1
|
Silveira THR, Silva FH, Hill WG, Antunes E, de Oliveira MG. Targeting NADPH Oxidase as an Approach for Diabetic Bladder Dysfunction. Antioxidants (Basel) 2024; 13:1155. [PMID: 39456409 PMCID: PMC11504422 DOI: 10.3390/antiox13101155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 06/26/2024] [Accepted: 06/27/2024] [Indexed: 10/28/2024] Open
Abstract
Diabetic bladder dysfunction (DBD) is the most prevalent complication of diabetes mellitus (DM), affecting >50% of all patients. Currently, no specific treatment is available for this condition. In the early stages of DBD, patients typically complain of frequent urination and often have difficulty sensing when their bladders are full. Over time, bladder function deteriorates to a decompensated state in which incontinence develops. Based on studies of diabetic changes in the eye, kidney, heart, and nerves, it is now recognized that DM causes tissue damage by altering redox signaling in target organs. NADPH oxidase (NOX), whose sole function is the production of reactive oxygen species (ROS), plays a pivotal role in other well-known and bothersome diabetic complications. However, there is a substantial gap in understanding how NOX controls bladder function in health and the impact of NOX on DBD. The current review provides a thorough overview of the various NOX isoforms and their roles in bladder function and discusses the importance of further investigating the role of NOXs as a key contributor to DBD pathogenesis, either as a trigger and/or an effector and potentially as a target.
Collapse
Affiliation(s)
| | - Fábio Henrique Silva
- Laboratory of Pharmacology, São Francisco University (USF), Bragança Paulista, Sao Paulo 12916-900, Brazil; (T.H.R.S.); (F.H.S.)
| | - Warren G. Hill
- Laboratory of Voiding Dysfunction, Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA;
| | - Edson Antunes
- Department of Translational Medicine, Pharmacology Area, Faculty of Medical Sciences, University of Campinas (UNICAMP), Campinas, Sao Paulo 13083-970, Brazil;
| | - Mariana G. de Oliveira
- Laboratory of Pharmacology, São Francisco University (USF), Bragança Paulista, Sao Paulo 12916-900, Brazil; (T.H.R.S.); (F.H.S.)
| |
Collapse
|
2
|
Hajimohammadi S, Rameshrad M, Karimi G. Exploring the therapeutic effects of sulforaphane: an in-depth review on endoplasmic reticulum stress modulation across different disease contexts. Inflammopharmacology 2024; 32:2185-2201. [PMID: 38922526 DOI: 10.1007/s10787-024-01506-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 06/06/2024] [Indexed: 06/27/2024]
Abstract
The endoplasmic reticulum (ER) is an intracellular organelle that contributes to the folding of proteins and calcium homeostasis. Numerous elements can disrupt its function, leading to the accumulation of proteins that are unfolded or misfolded in the lumen of the ER, a condition that is known as ER stress. This phenomenon can trigger cell death through the activation of apoptosis and inflammation. Glucoraphanin (GRA) is the predominant glucosinolate found in cruciferous vegetables. Various mechanical and biochemical processes activate the enzyme myrosinase, leading to the hydrolysis of glucoraphanin into the bioactive compound sulforaphane. Sulforaphane is an organosulfur compound that belongs to the isothiocyanate group. It possesses a wide range of activities and has shown remarkable potential as an anti-inflammatory, antioxidant, antitumor, and anti-angiogenic substance. Additionally, sulforaphane is resistant to oxidation, has been demonstrated to have low toxicity, and is considered well-tolerable in individuals. These properties make it a valuable natural dietary supplement for research purposes. Sulforaphane has been demonstrated as a potential candidate drug molecule for managing a range of diseases, primarily because of its potent antioxidant, anti-inflammatory, and anti-apoptotic properties, which can be mediated by modulation of ER stress pathways. This review seeks to cover a wealth of data supporting the broad range of protective functions of sulforaphane, improving various diseases, such as cardiovascular, central nervous system, liver, eye, and reproductive diseases, as well as diabetes, cancer, gastroenteritis, and osteoarthritis, through the amelioration of ER stress in both in vivo and in vitro studies.
Collapse
Affiliation(s)
- Samaneh Hajimohammadi
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
- Student Research Committee, Mashhad University of Medical Science, Mashhad, Iran
| | - Maryam Rameshrad
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Gholamreza Karimi
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
- Pharmaceutical Research Center, Pharmaceutical Research Institute, Mashhad University of Medical Science, Mashhad, Iran.
| |
Collapse
|
3
|
Oliveira AL, de Oliveira MG, Mónica FZ, Antunes E. Methylglyoxal and Advanced Glycation End Products (AGEs): Targets for the Prevention and Treatment of Diabetes-Associated Bladder Dysfunction? Biomedicines 2024; 12:939. [PMID: 38790901 PMCID: PMC11118115 DOI: 10.3390/biomedicines12050939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 04/11/2024] [Accepted: 04/17/2024] [Indexed: 05/26/2024] Open
Abstract
Methylglyoxal (MGO) is a highly reactive α-dicarbonyl compound formed endogenously from 3-carbon glycolytic intermediates. Methylglyoxal accumulated in plasma and urine of hyperglycemic and diabetic individuals acts as a potent peptide glycation molecule, giving rise to advanced glycation end products (AGEs) like arginine-derived hydroimidazolone (MG-H1) and carboxyethyl-lysine (CEL). Methylglyoxal-derived AGEs exert their effects mostly via activation of RAGE, a cell surface receptor that initiates multiple intracellular signaling pathways, favoring a pro-oxidant environment through NADPH oxidase activation and generation of high levels of reactive oxygen species (ROS). Diabetic bladder dysfunction is a bothersome urological complication in patients with poorly controlled diabetes mellitus and may comprise overactive bladder, urge incontinence, poor emptying, dribbling, incomplete emptying of the bladder, and urinary retention. Preclinical models of type 1 and type 2 diabetes have further confirmed the relationship between diabetes and voiding dysfunction. Interestingly, healthy mice supplemented with MGO for prolonged periods exhibit in vivo and in vitro bladder dysfunction, which is accompanied by increased AGE formation and RAGE expression, as well as by ROS overproduction in bladder tissues. Drugs reported to scavenge MGO and to inactivate AGEs like metformin, polyphenols, and alagebrium (ALT-711) have shown favorable outcomes on bladder dysfunction in diabetic obese leptin-deficient and MGO-exposed mice. Therefore, MGO, AGEs, and RAGE levels may be critically involved in the pathogenesis of bladder dysfunction in diabetic individuals. However, there are no clinical trials designed to test drugs that selectively inhibit the MGO-AGEs-RAGE signaling, aiming to reduce the manifestations of diabetes-associated bladder dysfunction. This review summarizes the current literature on the role of MGO-AGEs-RAGE-ROS axis in diabetes-associated bladder dysfunction. Drugs that directly inactivate MGO and ameliorate bladder dysfunction are also reviewed here.
Collapse
Affiliation(s)
| | | | | | - Edson Antunes
- Department of Translational Medicine, Pharmacology Area, Faculty of Medical Sciences, University of Campinas (UNICAMP), Campinas 13084-971, SP, Brazil; (A.L.O.); (M.G.d.O.); (F.Z.M.)
| |
Collapse
|
4
|
Izadmehr S, Fernandez-Hernandez H, Wiredja D, Kirschenbaum A, Lee-Poturalski C, Tavassoli P, Yao S, Schlatzer D, Hoon D, Difeo A, Levine AC, Mosquera JM, Galsky MD, Cordon-Cardo C, Narla G. Cooperativity of c-MYC with Krüppel-Like Factor 6 Splice Variant 1 induces phenotypic plasticity and promotes prostate cancer progression and metastasis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.30.577982. [PMID: 38352401 PMCID: PMC10862900 DOI: 10.1101/2024.01.30.577982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
Metastasis remains a major cause of morbidity and mortality in men with prostate cancer, and the functional impact of the genetic alterations, alone or in combination, driving metastatic disease remains incompletely understood. The proto-oncogene c-MYC, commonly deregulated in prostate cancer. Transgenic expression of c-MYC is sufficient to drive the progression to prostatic intraepithelial neoplasia and ultimately to moderately differentiated localized primary tumors, however, c-MYC-driven tumors are unable to progress through the metastatic cascade, suggesting that a "second-hit" is necessary in the milieu of aberrant c-MYC-driven signaling. Here, we identified cooperativity between c-MYC and KLF6-SV1, an oncogenic splice variant of the KLF6 gene. Transgenic mice that co-expressed KLF6-SV1 and c-MYC developed progressive and metastatic prostate cancer with a histological and molecular phenotype like human prostate cancer. Silencing c-MYC expression significantly reduced tumor burden in these mice supporting the necessity for c-MYC in tumor maintenance. Unbiased global proteomic analysis of tumors from these mice revealed significantly enriched vimentin, a dedifferentiation and pro-metastatic marker, induced by KLF6-SV1. c-MYC-positive tumors were also significantly enriched for KLF6-SV1 in human prostate cancer specimens. Our findings provide evidence that KLF6-SV1 is an enhancer of c-MYC-driven prostate cancer progression and metastasis, and a correlated genetic event in human prostate cancer with potential translational significance.
Collapse
Affiliation(s)
- Sudeh Izadmehr
- Department of Medicine, Division of Hematology and Medical Oncology, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY
| | | | - Danica Wiredja
- Center for Proteomics and Bioinformatics, Case Western Reserve University, Cleveland, OH
| | | | - Christine Lee-Poturalski
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Peyman Tavassoli
- Department of Pathology and Laboratory Medicine, The Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medical College, New York-Presbyterian Hospital, New York, NY
| | - Shen Yao
- The Division of Endocrinology, Diabetes and Bone Disease, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Daniela Schlatzer
- Center for Proteomics and Bioinformatics, Case Western Reserve University, Cleveland, OH
| | - Divya Hoon
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Analisa Difeo
- Department of Pathology, University of Michigan, Ann Arbor, MI
| | - Alice C. Levine
- The Division of Endocrinology, Diabetes and Bone Disease, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Juan-Miguel Mosquera
- Department of Pathology and Laboratory Medicine, The Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medical College, New York-Presbyterian Hospital, New York, NY
| | - Matthew D. Galsky
- Department of Medicine, Division of Hematology and Medical Oncology, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Carlos Cordon-Cardo
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Goutham Narla
- Division of Genetic Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, MI
| |
Collapse
|
5
|
MacIver B, Bien EM, de Oliveira MG, Hill WG. A Spectrum of Age- and Gender-Dependent Lower Urinary Tract Phenotypes in Three Mouse Models of Type 2 Diabetes. Metabolites 2023; 13:710. [PMID: 37367868 PMCID: PMC10304708 DOI: 10.3390/metabo13060710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 05/16/2023] [Accepted: 05/23/2023] [Indexed: 06/28/2023] Open
Abstract
Lower urinary tract symptoms are extremely common in people with diabetes and obesity, but the causes are unclear. Furthermore, it has proven difficult to reliably demonstrate bladder dysfunction in diabetic mouse models, thus limiting the ability to gain mechanistic insights. Therefore, the main objective of this experimental study was to characterize diabetic bladder dysfunction in three promising polygenic mouse models of type 2 diabetes. We performed periodic assessments of glucose tolerance and micturition (void spot assay) for eight to twelve months. Males and females and high-fat diets were tested. NONcNZO10/LtJ mice did not develop bladder dysfunction over twelve months. TALLYHO/JngJ males were severely hyperglycemic from two months of age (fasted blood glucose ~550 mg/dL), while females were moderately so. Although males exhibited polyuria, neither they nor the females exhibited bladder dysfunction over nine months. KK.Cg-Ay/J males and females were extremely glucose intolerant. Males exhibited polyuria, a significant increase in voiding frequency at four months (compensation), followed by a rapid drop in voiding frequency by six months (decompensation) which was accompanied by a dramatic increase in urine leakage, indicating loss of outlet control. At eight months, male bladders were dilated. Females also developed polyuria but compensated with larger voids. We conclude KK.Cg-Ay/J male mice recapitulate key symptoms noted in patients and are the best model of the three to study diabetic bladder dysfunction.
Collapse
Affiliation(s)
- Bryce MacIver
- Laboratory of Voiding Dysfunction, Nephrology Division, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, 99 Brookline Ave., Boston, MA 02215, USA; (B.M.); (E.M.B.)
| | - Erica M. Bien
- Laboratory of Voiding Dysfunction, Nephrology Division, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, 99 Brookline Ave., Boston, MA 02215, USA; (B.M.); (E.M.B.)
| | - Mariana G. de Oliveira
- Department of Pharmacology, Faculty of Medical Sciences, University of Campinas (UNICAMP), Campinas 13083-970, SP, Brazil;
| | - Warren G. Hill
- Laboratory of Voiding Dysfunction, Nephrology Division, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, 99 Brookline Ave., Boston, MA 02215, USA; (B.M.); (E.M.B.)
| |
Collapse
|
6
|
Skoraczyński G, Gambin A, Miasojedow B. Alignstein: Optimal transport for improved LC-MS retention time alignment. Gigascience 2022; 11:giac101. [PMID: 36329619 PMCID: PMC9633278 DOI: 10.1093/gigascience/giac101] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 08/24/2022] [Accepted: 09/30/2022] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND Reproducibility of liquid chromatography separation is limited by retention time drift. As a result, measured signals lack correspondence over replicates of the liquid chromatography-mass spectrometry (LC-MS) experiments. Correction of these errors is named retention time alignment and needs to be performed before further quantitative analysis. Despite the availability of numerous alignment algorithms, their accuracy is limited (e.g., for retention time drift that swaps analytes' elution order). RESULTS We present the Alignstein, an algorithm for LC-MS retention time alignment. It correctly finds correspondence even for swapped signals. To achieve this, we implemented the generalization of the Wasserstein distance to compare multidimensional features without any reduction of the information or dimension of the analyzed data. Moreover, Alignstein by design requires neither a reference sample nor prior signal identification. We validate the algorithm on publicly available benchmark datasets obtaining competitive results. Finally, we show that it can detect the information contained in the tandem mass spectrum by the spatial properties of chromatograms. CONCLUSIONS We show that the use of optimal transport effectively overcomes the limitations of existing algorithms for statistical analysis of mass spectrometry datasets. The algorithm's source code is available at https://github.com/grzsko/Alignstein.
Collapse
Affiliation(s)
- Grzegorz Skoraczyński
- Faculty of Mathematics, Informatics, and Mechanics, University of Warsaw, Stefana Banacha 2, 02-097 Warsaw, Poland
| | - Anna Gambin
- Faculty of Mathematics, Informatics, and Mechanics, University of Warsaw, Stefana Banacha 2, 02-097 Warsaw, Poland
| | - Błażej Miasojedow
- Faculty of Mathematics, Informatics, and Mechanics, University of Warsaw, Stefana Banacha 2, 02-097 Warsaw, Poland
| |
Collapse
|
7
|
Song QX, Sun Y, Deng K, Mei JY, Chermansky CJ, Damaser MS. Potential role of oxidative stress in the pathogenesis of diabetic bladder dysfunction. Nat Rev Urol 2022; 19:581-596. [PMID: 35974244 DOI: 10.1038/s41585-022-00621-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/22/2022] [Indexed: 11/09/2022]
Abstract
Diabetes mellitus is a chronic metabolic disease, posing a considerable threat to global public health. Treating systemic comorbidities has been one of the greatest clinical challenges in the management of diabetes. Diabetic bladder dysfunction, characterized by detrusor overactivity during the early stage of the disease and detrusor underactivity during the late stage, is a common urological complication of diabetes. Oxidative stress is thought to trigger hyperglycaemia-dependent tissue damage in multiple organs; thus, a growing body of literature has suggested a possible link between functional changes in urothelium, muscle and the corresponding innervations. Improved understanding of the mechanisms of oxidative stress could lead to the development of novel therapeutics to restore the redox equilibrium and scavenge excessive free radicals to normalize bladder function in patients with diabetes.
Collapse
Affiliation(s)
- Qi-Xiang Song
- Department of Urology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yi Sun
- Department of Pharmacology, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Kangli Deng
- Department of Urology, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jin-Yi Mei
- Department of Urology, Changhai Hospital, Naval Medical University, Shanghai, China
| | | | - Margot S Damaser
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA. .,Advanced Platform Technology Center, Louis Stokes Cleveland VA Medical Center, Cleveland, OH, USA. .,Glickman Urology and Kidney Institute, Cleveland Clinic, Cleveland, OH, USA.
| |
Collapse
|
8
|
Wang J, Dai L, Yue X, Shen C, Li T, Long L, Zhi Y, Wang Y, Shen G, Shi C, Liu Y, Fang Q, Li W. IR-61 Improves Voiding Function via Mitochondrial Protection in Diabetic Rats. Front Pharmacol 2021; 12:608637. [PMID: 33935703 PMCID: PMC8080033 DOI: 10.3389/fphar.2021.608637] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 02/26/2021] [Indexed: 12/26/2022] Open
Abstract
Diabetic bladder dysfunction (DBD) afflicts nearly half of diabetic patients, but effective treatment is lacking. In this study, IR-61, a novel heptamethine cyanine dye with potential antioxidant effects, was investigated to determine whether it can alleviate DBD. Rats were intraperitoneally injected with IR-61 or vehicle after diabetes was induced with streptozotocin. Before evaluating the effects of IR-61 in improving DBD by filling cystometry, we detected its distribution in tissues and subcellular organelles by confocal fluorescence imaging. Near infrared (NIR) imaging showed that IR-61 could accumulate at high levels in the bladders of diabetic rats, and confocal images demonstrated that it was mainly taken up by bladder smooth muscle cells (BSMCs) and localized in mitochondria. Then, filling cystometry illustrated that IR-61 significantly improved the bladder function of diabetic rats. The histomorphometry results showed that IR-61 effectively mitigated the pathological changes in bladder smooth muscle (BSM) in diabetic rats. Furthermore, IR-61 remarkably reduced the number of apoptotic BSMCs and the unfavorable expression of proteins related to the mitochondrial apoptotic pathway (Bcl-2, BAX, Cytochrome C, and cleaved Caspase-9) in diabetic rats. Moreover, the frozen section staining and transmission electron microscopy results proved that IR-61 significantly reduced the reactive oxygen species (ROS) levels and prevented the mitochondrial mass and morphology damage in the BSM of diabetic rats. In addition, IR-61 upregulated the expression of nuclear factor erythroid 2-related factor 2 (Nrf2) and its associated antioxidant proteins in the BSM of diabetic rats. Together, these results indicate that IR-61 can improve the voiding function of rats with DBD by protecting the mitochondria of BSMCs from oxidative stress, which is possibly mediated through the activation of the Nrf2 pathway.
Collapse
Affiliation(s)
- Jianwu Wang
- Department of Urology, The Third Affiliated Hospital (Gener Hospital) of Chongqing Medical University, Chongqing, China
| | - Linyong Dai
- Department of Urology, The Third Affiliated Hospital (Gener Hospital) of Chongqing Medical University, Chongqing, China
| | - Xiaofeng Yue
- Department of Urology, The Third Affiliated Hospital (Gener Hospital) of Chongqing Medical University, Chongqing, China
| | - Chongxing Shen
- Department of Urology, The Third Affiliated Hospital (Gener Hospital) of Chongqing Medical University, Chongqing, China
| | - Tong Li
- Department of Urology, The Third Affiliated Hospital (Gener Hospital) of Chongqing Medical University, Chongqing, China
| | - Lei Long
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Rocket Force Medicine, Third Military Medical University, Chongqing, China
| | - Yi Zhi
- Department of Urology, The Third Affiliated Hospital (Gener Hospital) of Chongqing Medical University, Chongqing, China
| | - Yawei Wang
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Rocket Force Medicine, Third Military Medical University, Chongqing, China
| | - Gufang Shen
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Rocket Force Medicine, Third Military Medical University, Chongqing, China
| | - Chunmeng Shi
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Rocket Force Medicine, Third Military Medical University, Chongqing, China
| | - Yunsheng Liu
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Rocket Force Medicine, Third Military Medical University, Chongqing, China
| | - Qiang Fang
- Department of Urology, The Third Affiliated Hospital (Gener Hospital) of Chongqing Medical University, Chongqing, China
| | - Weibing Li
- Department of Urology, The Third Affiliated Hospital (Gener Hospital) of Chongqing Medical University, Chongqing, China
| |
Collapse
|
9
|
Pioglitazone Alters the Proteomes of Normal Bladder Epithelial Cells but Shows No Tumorigenic Effects. Int Neurourol J 2020; 24:29-40. [PMID: 32252184 PMCID: PMC7136443 DOI: 10.5213/inj.1938186.093] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 11/30/2019] [Indexed: 12/18/2022] Open
Abstract
PURPOSE Pioglitazone, an antihyperglycemic drug, is widely used in diabetes mellitus patients with insulin resistance. Although pioglitazone is known to have a potential link to bladder cancer (BC), there have been contradictory results. This present study is designed to understand the regulatory mechanisms that drive the effects of pioglitazone on the bladder epithelial cells. METHODS Labeled liquid chromatography-tandem mass spectrometry-based proteomics profiling characterized the global proteomes of normal human bladder epithelial cells treated with or without pioglitazone. RESULTS This approach detected approximately 5,769 proteins in total. Of those 5,769 proteins, 124 were identified as being differentially expressed due to pioglitazone treatment. Further analysis identified 95 upregulated and 29 downregulated proteins (absolute log2 fold change >0.58 and P-value<0.05). The following functional gene enrichment analysis suggested that pioglitazone may be altering a few select biological processes, such as gene/chromatin silencing, by downregulating BMI1 (B lymphoma Mo-MLV insertion region 1 homolog), a polycomb complex protein. Further cell-based assays showed that cell adhesion molecules, epithelial-mesenchymal transition markers, and major signaling pathways were significantly downregulated by pioglitazone treatment. CONCLUSION These experimental results revealed the proteomic and biological alterations that occur in normal bladder cells in response to pioglitazone. These findings provided a landscape how bladder proteome is influenced by pioglitazone, which suggests the potential adverse effects of diabetes drugs and their links to bladder dysfunctions.
Collapse
|
10
|
Hashemi Gheinani A, Bigger-Allen A, Wacker A, Adam RM. Systems analysis of benign bladder disorders: insights from omics analysis. Am J Physiol Renal Physiol 2020; 318:F901-F910. [PMID: 32116016 DOI: 10.1152/ajprenal.00496.2019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The signaling pathways and effectors that drive the response of the bladder to nonmalignant insults or injury are incompletely defined. Interrogation of biological systems has been revolutionized by the ability to generate high-content data sets that capture information on a variety of biomolecules in cells and tissues, from DNA to RNA to proteins. In oncology, such an approach has led to the identification of cancer subtypes, improved prognostic capability, and has provided a basis for precision treatment of patients. In contrast, systematic molecular characterization of benign bladder disorders has lagged behind, such that our ability to uncover novel therapeutic interventions or increase our mechanistic understanding of such conditions is limited. Here, we discuss existing literature on the application of omics approaches, including transcriptomics and proteomics, to urinary tract conditions characterized by pathological tissue remodeling. We discuss molecular pathways implicated in remodeling, challenges in the field, and aspirations for omics-based research in the future.
Collapse
Affiliation(s)
- Ali Hashemi Gheinani
- Department of Urology, Boston Children's Hospital, Boston, Massachusetts.,Department of Surgery, Harvard Medical School, Boston, Massachusetts
| | - Alexander Bigger-Allen
- Department of Urology, Boston Children's Hospital, Boston, Massachusetts.,Biological and Biomedical Sciences PhD Program, Harvard Medical School, Boston, Massachusetts
| | - Amanda Wacker
- Department of Urology, Boston Children's Hospital, Boston, Massachusetts.,Florida State University, Tallahassee, Florida
| | - Rosalyn M Adam
- Department of Urology, Boston Children's Hospital, Boston, Massachusetts.,Department of Surgery, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
11
|
Ramasubramanian B, Reddy PH. Are TallyHo Mice A True Mouse Model for Type 2 Diabetes and Alzheimer’s Disease? J Alzheimers Dis 2019; 72:S81-S93. [DOI: 10.3233/jad-190613] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
| | - P. Hemachandra Reddy
- Internal Medicine Department, Texas Tech University Health Sciences Center, Lubbock, TX, USA
- Garrison Institute on Aging, Texas Tech University Health Sciences Center, Lubbock, TX, USA
- Cell Biology & Biochemistry Department, Texas Tech University Health Sciences Center, Lubbock, TX, USA
- Pharmacology & Neuroscience Department, Texas Tech University Health Sciences Center, Lubbock, TX, USA
- Neurology Department, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| |
Collapse
|
12
|
Lin CF, Chueh TH, Chung CH, Chung SD, Chang TC, Chien CT. Sulforaphane improves voiding function via the preserving mitochondrial function in diabetic rats. J Formos Med Assoc 2019; 119:1422-1430. [PMID: 31837923 DOI: 10.1016/j.jfma.2019.11.017] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 11/03/2019] [Accepted: 11/20/2019] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Hyperglycemia evoked oxidative stress contributing to diabetes (DM)-induced voiding dysfunction. We explored whether antioxidant sulforaphane,a NF-E2-related nuclear factor erythroid-2 (Nrf-2) activator, may ameliorate DM-induced bladder dysfunction. METHODS DM was induced by streptozotocin and sulforaphanewas administered before DM induction.Bladder reactive oxygen species (ROS) were determined by an ultrasensitive chemiluminescence analyzer. Mitochondrial function index mitochondrial Bax and cytosolic cytochrome c, antioxidant defense Nrf-2/HO-1, endoplasmic reticulum stress marker ATF-6/CHOP, and caspase 3/PARP were evaluated by Western blot. RESULTS DM increased Keap1 and reduced Nrf-2 expression, associated with increase of bladder ROS, mitochondrial Bax translocation, cytosolic cytochrome c release, ATF-6/CHOP, caspase-3/PARP in bladders which resulted in voiding dysfunction by increased intercontraction intervals and micturition duration. However, sulforaphanesignificantly increased nuclear Nrf-2/HO-1axis expression, decreased bladder ROS amount, mitochondrial Bax translocation, cytochrome c release, ATF-6/CHOP and caspase 3/PARP/apoptosis, thereby improved the voiding function by the shortened intercontraction intervals and micturition duration. CONCLUSION We suggest that sulforaphanevia activating Nrf-2/HO-1 signaling preserved mitochondrial function and suppressed DM-induced ROS, endoplasmic reticulum stress, apoptosis and voiding dysfunction.
Collapse
Affiliation(s)
- Chia-Fa Lin
- School of Life Science, National Taiwan Normal University, Taipei, 11677, Taiwan
| | - Tsung-Hung Chueh
- School of Life Science, National Taiwan Normal University, Taipei, 11677, Taiwan
| | - Cheng-Hsun Chung
- School of Life Science, National Taiwan Normal University, Taipei, 11677, Taiwan
| | - Shue-Dong Chung
- Department of Urology, Far-East Memory Hospital, New Taipei City, 220, Taiwan
| | - Tzu-Ching Chang
- School of Life Science, National Taiwan Normal University, Taipei, 11677, Taiwan.
| | - Chiang-Ting Chien
- School of Life Science, National Taiwan Normal University, Taipei, 11677, Taiwan.
| |
Collapse
|
13
|
Elrashidy RA, Liu G. Long-term diabetes causes molecular alterations related to fibrosis and apoptosis in rat urinary bladder. Exp Mol Pathol 2019; 111:104304. [PMID: 31479659 DOI: 10.1016/j.yexmp.2019.104304] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 07/23/2019] [Accepted: 08/30/2019] [Indexed: 02/05/2023]
Abstract
Diabetes induces time-dependent alterations in urinary bladders. Long-term diabetes causes an underactive bladder. However, the fundamental mechanisms are still elusive. This study aimed to examine the histological changes and the potential molecular pathways affected by long-term diabetes in the rat bladder. Diabetes was induced in 8-week-old male Lewis rats by streptozotocin, while age-matched control rats received citrate buffer only. Forty-four weeks after diabetes induction, bladders were harvested for histological and molecular analyses. The expressions of proteins related to fibrosis, apoptosis and oxidative stress as well as the cellular signaling pathway in the bladder were examined by immunoblotting. Histological examinations illustrated diabetes caused detrusor hypertrophy and fibrotic changes in the bladder. Immunoblotting analysis demonstrated higher collagen I but lower elastin expression in the bladder in diabetic rats. These were accompanied by an increase in the expression of transforming growth factor-beta1, along with the downregulation of matrix metalloptoteinase-1, and upregulation of tissue inhibitor of metalloproteinase-1. Diabetic rats showed an increase in nitrotyrosine, but decrease in nuclear factor erythroid-related factor 2 (Nrf2) levels in the bladder. Enhanced apoptotic signaling was observed, characterized by increased expression of Bcl-2-associated X protein (Bax), decreased expression of Bcl-2, in the diabetic bladder. The nerve growth factor level was decreased in the diabetic bladder. A significant suppression in the protein expressions of phosphorylated extracellular signal-regulated kinases 1/2 was found in diabetic bladders. This study demonstrated that long-term diabetes caused molecular changes that could promote fibrosis and apoptosis in the bladder. Oxidative stress may be involved in this context.
Collapse
Affiliation(s)
- Rania A Elrashidy
- Department of Surgery, MetroHealth Medical Center, Case Western Reserve University, Cleveland, OH, USA; Department of Biochemistry, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt
| | - Guiming Liu
- Department of Surgery, MetroHealth Medical Center, Case Western Reserve University, Cleveland, OH, USA.
| |
Collapse
|
14
|
Okur E, Yerlikaya A. A novel and effective inhibitor combination involving bortezomib and OTSSP167 for breast cancer cells in light of label-free proteomic analysis. Cell Biol Toxicol 2018; 35:33-47. [PMID: 29948483 DOI: 10.1007/s10565-018-9435-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Accepted: 06/06/2018] [Indexed: 01/23/2023]
Abstract
PURPOSE The 26S proteasome plays important roles in many intracellular processes and is therefore a critical intracellular cellular target for anticancer treatments. The primary aim of the current study was to identify critical proteins that may play roles in opposing the antisurvival effect of the proteasome inhibitor bortezomib together with the calcium-chelator BAPTA-AM in cancer cells using label-free LC-MS/MS. In addition, based on the results of the proteomic technique, a novel and more effective inhibitor combination involving bortezomib as well as OTSSP167 was developed for breast cancer cells. METHODS AND RESULTS Using label-free LC-MS/MS, it was found that expressions of 1266 proteins were significantly changed between the experimental groups. Among these proteins were cell division cycle 5-like (Cdc5L) and drebrin-like (DBNL). We then hypothesized that inhibition of the activities of these two proteins may lead to more effective anticancer inhibitor combinations in the presence of proteasomal inhibition. In fact, as presented in the current study, Cdc5L phosphorylation inhibitor CVT-313 and DBNL phosphorylation inhibitor OTSSP167 were highly cytotoxic in 4T1 breast cancer cells and their IC50 values were 20.1 and 43 nM, respectively. Under the same experimental conditions, the IC50 value of BAPTA-AM was found 19.9 μM. Using WST 1 cytotoxicity assay, it was determined that 10 nM bortezomib + 10 nM CVT-313 was more effective than the control, the single treatments, or than 5 nM bortezomib + 5 nM CVT-313. Similarly, 10 nM bortezomib + 10 nM OTSSP167 was more cytotoxic than the control, the monotherapies, 5 nM bortezomib + 5 nM OTSSP167, or than 5 nM bortezomib + 10 nM OTSSP167, indicating that bortezomib + OTSSP167 was also more effective than bortezomib + CVT-313 in a dose-dependent manner. Furthermore, the 3D spheroid model proved that bortezomib + OTSSP167 was more effective than the monotherapies as well as bortezomib + CVT-313 and bortezomib + BAPTA-AM combinations. Finally, the effect of bortezomib + OTSSP167 combination was tested on MDA-MB-231 breast cancer cells, and it similarly determined that 20 nM bortezomib +40 nM OTSSP167 combination completely blocked the formation of 3D spheroids. CONCLUSIONS Altogether, the results presented here indicate that bortezomib + OTSSP167 is a novel and effective combination and may be tested further for cancer treatment in vivo and in clinical settings.
Collapse
Affiliation(s)
- Emrah Okur
- Art and Science Faculty, Department of Biology, Kütahya Dumlupınar University, Kütahya, Turkey
| | - Azmi Yerlikaya
- Faculty of Medicine, Department of Medical Biology, Kütahya Health Sciences University, Kütahya, Turkey.
| |
Collapse
|
15
|
Wiredja DD, Ayati M, Mazhar S, Sangodkar J, Maxwell S, Schlatzer D, Narla G, Koyutürk M, Chance MR. Phosphoproteomics Profiling of Nonsmall Cell Lung Cancer Cells Treated with a Novel Phosphatase Activator. Proteomics 2017; 17. [PMID: 28961369 DOI: 10.1002/pmic.201700214] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 09/07/2017] [Indexed: 01/17/2023]
Abstract
Activation of protein phosphatase 2A (PP2A) is a promising anticancer therapeutic strategy, as this tumor suppressor has the ability to coordinately downregulate multiple pathways involved in the regulation of cellular growth and proliferation. In order to understand the systems-level perturbations mediated by PP2A activation, we carried out mass spectrometry-based phosphoproteomic analysis of two KRAS mutated non-small cell lung cancer (NSCLC) cell lines (A549 and H358) treated with a novel small molecule activator of PP2A (SMAP). Overall, this permitted quantification of differential signaling across over 1600 phosphoproteins and 3000 phosphosites. Kinase activity assessment and pathway enrichment implicate collective downregulation of RAS and cell cycle kinases in the case of both cell lines upon PP2A activation. However, the effects on RAS-related signaling are attenuated for A549 compared to H358, while the effects on cell cycle-related kinases are noticeably more prominent in A549. Network-based analyses and validation experiments confirm these detailed differences in signaling. These studies reveal the power of phosphoproteomics studies, coupled to computational systems biology, to elucidate global patterns of phosphatase activation and understand the variations in response to PP2A activation across genetically similar NSCLC cell lines.
Collapse
Affiliation(s)
- Danica D Wiredja
- Center for Proteomics and Bioinformatics, Department of Nutrition, Case Western Reserve University, Cleveland, OH, USA
| | - Marzieh Ayati
- Department of Electrical Engineering and Computer Science, Case Western Reserve University, Cleveland, OH, USA
| | - Sahar Mazhar
- Department of Pathology, Case Western Reserve University,, Cleveland, OH, USA
| | - Jaya Sangodkar
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, NY, USA
| | - Sean Maxwell
- Center for Proteomics and Bioinformatics, Department of Nutrition, Case Western Reserve University, Cleveland, OH, USA
| | - Daniela Schlatzer
- Center for Proteomics and Bioinformatics, Department of Nutrition, Case Western Reserve University, Cleveland, OH, USA
| | - Goutham Narla
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH, USA
| | - Mehmet Koyutürk
- Department of Electrical Engineering and Computer Science, Case Western Reserve University, Cleveland, OH, USA
| | - Mark R Chance
- Center for Proteomics and Bioinformatics, Department of Nutrition, Case Western Reserve University, Cleveland, OH, USA.,Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH, USA
| |
Collapse
|
16
|
Azzam S, Schlatzer D, Nethery D, Saleh D, Li X, Akladious A, Chance MR, Strohl KP. Proteomic profiling of the hypothalamus in two mouse models of narcolepsy. Proteomics 2017; 17. [PMID: 28544614 DOI: 10.1002/pmic.201600478] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Revised: 05/15/2017] [Accepted: 05/16/2017] [Indexed: 12/21/2022]
Abstract
Narcolepsy is a disabling neurological disorder of sleepiness linked to the loss of neurons producing orexin neuropeptides in the hypothalamus. Two well-characterized phenotypic mouse models of narcolepsy, loss-of-function (orexin-knockout), and progressive loss of orexin (orexin/ataxin-3) exist. The open question is whether the proteomics signatures of the hypothalamus would be different between the two models. To address this gap, we utilized a label-free proteomics approach and conducted a hypothalamic proteome analysis by comparing each disease model to that of wild type. Following data processing and statistical analysis, 14 484 peptides mapping to 2282 nonredundant proteins were identified, of which 39 proteins showed significant differences in protein expression across groups. Altered proteins in both models showed commonalties in pathways for mitochondrial dysfunction and neuronal degeneration, as well as altered proteins related to inflammatory demyelination, insulin resistance, metabolic responses, and the dopaminergic and monoaminergic systems. Model-specific alterations in insulin degraded enzyme (IDE) and synaptosomal-associated protein-25 were unique to orexin-KO and orexin/ataxin-3, respectively. For both models, proteomics not only identified clinically suspected consequences of orexin loss on energy homeostasis and neurotransmitter systems, but also identified commonalities in inflammation and degeneration despite the entirely different genetic basis of the two mouse models.
Collapse
Affiliation(s)
- Sausan Azzam
- Center for Proteomics and Bioinformatics, Department of Nutrition, Case Western Reserve University, Cleveland, OH, USA.,Pulmonary Critical Care and Sleep Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Daniela Schlatzer
- Center for Proteomics and Bioinformatics, Department of Nutrition, Case Western Reserve University, Cleveland, OH, USA
| | - David Nethery
- Pulmonary Critical Care and Sleep Medicine, Case Western Reserve University, Cleveland, OH, USA
| | | | - Xiaolin Li
- Center for Proteomics and Bioinformatics, Department of Nutrition, Case Western Reserve University, Cleveland, OH, USA
| | - Afaf Akladious
- Medical Service, Louis Stokes Cleveland DVA Medical Center, Cleveland, OH, USA
| | - Mark R Chance
- Center for Proteomics and Bioinformatics, Department of Nutrition, Case Western Reserve University, Cleveland, OH, USA
| | - Kingman P Strohl
- Pulmonary Critical Care and Sleep Medicine, Case Western Reserve University, Cleveland, OH, USA.,Medical Service, Louis Stokes Cleveland DVA Medical Center, Cleveland, OH, USA.,Department of Medicine, University Hospitals Case Medical Center, Cleveland, OH, USA
| |
Collapse
|
17
|
Simicevic J, Deplancke B. Transcription factor proteomics-Tools, applications, and challenges. Proteomics 2017; 17. [DOI: 10.1002/pmic.201600317] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Revised: 10/18/2016] [Accepted: 11/11/2016] [Indexed: 11/12/2022]
Affiliation(s)
- Jovan Simicevic
- Laboratory of Systems Biology and Genetics, Institute of Bioengineering, School of Life Sciences; Ecole Polytechnique Fédérale de Lausanne (EPFL), and Swiss Institute of Bioinformatics; Lausanne Switzerland
- LimmaTech Biologics AG; Schlieren Switzerland
| | - Bart Deplancke
- Laboratory of Systems Biology and Genetics, Institute of Bioengineering, School of Life Sciences; Ecole Polytechnique Fédérale de Lausanne (EPFL), and Swiss Institute of Bioinformatics; Lausanne Switzerland
| |
Collapse
|
18
|
Daneshgari F, Liu G, Hanna-Mitchell AT. Path of translational discovery of urological complications of obesity and diabetes. Am J Physiol Renal Physiol 2017; 312:F887-F896. [PMID: 28052873 DOI: 10.1152/ajprenal.00489.2016] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Revised: 12/15/2016] [Accepted: 01/01/2017] [Indexed: 01/07/2023] Open
Abstract
Diabetes mellitus (DM) is a prevalent chronic disease. Type 1 DM (T1DM) is a metabolic disorder that is characterized by hyperglycemia in the context of absolute lack of insulin, whereas type 2 DM (T2DM) is due to insulin resistance-related relative insulin deficiency. In comparison with T1DM, T2DM is more complex. The natural history of T2DM in most patients typically involves a course of obesity to impaired glucose tolerance, to insulin resistance, to hyperinsulinemia, to hyperglycemia, and finally to insulin deficiency. Obesity is a risk factor of T2DM. Diabetes causes some serious microvascular and macrovascular complications, such as retinopathy, nephropathy, neuropathy, angiopathy and stroke. Urological complications of obesity and diabetes (UCOD) affect quality of life, but are not well investigated. The urological complications in T1DM and T2DM are different. In addition, obesity itself affects the lower urinary tract. The aim of this perspective is to review the available data, combined with the experience of our research teams, who have spent a good part of last decade on studies of association between DM and lower urinary tract symptoms (LUTS) with the aim of bringing more focus to the future scientific exploration of UCOD. We focus on the most commonly seen urological complications, urinary incontinence, bladder dysfunction, and LUTS, in obesity and diabetes. Knowledge of these associations will lead to a better understanding of the pathophysiology underlying UCOD and hopefully assist urologists in the clinical management of obese or diabetic patients with LUTS.
Collapse
Affiliation(s)
- Firouz Daneshgari
- Department of Surgery, MetroHealth Medical Center, Case Western Reserve University, Cleveland, Ohio
| | - Guiming Liu
- Department of Surgery, MetroHealth Medical Center, Case Western Reserve University, Cleveland, Ohio
| | - Ann T Hanna-Mitchell
- Department of Surgery, MetroHealth Medical Center, Case Western Reserve University, Cleveland, Ohio
| |
Collapse
|