1
|
Crooke SN, Ovsyannikova IG, Kennedy RB, Poland GA. Immunoinformatic identification of B cell and T cell epitopes in the SARS-CoV-2 proteome. Sci Rep 2020; 10:14179. [PMID: 32843695 PMCID: PMC7447814 DOI: 10.1038/s41598-020-70864-8] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 07/31/2020] [Indexed: 12/18/2022] Open
Abstract
A novel coronavirus (SARS-CoV-2) emerged from China in late 2019 and rapidly spread across the globe, infecting millions of people and generating societal disruption on a level not seen since the 1918 influenza pandemic. A safe and effective vaccine is desperately needed to prevent the continued spread of SARS-CoV-2; yet, rational vaccine design efforts are currently hampered by the lack of knowledge regarding viral epitopes targeted during an immune response, and the need for more in-depth knowledge on betacoronavirus immunology. To that end, we developed a computational workflow using a series of open-source algorithms and webtools to analyze the proteome of SARS-CoV-2 and identify putative T cell and B cell epitopes. Utilizing a set of stringent selection criteria to filter peptide epitopes, we identified 41 T cell epitopes (5 HLA class I, 36 HLA class II) and 6 B cell epitopes that could serve as promising targets for peptide-based vaccine development against this emerging global pathogen. To our knowledge, this is the first study to comprehensively analyze all 10 (structural, non-structural and accessory) proteins from SARS-CoV-2 using predictive algorithms to identify potential targets for vaccine development.
Collapse
MESH Headings
- Amino Acid Sequence
- B-Lymphocytes/immunology
- B-Lymphocytes/metabolism
- Betacoronavirus/classification
- Betacoronavirus/genetics
- Betacoronavirus/immunology
- Betacoronavirus/metabolism
- COVID-19
- Computational Biology/methods
- Coronavirus Infections/immunology
- Coronavirus Infections/metabolism
- Coronavirus Infections/virology
- Epitopes, B-Lymphocyte/chemistry
- Epitopes, B-Lymphocyte/immunology
- Epitopes, T-Lymphocyte/chemistry
- Epitopes, T-Lymphocyte/immunology
- Genome, Viral
- Genomics/methods
- Host-Pathogen Interactions/immunology
- Humans
- Models, Molecular
- Pandemics
- Peptides/chemistry
- Peptides/immunology
- Phylogeny
- Pneumonia, Viral/immunology
- Pneumonia, Viral/metabolism
- Pneumonia, Viral/virology
- SARS-CoV-2
- Structure-Activity Relationship
- T-Lymphocytes/immunology
- T-Lymphocytes/metabolism
- Vaccines, Subunit/immunology
- Viral Proteins/chemistry
- Viral Proteins/immunology
- Viral Vaccines/immunology
Collapse
Affiliation(s)
- Stephen N Crooke
- Mayo Clinic Vaccine Research Group, Mayo Clinic, Guggenheim Building 611C, 200 First Street SW, Rochester, MN, 55905, USA
| | - Inna G Ovsyannikova
- Mayo Clinic Vaccine Research Group, Mayo Clinic, Guggenheim Building 611C, 200 First Street SW, Rochester, MN, 55905, USA
| | - Richard B Kennedy
- Mayo Clinic Vaccine Research Group, Mayo Clinic, Guggenheim Building 611C, 200 First Street SW, Rochester, MN, 55905, USA
| | - Gregory A Poland
- Mayo Clinic Vaccine Research Group, Mayo Clinic, Guggenheim Building 611C, 200 First Street SW, Rochester, MN, 55905, USA.
| |
Collapse
|
2
|
Zaheer T, Waseem M, Waqar W, Dar HA, Shehroz M, Naz K, Ishaq Z, Ahmad T, Ullah N, Bakhtiar SM, Muhammad SA, Ali A. Anti-COVID-19 multi-epitope vaccine designs employing global viral genome sequences. PeerJ 2020; 8:e9541. [PMID: 32832263 PMCID: PMC7409810 DOI: 10.7717/peerj.9541] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 06/23/2020] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND The coronavirus SARS-CoV-2 is a member of the Coronaviridae family that has caused a global public health emergency. Currently, there is no approved treatment or vaccine available against it. The current study aimed to cover the diversity of SARS-CoV-2 strains reported from all over the world and to design a broad-spectrum multi-epitope vaccine using an immunoinformatics approach. METHODS For this purpose, all available complete genomes were retrieved from GISAID and NGDC followed by genome multiple alignments to develop a global consensus sequence to compare with the reference genome. Fortunately, comparative genomics and phylogeny revealed a significantly high level of conservation between the viral strains. All the Open Reading Frames (ORFs) of the reference sequence NC_045512.2 were subjected to epitope mapping using CTLpred and HLApred, respectively. The predicted CTL epitopes were then screened for antigenicity, immunogenicity and strong binding affinity with HLA superfamily alleles. HTL predicted epitopes were screened for antigenicity, interferon induction potential, overlapping B cell epitopes and strong HLA DR binding potential. The shortlisted epitopes were arranged into two multi-epitope sequences, Cov-I-Vac and Cov-II-Vac, and molecular docking was performed with Toll-Like Receptor 8 (TLR8). RESULTS The designed multi-epitopes were found to be antigenic and non-allergenic. Both multi-epitopes were stable and predicted to be soluble in an Escherichia coli expression system. The molecular docking with TLR8 also demonstrated that they have a strong binding affinity and immunogenic potential. These in silico analyses suggest that the proposed multi-epitope vaccine can effectively evoke an immune response.
Collapse
Affiliation(s)
- Tahreem Zaheer
- Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Islamabad, Pakistan
| | - Maaz Waseem
- Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Islamabad, Pakistan
| | - Walifa Waqar
- Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Islamabad, Pakistan
| | - Hamza Arshad Dar
- Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Islamabad, Pakistan
| | - Muhammad Shehroz
- Department of Biotechnology, Virtual University of Pakistan, Peshawar, Pakistan
| | - Kanwal Naz
- Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Islamabad, Pakistan
| | - Zaara Ishaq
- Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Islamabad, Pakistan
| | - Tahir Ahmad
- Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Islamabad, Pakistan
| | - Nimat Ullah
- Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Islamabad, Pakistan
| | - Syeda Marriam Bakhtiar
- Department of Bioinformatics and Biosciences, Capital University of Science and Technology, Islamabad, Pakistan
| | - Syed Aun Muhammad
- Institute of Molecular Biology and Biotechnology, Bahauddin Zakariya University, Multan, Pakistan
| | - Amjad Ali
- Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Islamabad, Pakistan
| |
Collapse
|
3
|
Lorente E, Barnea E, Mir C, Admon A, López D. The HLA-DP peptide repertoire from human respiratory syncytial virus is focused on major structural proteins with the exception of the viral polymerase. J Proteomics 2020; 221:103759. [PMID: 32244010 DOI: 10.1016/j.jprot.2020.103759] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 03/12/2020] [Accepted: 03/23/2020] [Indexed: 01/09/2023]
Abstract
The recognition by specific T helper cells of viral antigenic peptides complexed with HLA class II molecules exposed on the surface of antigen presenting cells is the first step of the complex cascade of immunological events that generates the protective cellular and humoral immune responses. The HLA class II-restricted helper immune response is critical in the control and the clearance of human respiratory syncytial virus (HRSV) infection, a pathogen with severe health risk in pediatric, immunocompromised and elderly populations. In this study, a mass spectrometry analysis was used to identify HRSV ligands bound to HLA-DP class II molecules present on the surface of HRSV-infected cells. Among the thousands of cellular peptides bound to HLA class II proteins in the virus-infected cells, sixty-four naturally processed viral ligands, most of them included in complex nested set of peptides, were identified bound to HLA-DP molecules. These viral ligands arose from five of six major structural HRSV proteins: attachment, fusion, matrix, nucleoprotein, and phosphoprotein. In contrast, no HLA-DP ligands were identified from polymerase protein, the largest HRSV protein that includes half of the viral proteome. These findings have important implications for analysis of the helper immune response as for antiviral vaccine design. SIGNIFICANCE: The existence of a supertype including five alleles that bind a peptide repertoire very similar make HLA-DP class II molecules an interesting target for the design of vaccines. Here, we analyze the HLA-DP-restricted peptide repertoire against the human respiratory syncytial virus, a pathogen that represents a high health risk in infected pediatric, immunocompromised and elderly populations. This repertoire is focused on major structural proteins with the exception of the viral polymerase.
Collapse
Affiliation(s)
- Elena Lorente
- Unidad de Presentación y Regulación Inmunes, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda (Madrid) 28220, Spain
| | - Eilon Barnea
- Department of Biology, Technion-Israel Institute of Technology, Haifa 32000, Israel
| | - Carmen Mir
- Unidad de Presentación y Regulación Inmunes, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda (Madrid) 28220, Spain
| | - Arie Admon
- Department of Biology, Technion-Israel Institute of Technology, Haifa 32000, Israel
| | - Daniel López
- Unidad de Presentación y Regulación Inmunes, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda (Madrid) 28220, Spain.
| |
Collapse
|
4
|
Guvenel A, Jozwik A, Ascough S, Ung SK, Paterson S, Kalyan M, Gardener Z, Bergstrom E, Kar S, Habibi MS, Paras A, Zhu J, Park M, Dhariwal J, Almond M, Wong EH, Sykes A, Del Rosario J, Trujillo-Torralbo MB, Mallia P, Sidney J, Peters B, Kon OM, Sette A, Johnston SL, Openshaw PJ, Chiu C. Epitope-specific airway-resident CD4+ T cell dynamics during experimental human RSV infection. J Clin Invest 2020; 130:523-538. [PMID: 31815739 PMCID: PMC6934186 DOI: 10.1172/jci131696] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 10/08/2019] [Indexed: 01/27/2023] Open
Abstract
BACKGROUNDRespiratory syncytial virus (RSV) is an important cause of acute pulmonary disease and one of the last remaining major infections of childhood for which there is no vaccine. CD4+ T cells play a key role in antiviral immunity, but they have been little studied in the human lung.METHODSHealthy adult volunteers were inoculated i.n. with RSV A Memphis 37. CD4+ T cells in blood and the lower airway were analyzed by flow cytometry and immunohistochemistry. Bronchial soluble mediators were measured using quantitative PCR and MesoScale Discovery. Epitope mapping was performed by IFN-γ ELISpot screening, confirmed by in vitro MHC binding.RESULTSActivated CD4+ T cell frequencies in bronchoalveolar lavage correlated strongly with local C-X-C motif chemokine 10 levels. Thirty-nine epitopes were identified, predominantly toward the 3' end of the viral genome. Five novel MHC II tetramers were made using an immunodominant EFYQSTCSAVSKGYL (F-EFY) epitope restricted to HLA-DR4, -DR9, and -DR11 (combined allelic frequency: 15% in Europeans) and G-DDF restricted to HLA-DPA1*01:03/DPB1*02:01 and -DPA1*01:03/DPB1*04:01 (allelic frequency: 55%). Tetramer labeling revealed enrichment of resident memory CD4+ T (Trm) cells in the lower airway; these Trm cells displayed progressive differentiation, downregulation of costimulatory molecules, and elevated CXCR3 expression as infection evolved.CONCLUSIONSHuman infection challenge provides a unique opportunity to study the breadth of specificity and dynamics of RSV-specific T-cell responses in the target organ, allowing the precise investigation of Trm recognizing novel viral antigens over time. The new tools that we describe enable precise tracking of RSV-specific CD4+ cells, potentially accelerating the development of effective vaccines.TRIAL REGISTRATIONClinicalTrials.gov NCT02755948.FUNDINGMedical Research Council, Wellcome Trust, National Institute for Health Research.
Collapse
Affiliation(s)
| | | | - Stephanie Ascough
- Department of Infectious Disease, Imperial College London, London, United Kingdom
| | - Seng Kuong Ung
- Department of Infectious Disease, Imperial College London, London, United Kingdom
| | - Suzanna Paterson
- Department of Infectious Disease, Imperial College London, London, United Kingdom
| | - Mohini Kalyan
- Department of Infectious Disease, Imperial College London, London, United Kingdom
| | - Zoe Gardener
- Department of Infectious Disease, Imperial College London, London, United Kingdom
| | - Emma Bergstrom
- Department of Infectious Disease, Imperial College London, London, United Kingdom
| | - Satwik Kar
- Department of Infectious Disease, Imperial College London, London, United Kingdom
| | | | | | - Jie Zhu
- National Heart and Lung Institute and
| | | | | | | | | | | | | | | | | | - John Sidney
- Centre for Infectious Disease, Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, California, USA
| | - Bjoern Peters
- Centre for Infectious Disease, Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, California, USA
| | | | - Alessandro Sette
- Centre for Infectious Disease, Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, California, USA
- Department of Medicine, UCSD, La Jolla, California, USA
| | | | | | - Christopher Chiu
- Department of Infectious Disease, Imperial College London, London, United Kingdom
| |
Collapse
|
5
|
Lorente E, Barriga A, Barnea E, Palomo C, García-Arriaza J, Mir C, Esteban M, Admon A, López D. Immunoproteomic analysis of a Chikungunya poxvirus-based vaccine reveals high HLA class II immunoprevalence. PLoS Negl Trop Dis 2019; 13:e0007547. [PMID: 31276466 PMCID: PMC6636782 DOI: 10.1371/journal.pntd.0007547] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 07/17/2019] [Accepted: 06/11/2019] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND Efficient adaptive antiviral cellular and humoral immune responses require previous recognition of viral antigenic peptides bound to human leukocyte antigen (HLA) class I and II molecules, which are exposed on the surface of infected and antigen presenting cells, respectively. The HLA-restricted immune response to Chikungunya virus (CHIKV), a mosquito-borne Alphavirus of the Togaviridae family responsible for severe chronic polyarthralgia and polyarthritis, is largely unknown. METHODOLOGY/PRINCIPAL FINDINGS In this study, a high-throughput mass spectrometry analysis of complex HLA-bound peptide pools isolated from large amounts of human cells infected with a vaccinia virus (VACV) recombinant expressing CHIKV structural proteins was carried out. Twelve viral ligands from the CHIKV polyprotein naturally presented by different HLA-A, -B, and -C class I, and HLA-DR and -DP class II molecules were identified. CONCLUSIONS/SIGNIFICANCE The immunoprevalence of the HLA class II but not the HLA class I-restricted cellular immune response against the CHIKV structural polyprotein was greater than that against the VACV vector itself. In addition, most of the CHIKV HLA class I and II ligands detected by mass spectrometry are not conserved compared to its closely related O'nyong-nyong virus. These findings have clear implications for analysis of both cytotoxic and helper immune responses against CHIKV as well as for the future studies focused in the exacerbated T helper response linked to chronic musculoskeletal disorders in CHIKV patients.
Collapse
Affiliation(s)
- Elena Lorente
- Unidad de Presentación y Regulación Inmunes, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda (Madrid), Spain
| | - Alejandro Barriga
- Unidad de Presentación y Regulación Inmunes, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda (Madrid), Spain
| | - Eilon Barnea
- Department of Biology, Technion-Israel Institute of Technology, Haifa, Israel
| | - Concepción Palomo
- Unidad de Presentación y Regulación Inmunes, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda (Madrid), Spain
| | - Juan García-Arriaza
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Carmen Mir
- Unidad de Presentación y Regulación Inmunes, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda (Madrid), Spain
| | - Mariano Esteban
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Arie Admon
- Department of Biology, Technion-Israel Institute of Technology, Haifa, Israel
| | - Daniel López
- Unidad de Presentación y Regulación Inmunes, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda (Madrid), Spain
| |
Collapse
|
6
|
Becerra-Artiles A, Cruz J, Leszyk JD, Sidney J, Sette A, Shaffer SA, Stern LJ. Naturally processed HLA-DR3-restricted HHV-6B peptides are recognized broadly with polyfunctional and cytotoxic CD4 T-cell responses. Eur J Immunol 2019; 49:1167-1185. [PMID: 31020640 DOI: 10.1002/eji.201948126] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 03/13/2019] [Accepted: 04/23/2019] [Indexed: 01/06/2023]
Abstract
Human herpes virus 6B (HHV-6B) is a widespread virus that infects most people early in infancy and establishes a chronic life-long infection with periodic reactivation. CD4 T cells have been implicated in control of HHV-6B, but antigenic targets and functional characteristics of the CD4 T-cell response are poorly understood. We identified 25 naturally processed MHC-II peptides, derived from six different HHV-6B proteins, and showed that they were recognized by CD4 T-cell responses in HLA-matched donors. The peptides were identified by mass spectrometry after elution from HLA-DR molecules isolated from HHV-6B-infected T cells. The peptides showed strong binding to matched HLA alleles and elicited recall T-cell responses in vitro. T-cell lines expanded in vitro were used for functional characterization of the response. Responding cells were mainly CD3+ CD4+ , produced IFN-γ, TNF-α, and low levels of IL-2, alone or in combination, highlighting the presence of polyfunctional T cells in the overall response. Many of the responding cells mobilized CD107a, stored granzyme B, and mediated specific killing of peptide-pulsed target cells. These results highlight a potential role for polyfunctional cytotoxic CD4 T cells in the long-term control of HHV-6B infection.
Collapse
Affiliation(s)
| | - John Cruz
- Department of Pathology, University of Massachusetts Medical School, Worcester, MA
| | - John D Leszyk
- Mass Spectrometry Facility, University of Massachusetts Medical School, Shrewsbury, MA.,Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA
| | - John Sidney
- Division of Vaccine Discovery, La Jolla Institute for Immunology, San Diego, CA
| | - Alessandro Sette
- Division of Vaccine Discovery, La Jolla Institute for Immunology, San Diego, CA.,Department of Medicine, University of California, San Diego, CA
| | - Scott A Shaffer
- Mass Spectrometry Facility, University of Massachusetts Medical School, Shrewsbury, MA.,Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA
| | - Lawrence J Stern
- Department of Pathology, University of Massachusetts Medical School, Worcester, MA.,Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA
| |
Collapse
|
7
|
López D, Barriga A, Lorente E, Mir C. Immunoproteomic Lessons for Human Respiratory Syncytial Virus Vaccine Design. J Clin Med 2019; 8:E486. [PMID: 30974886 PMCID: PMC6518116 DOI: 10.3390/jcm8040486] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 04/01/2019] [Accepted: 04/09/2019] [Indexed: 11/25/2022] Open
Abstract
Accurate antiviral humoral and cellular immune responses require prior recognition of antigenic peptides presented by human leukocyte antigen (HLA) class I and II molecules on the surface of antigen-presenting cells. Both the helper and the cytotoxic immune responses are critical for the control and the clearance of human respiratory syncytial virus (HRSV) infection, which is a significant cause of morbidity and mortality in infected pediatric, immunocompromised and elderly populations. In this article we review the immunoproteomics studies which have defined the general antigen processing and presentation rules that determine both the immunoprevalence and the immunodominance of the cellular immune response to HRSV. Mass spectrometry and functional analyses have shown that the HLA class I and II cellular immune responses against HRSV are mainly focused on three viral proteins: fusion, matrix, and nucleoprotein. Thus, these studies have important implications for vaccine development against this virus, since a vaccine construct including these three relevant HRSV proteins could efficiently stimulate the major components of the adaptive immune system: humoral, helper, and cytotoxic effector immune responses.
Collapse
Affiliation(s)
- Daniel López
- Centro Nacional de Microbiología, Instituto de Salud Carlos III, 28220 Majadahonda (Madrid), Spain.
| | - Alejandro Barriga
- Centro Nacional de Microbiología, Instituto de Salud Carlos III, 28220 Majadahonda (Madrid), Spain.
| | - Elena Lorente
- Centro Nacional de Microbiología, Instituto de Salud Carlos III, 28220 Majadahonda (Madrid), Spain.
| | - Carmen Mir
- Centro Nacional de Microbiología, Instituto de Salud Carlos III, 28220 Majadahonda (Madrid), Spain.
| |
Collapse
|
8
|
Lorente E, Martín-Galiano AJ, Barnea E, Barriga A, Palomo C, García-Arriaza J, Mir C, Lauzurica P, Esteban M, Admon A, López D. Proteomics Analysis Reveals That Structural Proteins of the Virion Core and Involved in Gene Expression Are the Main Source for HLA Class II Ligands in Vaccinia Virus-Infected Cells. J Proteome Res 2019; 18:900-911. [PMID: 30629447 DOI: 10.1021/acs.jproteome.8b00595] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Protective cellular and humoral immune responses require previous recognition of viral antigenic peptides complexed with human leukocyte antigen (HLA) class II molecules on the surface of the antigen presenting cells. The HLA class II-restricted immune response is important for the control and the clearance of poxvirus infection including vaccinia virus (VACV), the vaccine used in the worldwide eradication of smallpox. In this study, a mass spectrometry analysis was used to identify VACV ligands bound to HLA-DR and -DP class II molecules present on the surface of VACV-infected cells. Twenty-six naturally processed viral ligands among the tens of thousands of cell peptides bound to HLA class II proteins were identified. These viral ligands arose from 19 parental VACV proteins: A4, A5, A18, A35, A38, B5, B13, D1, D5, D7, D12, D13, E3, E8, H5, I2, I3, J2, and K2. The majority of these VACV proteins yielded one HLA ligand and were generated mainly, but not exclusively, by the classical HLA class II antigen processing pathway. Medium-sized and abundant proteins from the virion core and/or involved in the viral gene expression were the major source of VACV ligands bound to HLA-DR and -DP class II molecules. These findings will help to understand the effectiveness of current poxvirus-based vaccines and will be important in the design of new ones.
Collapse
Affiliation(s)
| | | | - Eilon Barnea
- Department of Biology , Technion-Israel Institute of Technology , 32000 Haifa , Israel
| | | | | | - Juan García-Arriaza
- Department of Molecular and Cellular Biology , Centro Nacional de Biotecnología , Consejo Superior de Investigaciones Científicas (CSIC), 28049 Madrid , Spain
| | | | | | - Mariano Esteban
- Department of Molecular and Cellular Biology , Centro Nacional de Biotecnología , Consejo Superior de Investigaciones Científicas (CSIC), 28049 Madrid , Spain
| | - Arie Admon
- Department of Biology , Technion-Israel Institute of Technology , 32000 Haifa , Israel
| | | |
Collapse
|
9
|
Label-free quantitative proteomics reveals fibrinopeptide B and heparin cofactor II as potential serum biomarkers in respiratory syncytial virus-infected mice treated with Qingfei oral liquid formula. Chin J Nat Med 2018; 16:241-251. [DOI: 10.1016/s1875-5364(18)30054-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2017] [Indexed: 01/28/2023]
|