Müller cells in retinal pathologies — a topic still controversially discussed.
Collapse
Affiliation(s)
- Antje Grosche
- From the ‡Insitute of Human Genetics, University of Regensburg, D-93053 Regensburg, Germany;
| | - Alexandra Hauser
- From the ‡Insitute of Human Genetics, University of Regensburg, D-93053 Regensburg, Germany
| | - Marlen Franziska Lepper
- §Research Unit Protein Science, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), D-85764 Neuherberg, Germany
| | - Rebecca Mayo
- From the ‡Insitute of Human Genetics, University of Regensburg, D-93053 Regensburg, Germany
| | - Christine von Toerne
- §Research Unit Protein Science, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), D-85764 Neuherberg, Germany
| | - Juliane Merl-Pham
- §Research Unit Protein Science, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), D-85764 Neuherberg, Germany
| | - Stefanie M Hauck
- §Research Unit Protein Science, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), D-85764 Neuherberg, Germany
| |
Collapse
|
15
|
Graessel A, Hauck SM, von Toerne C, Kloppmann E, Goldberg T, Koppensteiner H, Schindler M, Knapp B, Krause L, Dietz K, Schmidt-Weber CB, Suttner K. A Combined Omics Approach to Generate the Surface Atlas of Human Naive CD4+ T Cells during Early T-Cell Receptor Activation. Mol Cell Proteomics 2015; 14:2085-102. [PMID: 25991687 DOI: 10.1074/mcp.m114.045690] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Indexed: 12/24/2022] Open
Abstract
Naive CD4(+) T cells are the common precursors of multiple effector and memory T-cell subsets and possess a high plasticity in terms of differentiation potential. This stem-cell-like character is important for cell therapies aiming at regeneration of specific immunity. Cell surface proteins are crucial for recognition and response to signals mediated by other cells or environmental changes. Knowledge of cell surface proteins of human naive CD4(+) T cells and their changes during the early phase of T-cell activation is urgently needed for a guided differentiation of naive T cells and may support the selection of pluripotent cells for cell therapy. Periodate oxidation and aniline-catalyzed oxime ligation technology was applied with subsequent quantitative liquid chromatography-tandem MS to generate a data set describing the surface proteome of primary human naive CD4(+) T cells and to monitor dynamic changes during the early phase of activation. This led to the identification of 173 N-glycosylated surface proteins. To independently confirm the proteomic data set and to analyze the cell surface by an alternative technique a systematic phenotypic expression analysis of surface antigens via flow cytometry was performed. This screening expanded the previous data set, resulting in 229 surface proteins, which were expressed on naive unstimulated and activated CD4(+) T cells. Furthermore, we generated a surface expression atlas based on transcriptome data, experimental annotation, and predicted subcellular localization, and correlated the proteomics result with this transcriptional data set. This extensive surface atlas provides an overall naive CD4(+) T cell surface resource and will enable future studies aiming at a deeper understanding of mechanisms of T-cell biology allowing the identification of novel immune targets usable for the development of therapeutic treatments.
Collapse
Affiliation(s)
- Anke Graessel
- From the ‡Center of Allergy and Environment (ZAUM), Technische Universität und Helmholtz Zentrum München, Munich, Germany
| | - Stefanie M Hauck
- §Research Unit Protein Science, Helmholtz Zentrum München, Neuherberg, Germany
| | | | - Edda Kloppmann
- ¶Department of Informatics, Bioinformatics & Computational Biology i12, Technische Universität München, Garching/Munich, Germany; ‖New York Consortium on Membrane Protein Structure (NYCOMPS), New York Structural Biology Center, New York, New York 10027
| | - Tatyana Goldberg
- ¶Department of Informatics, Bioinformatics & Computational Biology i12, Technische Universität München, Garching/Munich, Germany; **TUM Graduate School, Center of Doctoral Studies in Informatics and its Applications (CeDoSIA), Technische Universität München, Munich, Germany
| | | | - Michael Schindler
- ‡‡Institute of Virology, Helmholtz Zentrum München, Neuherberg, Germany; §§Institute of Medical Virology and Epidemiology of Viral Diseases, University Clinic Tübingen, Tübingen, Germany
| | - Bettina Knapp
- ¶¶Institute of Computational Biology, Helmholtz Zentrum München, Neuherberg, Germany
| | - Linda Krause
- ¶¶Institute of Computational Biology, Helmholtz Zentrum München, Neuherberg, Germany
| | - Katharina Dietz
- From the ‡Center of Allergy and Environment (ZAUM), Technische Universität und Helmholtz Zentrum München, Munich, Germany; ‖‖DZL- Member of the German Lung Research Center
| | - Carsten B Schmidt-Weber
- From the ‡Center of Allergy and Environment (ZAUM), Technische Universität und Helmholtz Zentrum München, Munich, Germany; ‖‖DZL- Member of the German Lung Research Center
| | - Kathrin Suttner
- From the ‡Center of Allergy and Environment (ZAUM), Technische Universität und Helmholtz Zentrum München, Munich, Germany; ‖‖DZL- Member of the German Lung Research Center
| |
Collapse
|
16
|
Rutar M, Natoli R, Chia RX, Valter K, Provis JM. Chemokine-mediated inflammation in the degenerating retina is coordinated by Müller cells, activated microglia, and retinal pigment epithelium. J Neuroinflammation 2015; 12:8. [PMID: 25595590 PMCID: PMC4308937 DOI: 10.1186/s12974-014-0224-1] [Citation(s) in RCA: 91] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Accepted: 12/18/2014] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Monocyte infiltration is involved in the pathogenesis of many retinal degenerative conditions. This process traditionally depends on local expression of chemokines, though the roles of many of these in the degenerating retina are unclear. Here, we investigate expression and in situ localization of the broad chemokine response in a light-induced model of retinal degeneration. METHODS Sprague-Dawley (SD) rats were exposed to 1,000 lux light damage (LD) for up to 24 hrs. At time points during (1 to 24 hrs) and following (3 and 7 days) exposure, animals were euthanized and retinas processed. Microarray analysis assessed differential expression of chemokines. Some genes were further investigated using polymerase chain reaction (PCR) and in situ hybridization and contrasted with photoreceptor apoptosis using terminal deoxynucleotidyl transferase dUTP nick-end labeling (TUNEL). Recruitment of retinal CD45 (+) leukocytes was determined via fluorescence activated cell sorting (FACS), and expression of chemokine receptors determined using PCR. RESULTS Exposure to 24 hrs of LD resulted in differential expression of chemokines including Ccl3, Ccl4, Ccl7, Cxcl1, and Cxcl10. Their upregulation correlated strongly with peak photoreceptor death, at 24 hrs exposure. In situ hybridization revealed that the modulated chemokines were expressed by a combination of Müller cells, activated microglia, and retinal pigment epithelium (RPE). This preceded large increases in the number of CD45(+) cells at 3- and 7-days post exposure, which expressed a corresponding repertoire of chemokine receptors. CONCLUSIONS Our data indicate that retinal degeneration induces upregulation of a broad chemokine response whose expression is coordinated by Müller cells, microglia, and RPE. The findings inform our understanding of the processes govern the trafficking of leukocytes, which are contributors in the pathology of retinal degenerations.
Collapse
Affiliation(s)
- Matt Rutar
- John Curtin School of Medical Research, The Australian National University, Building 131, Garran Road, Canberra, ACT 2601, Australia. .,ANU Medical School, The Australian National University, 54 Mills Road, Canberra, ACT 2601, Australia.
| | - Riccardo Natoli
- John Curtin School of Medical Research, The Australian National University, Building 131, Garran Road, Canberra, ACT 2601, Australia. .,ANU Medical School, The Australian National University, 54 Mills Road, Canberra, ACT 2601, Australia.
| | - R X Chia
- John Curtin School of Medical Research, The Australian National University, Building 131, Garran Road, Canberra, ACT 2601, Australia.
| | - Krisztina Valter
- John Curtin School of Medical Research, The Australian National University, Building 131, Garran Road, Canberra, ACT 2601, Australia. .,ANU Medical School, The Australian National University, 54 Mills Road, Canberra, ACT 2601, Australia.
| | - Jan M Provis
- John Curtin School of Medical Research, The Australian National University, Building 131, Garran Road, Canberra, ACT 2601, Australia. .,ANU Medical School, The Australian National University, 54 Mills Road, Canberra, ACT 2601, Australia.
| |
Collapse
|
17
|
Role of leukemia inhibitory factor in the nervous system and its pathology. Rev Neurosci 2015; 26:443-59. [DOI: 10.1515/revneuro-2014-0086] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Accepted: 02/22/2015] [Indexed: 11/15/2022]
Abstract
AbstractLeukemia inhibitory factor (LIF) is a multifunction cytokine that has various effects on different tissues and cell types in rodents and humans; however, its insufficiency has a relatively mild impact. This could explain why only some aspects of LIF activity are in the limelight, whereas other aspects are not well known. In this review, the LIF structure, signaling pathway, and primary roles in the development and function of an organism are reviewed, and the effects of LIF on stem cell growth and differentiation, which are important for its use in cell culturing, are described. The focus is on the roles of LIF in central nervous system development and on the modulation of its physiological functions as well as the involvement of LIF in the pathogenesis of brain diseases and injuries. Finally, LIF and its signaling pathway are discussed as potential targets of therapeutic interventions to influence both negative phenomena and regenerative processes following brain injury.
Collapse
|