1
|
Netherton JK, Ogle RA, Robinson BR, Molloy M, Krisp C, Velkov T, Casagranda F, Dominado N, Silva Balbin Villaverde AI, Zhang XD, Hime GR, Baker MA. The role of HnrnpF/H as a driver of oligoteratozoospermia. iScience 2024; 27:110198. [PMID: 39092172 PMCID: PMC11292545 DOI: 10.1016/j.isci.2024.110198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 02/20/2024] [Accepted: 06/03/2024] [Indexed: 08/04/2024] Open
Abstract
Male subfertility or infertility is a common condition often characterized by men producing a low number of sperm with poor quality. To gain insight into this condition, we performed a quantitative proteomic analysis of semen samples obtained from infertile and fertile men. At least 6 proteins showed significant differences in regulation of alternatively spliced isoforms. To investigate this link between aberrant alternative splicing and production of poor-quality spermatozoa, we overexpressed the hnrnpH/F-orthologue Glorund (Glo) in Drosophila, which was also found to be abundant in poor quality human sperm. Transgenic animals produced low numbers of morphologically defective spermatozoa and aberrant formation of the "dense body," an organelle akin to the mammalian manchette. Furthermore, fertility trials demonstrated that transgenic flies were either completely infertile or highly subfertile. These findings suggest that dysregulation of hnrnpH/F is likely to result in the production of low-quality semen, leading to subfertility or infertility in men.
Collapse
Affiliation(s)
- Jacob K. Netherton
- School of Biomedical Sciences and Pharmacy, Faculty of Medicine and Health, University of Newcastle, Callaghan, NSW 2308, Australia
| | - Rachel A. Ogle
- School of Biomedical Sciences and Pharmacy, Faculty of Medicine and Health, University of Newcastle, Callaghan, NSW 2308, Australia
| | - Benjamin R. Robinson
- School of Biomedical Sciences and Pharmacy, Faculty of Medicine and Health, University of Newcastle, Callaghan, NSW 2308, Australia
| | - Mark Molloy
- Australian Proteome Analysis Facility, Department of Biomolecular Sciences, Macquarie University, NSW 2109 Australia
| | - Christoph Krisp
- Australian Proteome Analysis Facility, Department of Biomolecular Sciences, Macquarie University, NSW 2109 Australia
| | - Tony Velkov
- Biomedicine Discovery Institute, Infection & Immunity Program and Department of Microbiology, Monash University, Clayton, VIC 3168, Australia
| | - Franca Casagranda
- Department of Anatomy and Physiology, University of Melbourne, Parkville, VIC 3010, Australia
| | - Nicole Dominado
- Department of Anatomy and Physiology, University of Melbourne, Parkville, VIC 3010, Australia
| | | | - Xu Dong Zhang
- School of Biomedical Sciences and Pharmacy, Faculty of Medicine and Health, University of Newcastle, Callaghan, NSW 2308, Australia
| | - Gary R. Hime
- Department of Anatomy and Physiology, University of Melbourne, Parkville, VIC 3010, Australia
| | - Mark A. Baker
- School of Biomedical Sciences and Pharmacy, Faculty of Medicine and Health, University of Newcastle, Callaghan, NSW 2308, Australia
| |
Collapse
|
2
|
Parvin A, Erabi G, Alemi A, Rezanezhad A, Maleksabet A, Sadeghpour S, Taheri-Anganeh M, Ghasemnejad-Berenji H. Seminal plasma proteomics as putative biomarkers for male infertility diagnosis. Clin Chim Acta 2024; 561:119757. [PMID: 38857670 DOI: 10.1016/j.cca.2024.119757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/29/2024] [Accepted: 05/31/2024] [Indexed: 06/12/2024]
Abstract
Male infertility represents a significant global public health issue that is currently emerging as a prominent research focus. Presently, laboratories adhere to the guidelines outlined by the World Health Organization (WHO) manuals for conducting routine semen analysis to diagnose male infertility. However, the accuracy of results in predicting sperm quality and fertility is limited because some individuals with a normal semen analysis report, an unremarkable medical history, and a physical examination may still experience infertility. As a result, the importance of employing more advanced techniques to investigate sperm function and male fertility in the treatment of male infertility and/or subfertility becomes apparent. The standard test for evaluating human semen has been improved by more complex tests that look at things like reactive oxygen species (ROS) levels, total antioxidant capacity (TAC), sperm DNA fragmentation levels, DNA compaction, apoptosis, genetic testing, and the presence and location of anti-sperm antibodies. Recent discoveries of novel biomarkers have significantly enriched our understanding of male fertility. Moreover, the notable biological diversity among samples obtained from the same individual complicates the efficacy of routine semen analysis. Therefore, unraveling the molecular mechanisms involved in fertilization is pivotal in expanding our understanding of factors contributing to male infertility. By understanding how these proteins work and what role they play in sperm activity, we can look at the expression profile in men who can't have children to find diagnostic biomarkers. This review examines the various sperm and seminal plasma proteins associated with infertility, as well as proteins that are either deficient or exhibit aberrant expression, potentially contributing to male infertility causes.
Collapse
Affiliation(s)
- Ali Parvin
- Student Research Committee, Urmia University of Medical Sciences, Urmia, Iran
| | - Gisou Erabi
- Student Research Committee, Urmia University of Medical Sciences, Urmia, Iran
| | - Alireza Alemi
- Student Research Committee, Urmia University of Medical Sciences, Urmia, Iran
| | - Arman Rezanezhad
- Student Research Committee, Urmia University of Medical Sciences, Urmia, Iran
| | - Amir Maleksabet
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Sonia Sadeghpour
- Reproductive Health Research Center, Clinical Research Institute, Urmia University of Medical Sciences, Urmia, Iran; Department of Obstetrics and Gynecology, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Mortaza Taheri-Anganeh
- Cellular and Molecular Research Center, Cellular and Molecular Medicine Research Institute, Urmia University of Medical Sciences, Urmia, Iran.
| | - Hojat Ghasemnejad-Berenji
- Reproductive Health Research Center, Clinical Research Institute, Urmia University of Medical Sciences, Urmia, Iran.
| |
Collapse
|
3
|
Gan S, Zhou S, Ma J, Xiong M, Xiong W, Fan X, Liu K, Gui Y, Chen B, Zhang B, Wang X, Wang F, Li Z, Yan W, Ma M, Yuan S. BAG5 regulates HSPA8-mediated protein folding required for sperm head-tail coupling apparatus assembly. EMBO Rep 2024; 25:2045-2070. [PMID: 38454159 PMCID: PMC11015022 DOI: 10.1038/s44319-024-00112-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 02/01/2024] [Accepted: 02/22/2024] [Indexed: 03/09/2024] Open
Abstract
Teratozoospermia is a significant cause of male infertility, but the pathogenic mechanism of acephalic spermatozoa syndrome (ASS), one of the most severe teratozoospermia, remains elusive. We previously reported Spermatogenesis Associated 6 (SPATA6) as the component of the sperm head-tail coupling apparatus (HTCA) required for normal assembly of the sperm head-tail conjunction, but the underlying molecular mechanism has not been explored. Here, we find that the co-chaperone protein BAG5, expressed in step 9-16 spermatids, is essential for sperm HTCA assembly. BAG5-deficient male mice show abnormal assembly of HTCA, leading to ASS and male infertility, phenocopying SPATA6-deficient mice. In vivo and in vitro experiments demonstrate that SPATA6, cargo transport-related myosin proteins (MYO5A and MYL6) and dynein proteins (DYNLT1, DCTN1, and DNAL1) are misfolded upon BAG5 depletion. Mechanistically, we find that BAG5 forms a complex with HSPA8 and promotes the folding of SPATA6 by enhancing HSPA8's affinity for substrate proteins. Collectively, our findings reveal a novel protein-regulated network in sperm formation in which BAG5 governs the assembly of the HTCA by activating the protein-folding function of HSPA8.
Collapse
Affiliation(s)
- Shiming Gan
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Shumin Zhou
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Department of Urology & Andrology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China
| | - Jinzhe Ma
- Department of Histology and Embryology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Mengneng Xiong
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Reproductive Medicine Center, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Wenjing Xiong
- Laboratory of Animal Center, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Xu Fan
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Kuan Liu
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yiqian Gui
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Bei Chen
- Reproductive Medicine Center, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Beibei Zhang
- Department of Urology & Andrology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China
| | - Xiaoli Wang
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Fengli Wang
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Zhean Li
- Department of Urology & Andrology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China
| | - Wei Yan
- The Lundquist Institute for Biomedical Innovation at Harbor-UCLA, Torrance, CA, 90502, USA
| | - Meisheng Ma
- Department of Histology and Embryology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Cell Architecture Research Center, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Shuiqiao Yuan
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
- Laboratory of Animal Center, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
4
|
Zhang J, Kanoatov M, Jarvi K, Gauthier-Fisher A, Moskovtsev SI, Librach C, Drabovich AP. Germ cell-specific proteins AKAP4 and ASPX facilitate identification of rare spermatozoa in non-obstructive azoospermia. Mol Cell Proteomics 2023; 22:100556. [PMID: 37087050 DOI: 10.1016/j.mcpro.2023.100556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 04/06/2023] [Accepted: 04/16/2023] [Indexed: 04/24/2023] Open
Abstract
Non-obstructive azoospermia (NOA), the most severe form of male infertility, could be treated with intra-cytoplasmic sperm injection, providing spermatozoa were retrieved with the microdissection testicular sperm extraction (mTESE). We hypothesized that testis- and germ cell-specific proteins would facilitate flow cytometry-assisted identification of rare spermatozoa in semen cell pellets of NOA patients, thus enabling non-invasive diagnostics prior to mTESE. Data mining, targeted proteomics, and immunofluorescent microscopy identified and verified a panel of highly testis-specific proteins expressed at the continuum of germ cell differentiation. Late germ cell-specific proteins AKAP4_HUMAN and ASPX_HUMAN (ACRV1 gene) revealed exclusive localization in spermatozoa tails and acrosomes, respectively. A multiplex imaging flow cytometry assay facilitated fast and unambiguous identification of rare but morphologically intact AKAP4+/ASPX+/Hoechst+ spermatozoa within debris-laden semen pellets of NOA patients. While the previously suggested markers for spermatozoa retrieval suffered from low diagnostic specificity, the multi-step gating strategy and visualization of AKAP4+/ASPX+/Hoechst+ cells with elongated tails and acrosome-capped nuclei facilitated fast and unambiguous identification of the mature intact spermatozoa. AKAP4+/ASPX+/Hoechst+ assay may emerge as a non-invasive test to predict retrieval of morphologically intact spermatozoa by mTESE, thus improving diagnostics and treatment of severe forms of male infertility.
Collapse
Affiliation(s)
| | - Mirzo Kanoatov
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada
| | - Keith Jarvi
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada; Department of Surgery, Division of Urology, Mount Sinai Hospital, Toronto, ON, Canada
| | | | - Sergey I Moskovtsev
- CReATe Fertility Centre, Toronto, ON, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Clifford Librach
- CReATe Fertility Centre, Toronto, ON, Canada; Department of Obstetrics and Gynecology, University of Toronto, Toronto, ON, Canada; Department of Physiology, University of Toronto, Toronto, ON, Canada; Sunnybrook Research Institute, Toronto, ON, Canada
| | - Andrei P Drabovich
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, AB, Canada.
| |
Collapse
|
5
|
Pereira R, Sousa M. Morphological and Molecular Bases of Male Infertility: A Closer Look at Sperm Flagellum. Genes (Basel) 2023; 14:383. [PMID: 36833310 PMCID: PMC9956255 DOI: 10.3390/genes14020383] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/19/2023] [Accepted: 01/25/2023] [Indexed: 02/04/2023] Open
Abstract
Infertility is a major health problem worldwide without an effective therapy or cure. It is estimated to affect 8-12% of couples in the reproductive age group, equally affecting both genders. There is no single cause of infertility, and its knowledge is still far from complete, with about 30% of infertile couples having no cause identified (named idiopathic infertility). Among male causes of infertility, asthenozoospermia (i.e., reduced sperm motility) is one of the most observed, being estimated that more than 20% of infertile men have this condition. In recent years, many researchers have focused on possible factors leading to asthenozoospermia, revealing the existence of many cellular and molecular players. So far, more than 4000 genes are thought to be involved in sperm production and as regulators of different aspects of sperm development, maturation, and function, and all can potentially cause male infertility if mutated. In this review, we aim to give a brief overview of the typical sperm flagellum morphology and compile some of the most relevant information regarding the genetic factors involved in male infertility, with a focus on sperm immotility and on genes related to sperm flagellum development, structure, or function.
Collapse
Affiliation(s)
- Rute Pereira
- Laboratory of Cell Biology, Department of Microscopy, ICBAS-School of Medicine and Biomedical Sciences, University of Porto, 4050-313 Porto, Portugal
- UMIB-Unit for Multidisciplinary Research in Biomedicine, ITR-Laboratory for Integrative and Translational Research in Population Health, University of Porto, 4050-313 Porto, Portugal
| | - Mário Sousa
- Laboratory of Cell Biology, Department of Microscopy, ICBAS-School of Medicine and Biomedical Sciences, University of Porto, 4050-313 Porto, Portugal
- UMIB-Unit for Multidisciplinary Research in Biomedicine, ITR-Laboratory for Integrative and Translational Research in Population Health, University of Porto, 4050-313 Porto, Portugal
| |
Collapse
|
6
|
Hoyer-Fender S. Development of the Connecting Piece in ODF1-Deficient Mouse Spermatids. Int J Mol Sci 2022; 23:ijms231810280. [PMID: 36142191 PMCID: PMC9499666 DOI: 10.3390/ijms231810280] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/30/2022] [Accepted: 09/04/2022] [Indexed: 11/30/2022] Open
Abstract
ODF1 is a major protein of the accessory fibres of the mammalian sperm tail. In addition, ODF1 is found in the connecting piece, a complex structure located at the posterior end of the nucleus that connects the sperm head and tail. The tight coupling of the sperm head and tail is critical for the progressive motility of the sperm to reach the oocyte for fertilisation. The depletion of ODF1 by homologous recombination in mice led to male infertility. Although sperm tails were present in the epididymis, no intact spermatozoa were found. Instead, the depletion of ODF1 resulted in sperm decapitation, suggesting that ODF1 is essential for the formation of the coupling apparatus and the tight linkage of the sperm head and tail. However, the development of the linkage complex in the absence of ODF1 has never been investigated. Here, I analysed the fine structure of the developing connecting piece by transmission electron microscopy. I show that the connecting piece develops as in wild-type spermatids. Structural abnormalities were not observed when ODF1 was absent. Thus, ODF1 is dispensable for the development of the connecting piece. However, the decapitation of ODF1-deficient spermatozoa indicates that the heads and tails of the spermatozoa are not linked, so that they separate when force is applied.
Collapse
Affiliation(s)
- Sigrid Hoyer-Fender
- Johann-Friedrich-Blumenbach-Institute of Zoology and Anthropology-Developmental Biology, GZMB, Ernst-Caspari-Haus, Justus-von-Liebig-Weg 11, Georg-August-Universität Göttingen, 37077 Göttingen, Germany
| |
Collapse
|
7
|
Sperm Phosphoproteome: Unraveling Male Infertility. BIOLOGY 2022; 11:biology11050659. [PMID: 35625387 PMCID: PMC9137924 DOI: 10.3390/biology11050659] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 04/21/2022] [Accepted: 04/22/2022] [Indexed: 11/16/2022]
Abstract
Infertility affects approximately 15% of couples worldwide of childbearing age, and in many cases the etiology of male infertility is unknown. The current standard evaluation of semen is insufficient to establish an accurate diagnosis. Proteomics techniques, such as phosphoproteomics, applied in this field are a powerful tool to understand the mechanisms that regulate sperm functions such as motility, which is essential for successful fertilization. Among the post-translational modifications of sperm proteins, this review summarizes, from a proteomic perspective, the updated knowledge of protein phosphorylation, in human spermatozoa, as a relevant molecular mechanism involved in the regulation of sperm physiology. Specifically, the role of sperm protein phosphorylation in motility and, consequently, in sperm quality is highlighted. Additionally, through the analysis of published comparative phosphoproteomic studies, some candidate human sperm phosphoproteins associated with low sperm motility are proposed. Despite the remarkable advances in phosphoproteomics technologies, the relatively low number of studies performed in human spermatozoa suggests that phosphoproteomics has not been applied to its full potential in studying male infertility yet. Therefore, further studies will improve the application of this procedure and overcome the limitations, increasing the understanding of regulatory mechanisms underlying protein phosphorylation in sperm motility and, consequently, in male fertility.
Collapse
|
8
|
Tedesco B, Cristofani R, Ferrari V, Cozzi M, Rusmini P, Casarotto E, Chierichetti M, Mina F, Galbiati M, Piccolella M, Crippa V, Poletti A. Insights on Human Small Heat Shock Proteins and Their Alterations in Diseases. Front Mol Biosci 2022; 9:842149. [PMID: 35281256 PMCID: PMC8913478 DOI: 10.3389/fmolb.2022.842149] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 01/19/2022] [Indexed: 11/13/2022] Open
Abstract
The family of the human small Heat Shock Proteins (HSPBs) consists of ten members of chaperones (HSPB1-HSPB10), characterized by a low molecular weight and capable of dimerization and oligomerization forming large homo- or hetero-complexes. All HSPBs possess a highly conserved centrally located α-crystallin domain and poorly conserved N- and C-terminal domains. The main feature of HSPBs is to exert cytoprotective functions by preserving proteostasis, assuring the structural maintenance of the cytoskeleton and acting in response to cellular stresses and apoptosis. HSPBs take part in cell homeostasis by acting as holdases, which is the ability to interact with a substrate preventing its aggregation. In addition, HSPBs cooperate in substrates refolding driven by other chaperones or, alternatively, promote substrate routing to degradation. Notably, while some HSPBs are ubiquitously expressed, others show peculiar tissue-specific expression. Cardiac muscle, skeletal muscle and neurons show high expression levels for a wide variety of HSPBs. Indeed, most of the mutations identified in HSPBs are associated to cardiomyopathies, myopathies, and motor neuropathies. Instead, mutations in HSPB4 and HSPB5, which are also expressed in lens, have been associated with cataract. Mutations of HSPBs family members encompass base substitutions, insertions, and deletions, resulting in single amino acid substitutions or in the generation of truncated or elongated proteins. This review will provide an updated overview of disease-related mutations in HSPBs focusing on the structural and biochemical effects of mutations and their functional consequences.
Collapse
Affiliation(s)
- B. Tedesco
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - R. Cristofani
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy
| | - V. Ferrari
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy
| | - M. Cozzi
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy
| | - P. Rusmini
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy
| | - E. Casarotto
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy
| | - M. Chierichetti
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy
| | - F. Mina
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy
| | - M. Galbiati
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy
| | - M. Piccolella
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy
| | - V. Crippa
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy
| | - A. Poletti
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy
- *Correspondence: A. Poletti,
| |
Collapse
|
9
|
WEI YS, LIN WZ, WANG TE, LEE WY, LI SH, LIN FJ, NIXON B, SIPILÄ P, TSAI PS. Polarized epithelium-sperm co-culture system reveals stimulatory factors for the secretion of mouse epididymal quiescin sulfhydryl oxidase 1. J Reprod Dev 2022; 68:198-208. [PMID: 35228412 PMCID: PMC9184822 DOI: 10.1262/jrd.2021-128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Spermatozoa acquire fertilization ability through post-translational modifications. These membrane surface alterations occur in various segments of the epididymis. Quiescin sulfhydryl
oxidases, which catalyze thiol-oxidation reactions, are involved in disulfide bond formation, which is essential for sperm maturation, upon transition and migration in the epididymis. Using
castration and azoospermia transgenic mouse models, in the present study, we showed that quiescin sulfhydryl oxidase 1 (QSOX1) protein expression and secretion are positively correlated with
the presence of testosterone and sperm cells. A two-dimensional in vitro epithelium-sperm co-culture system provided further evidence in support of the notion that both
testosterone and its dominant metabolite, 5α-dihydrotestosterone, promote epididymal QSOX1 secretion. We also demonstrated that immature caput spermatozoa, but not mature cauda sperm cells,
exhibited great potential to stimulate QSOX1 secretion in vitro, suggesting that sperm maturation is a key regulatory factor for mouse epididymal QSOX1 secretion. Proteomic
analysis identified 582 secretory proteins from the co-culture supernatant, of which 258 were sperm-specific and 154 were of epididymal epithelium-origin. Gene Ontology analysis indicated
that these secreted proteins exhibit functions known to facilitate sperm membrane organization, cellular activity, and sperm-egg recognition. Taken together, our data demonstrated that
testosterone and sperm maturation status are key regulators of mouse epididymal QSOX1 protein expression and secretion.
Collapse
Affiliation(s)
- Yu-Syuan WEI
- Department of Veterinary Medicine, School of Veterinary Medicine, National Taiwan University, Taipei 10617, Taiwan
| | - Wan-Zhen LIN
- Graduate Institute of Veterinary Medicine, School of Veterinary Medicine, National Taiwan University, Taipei 10617, Taiwan
| | - Tse-En WANG
- Graduate Institute of Veterinary Medicine, School of Veterinary Medicine, National Taiwan University, Taipei 10617, Taiwan
| | - Wei-Yun LEE
- Graduate Institute of Veterinary Medicine, School of Veterinary Medicine, National Taiwan University, Taipei 10617, Taiwan
| | - Sheng-Hsiang LI
- Department of Medical Research, Mackay Memorial Hospital, Tamshui 25160, Taiwan
| | - Fu-Jung LIN
- Department of Biochemical Science and Technology, National Taiwan University, Taipei 10617, Taiwan
| | - Brett NIXON
- Priority Research Centre for Reproduction, School of Environmental and Life Sciences, Discipline of Biological Sciences, University of Newcastle, Callaghan, New South Wales 2308, Australia
| | - Petra SIPILÄ
- Department of Physiology, Institute of Biomedicine, University of Turku, Turku 20520, Finland
| | - Pei-Shiue TSAI
- Department of Veterinary Medicine, School of Veterinary Medicine, National Taiwan University, Taipei 10617, Taiwan
| |
Collapse
|
10
|
Yogo K. Molecular basis of the morphogenesis of sperm head and tail in mice. Reprod Med Biol 2022; 21:e12466. [PMID: 35619659 PMCID: PMC9126569 DOI: 10.1002/rmb2.12466] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 04/27/2022] [Accepted: 04/28/2022] [Indexed: 11/26/2022] Open
Abstract
Background The spermatozoon has a complex molecular apparatus necessary for fertilization in its head and flagellum. Recently, numerous genes that are needed to construct the molecular apparatus of spermatozoa have been identified through the analysis of genetically modified mice. Methods Based on the literature information, the molecular basis of the morphogenesis of sperm heads and flagella in mice was summarized. Main findings (Results) The molecular mechanisms of vesicular trafficking and intraflagellar transport in acrosome and flagellum formation were listed. With the development of cryo‐electron tomography and mass spectrometry techniques, the details of the axonemal structure are becoming clearer. The fine structure and the proteins needed to form the central apparatus, outer and inner dynein arms, nexin‐dynein regulatory complex, and radial spokes were described. The important components of the formation of the mitochondrial sheath, fibrous sheath, outer dense fiber, and the annulus were also described. The similarities and differences between sperm flagella and Chlamydomonas flagella/somatic cell cilia were also discussed. Conclusion The molecular mechanism of formation of the sperm head and flagellum has been clarified using the mouse as a model. These studies will help to better understand the diversity of sperm morphology and the causes of male infertility.
Collapse
Affiliation(s)
- Keiichiro Yogo
- Department of Applied Life Sciences Faculty of Agriculture Shizuoka University Shizuoka Japan
| |
Collapse
|
11
|
Finelli R, Mottola F, Agarwal A. Impact of Alcohol Consumption on Male Fertility Potential: A Narrative Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 19:ijerph19010328. [PMID: 35010587 PMCID: PMC8751073 DOI: 10.3390/ijerph19010328] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 12/11/2021] [Accepted: 12/23/2021] [Indexed: 12/13/2022]
Abstract
Alcohol abuse disorder is a serious condition, implicating more than 15 million people aged 12 years and older in 2019 in the United States. Ethanol (or ethyl alcohol) is mainly oxidized in the liver, resulting in the synthesis of acetaldehyde and acetate, which are toxic and carcinogenic metabolites, as well as in the generation of a reductive cellular environment. Moreover, ethanol can interact with lipids, generating fatty acid ethyl esters and phosphatidylethanol, which interfere with physiological cellular pathways. This narrative review summarizes the impact of excessive alcohol consumption on male fertility by describing its metabolism and how ethanol consumption may induce cellular damage. Furthermore, the impact of alcohol consumption on hormonal regulation, semen quality, and genetic and epigenetic regulations is discussed based on evidence from animal and human studies, focusing on the consequences on the offspring. Finally, the limitations of the current evidence are discussed. Our review highlights the association between chronic alcohol consumption and poor semen quality, mainly due to the development of oxidative stress, as well as its genotoxic impact on hormonal regulation and DNA integrity, affecting the offspring’s health. New landscapes of investigation are proposed for the identification of molecular markers for alcohol-associated infertility, with a focus on advanced OMICS-based approaches applied to the analysis of semen samples.
Collapse
Affiliation(s)
- Renata Finelli
- American Center for Reproductive Medicine, Cleveland Clinic, Cleveland, OH 44106, USA;
| | - Filomena Mottola
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania Luigi Vanvitelli, 81100 Caserta, Italy;
| | - Ashok Agarwal
- American Center for Reproductive Medicine, Cleveland Clinic, Cleveland, OH 44106, USA;
- Correspondence: ; Tel.: +1-(214)-444-9485
| |
Collapse
|
12
|
Tapia Contreras C, Hoyer-Fender S. The Transformation of the Centrosome into the Basal Body: Similarities and Dissimilarities between Somatic and Male Germ Cells and Their Relevance for Male Fertility. Cells 2021; 10:2266. [PMID: 34571916 PMCID: PMC8471410 DOI: 10.3390/cells10092266] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 08/26/2021] [Accepted: 08/30/2021] [Indexed: 12/14/2022] Open
Abstract
The sperm flagellum is essential for the transport of the genetic material toward the oocyte and thus the transmission of the genetic information to the next generation. During the haploid phase of spermatogenesis, i.e., spermiogenesis, a morphological and molecular restructuring of the male germ cell, the round spermatid, takes place that includes the silencing and compaction of the nucleus, the formation of the acrosomal vesicle from the Golgi apparatus, the formation of the sperm tail, and, finally, the shedding of excessive cytoplasm. Sperm tail formation starts in the round spermatid stage when the pair of centrioles moves toward the posterior pole of the nucleus. The sperm tail, eventually, becomes located opposed to the acrosomal vesicle, which develops at the anterior pole of the nucleus. The centriole pair tightly attaches to the nucleus, forming a nuclear membrane indentation. An articular structure is formed around the centriole pair known as the connecting piece, situated in the neck region and linking the sperm head to the tail, also named the head-to-tail coupling apparatus or, in short, HTCA. Finally, the sperm tail grows out from the distal centriole that is now transformed into the basal body of the flagellum. However, a centriole pair is found in nearly all cells of the body. In somatic cells, it accumulates a large mass of proteins, the pericentriolar material (PCM), that together constitute the centrosome, which is the main microtubule-organizing center of the cell, essential not only for the structuring of the cytoskeleton and the overall cellular organization but also for mitotic spindle formation and chromosome segregation. However, in post-mitotic (G1 or G0) cells, the centrosome is transformed into the basal body. In this case, one of the centrioles, which is always the oldest or mother centriole, grows the axoneme of a cilium. Most cells of the body carry a single cilium known as the primary cilium that serves as an antenna sensing the cell's environment. Besides, specialized cells develop multiple motile cilia differing in substructure from the immotile primary cilia that are essential in moving fluids or cargos over the cellular surface. Impairment of cilia formation causes numerous severe syndromes that are collectively subsumed as ciliopathies. This comparative overview serves to illustrate the molecular mechanisms of basal body formation, their similarities, and dissimilarities, in somatic versus male germ cells, by discussing the involved proteins/genes and their expression, localization, and function. The review, thus, aimed to provide a deeper knowledge of the molecular players that is essential for the expansion of clinical diagnostics and treatment of male fertility disorders.
Collapse
Affiliation(s)
| | - Sigrid Hoyer-Fender
- Göttingen Center of Molecular Biosciences, Johann-Friedrich-Blumenbach Institute for Zoology and Anthropology-Developmental Biology, Faculty of Biology and Psychology, Georg-August University of Göttingen, 37077 Göttingen, Germany;
| |
Collapse
|
13
|
Xu Y, Han Q, Ma C, Wang Y, Zhang P, Li C, Cheng X, Xu H. Comparative Proteomics and Phosphoproteomics Analysis Reveal the Possible Breed Difference in Yorkshire and Duroc Boar Spermatozoa. Front Cell Dev Biol 2021; 9:652809. [PMID: 34336820 PMCID: PMC8322956 DOI: 10.3389/fcell.2021.652809] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 06/18/2021] [Indexed: 12/12/2022] Open
Abstract
Sperm cells are of unique elongated structure and function, the development of which is tightly regulated by the existing proteins and the posttranslational modifications (PTM) of these proteins. Based on the phylogenetic relationships of various swine breeds, Yorkshire boar is believed to be distinctly different from Duroc boar. The comprehensive differential proteomics and phosphoproteomics profilings were performed on spermatozoa from both Yorkshire and Duroc boars. By both peptide and PTM peptide quantification followed by statistical analyses, 167 differentially expressed proteins were identified from 1,745 proteins, and 283 differentially expressed phosphopeptides corresponding to 102 unique differentially phosphorylated proteins were measured from 1,140 identified phosphopeptides derived from 363 phosphorylated proteins. The representative results were validated by Western blots. Pathway enrichment analyses revealed that majority of differential expression proteins and differential phosphorylation proteins were primarily concerned with spermatogenesis, male gamete generation, sperm motility, energy metabolism, cilium morphogenesis, axonemal dynein complex assembly, sperm–egg recognition, and capacitation. Remarkably, axonemal dynein complex assembly related proteins, such as SMCP, SUN5, ODF1, AKAP3, and AKAP4 that play a key regulatory role in the sperm physiological functions, were significantly higher in Duroc spermatozoa than that of Yorkshire. Furthermore, phosphorylation of sperm-specific proteins, such as CABYR, ROPN1, CALM1, PRKAR2A, and PRKAR1A, participates in regulation of the boar sperm motility mainly through the cAMP/PKA signal pathway in different breeds, demonstrating that protein phosphorylation may be an important mechanism underlying the sperm diversity. Protein–protein interaction analysis revealed that the 14 overlapped proteins between differential expression proteins and differential phosphorylation proteins potentially played a key role in sperm development and motility of the flagellum, including the proteins ODF1, SMCP, AKAP4, FSIP2, and SUN5. Taken together, these physiologically and functionally differentially expressed proteins (DEPs) and differentially expressed phosphorylated proteins (DPPs) may constitute the proteomic backgrounds between the two different boar breeds. The validation will be performed to delineate the roles of these PTM proteins as modulators of Yorkshire and Duroc boar spermatozoa.
Collapse
Affiliation(s)
- Yongjie Xu
- College of Life Science, Xinyang Normal University, Xinyang, China.,Institute for Conservation and Utilization of Agro-Bioresources in Dabie Mountains, Xinyang Normal University, Xinyang, China
| | - Qiu Han
- College of Life Science, Xinyang Normal University, Xinyang, China
| | - Chaofeng Ma
- Xinyang Animal Disease Control and Prevention Center, Xinyang, China
| | - Yaling Wang
- College of Life Science, Xinyang Normal University, Xinyang, China
| | - Pengpeng Zhang
- College of Life Science, Xinyang Normal University, Xinyang, China.,Institute for Conservation and Utilization of Agro-Bioresources in Dabie Mountains, Xinyang Normal University, Xinyang, China
| | - Cencen Li
- College of Life Science, Xinyang Normal University, Xinyang, China.,Institute for Conservation and Utilization of Agro-Bioresources in Dabie Mountains, Xinyang Normal University, Xinyang, China
| | - Xiaofang Cheng
- College of Life Science, Xinyang Normal University, Xinyang, China.,Institute for Conservation and Utilization of Agro-Bioresources in Dabie Mountains, Xinyang Normal University, Xinyang, China
| | - Haixia Xu
- College of Life Science, Xinyang Normal University, Xinyang, China.,Institute for Conservation and Utilization of Agro-Bioresources in Dabie Mountains, Xinyang Normal University, Xinyang, China
| |
Collapse
|
14
|
Altered Gene Expression in the Testis of Infertile Patients with Nonobstructive Azoospermia. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2021; 2021:5533483. [PMID: 34221106 PMCID: PMC8211532 DOI: 10.1155/2021/5533483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 05/14/2021] [Accepted: 05/28/2021] [Indexed: 11/18/2022]
Abstract
Background The molecular mechanism of nonobstructive azoospermia (NOA) remains unclear. The aim of this study was to identify gene expression changes in NOA patients and to explore potential biomarkers and therapeutic targets. Methods The gene expression profiles of GSE45885 and GSE145467 were collected from the Gene Expression Omnibus (GEO) database, and the differences between NOA and normal spermatogenesis were analyzed. Enrichment analysis was performed to explore biological functions for common differentially expressed genes (DEGs) in GSE45885 and GSE145467. Coexpression analysis of DEGs in GSE45885 was performed, and two modules with the highest correlation with NOA were screened. Key genes were then screened from the intersection genes of the two modules and common DEGs and PPI network. The expression of key genes was validated by quantitative real-time polymerase chain reaction (qRT-PCR) experiments. Finally, through miRTarBase, miRDB, and RAID, the miRNAs were predicted to regulate key genes, respectively. Results A total of 345 common DEGs were identified and they were mainly related to spermatogenesis, insulin signaling pathway. Coexpression analysis of DEGs in GSE45885 yielded eight modules; MEblack and MEturquoise had the highest correlation with NOA. Six genes in MEturquoise and RNF141 in MEblack were identified as key genes. qRT-PCR experiments validated the differential expression of key genes between NOA and control. Furthermore, RNF141 was regulated by the largest number of miRNAs. Conclusion Our findings suggest that the significant change expression of key genes may be potential markers and therapeutic targets of NOA and may have some impact on the development of NOA.
Collapse
|
15
|
Kumar N, Singh AK. The anatomy, movement, and functions of human sperm tail: an evolving mystery. Biol Reprod 2020; 104:508-520. [PMID: 33238303 DOI: 10.1093/biolre/ioaa213] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 11/16/2020] [Accepted: 11/20/2020] [Indexed: 12/15/2022] Open
Abstract
Sperms have attracted attention of many researchers since it was discovered by Antonie van Leeuwenhoek in 1677. Though a small cell, its every part has complex structure and different function to play in carrying life. Sperm tail is most complicated structure with more than 1000 proteins involved in its functioning. With the advent of three-dimensional microscopes, many studies are undergoing to understand exact mechanism of sperm tail movement. Most recent studies have shown that sperms move by spinning rather than swimming. Each subunit of tail, including axonemal, peri-axonemal structures, plays essential roles in sperm motility, capacitation, hyperactivation, fertilization. Furthermore, over 2300 genes are involved in spermatogenesis. A number of genetic mutations have been linked with abnormal sperm flagellar development leading to motility defects and male infertility. It was found that 6% of male infertility cases are related to genetic causes, and 4% of couples undergoing intracytoplasmic sperm injection for male subfertility have chromosomal abnormalities. Hence, an understanding of sperm tail development and genes associated with its normal functioning can help in better diagnosis of male infertility and its management. There is still a lot that needs to be discovered about genes, proteins contributing to normal human sperm tail development, movement, and role in male fertility. Sperm tail has complex anatomy, with surrounding axoneme having 9 + 2 microtubules arrangement along its entire length and peri-axonemal structures that contribute in sperm motility and fertilization. In future sperm tail-associated genes, proteins and subunits can be used as markers of male fertility.
Collapse
Affiliation(s)
- Naina Kumar
- Department of Obstetrics and Gynecology, All India Institute of Medical Sciences, Guntur, Andhra Pradesh 522503, India
| | - Amit Kant Singh
- Department of Physiology, U.P. University of Medical Sciences, Etawah 206130, Uttar Pradesh, India
| |
Collapse
|
16
|
Panner Selvam MK, Finelli R, Agarwal A, Henkel R. Proteomics and metabolomics - Current and future perspectives in clinical andrology. Andrologia 2020; 53:e13711. [PMID: 32598566 DOI: 10.1111/and.13711] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 05/17/2020] [Accepted: 05/19/2020] [Indexed: 12/12/2022] Open
Abstract
Proteomics and metabolomics are emerging as promising tools to investigate the molecular mechanisms associated with male infertility. Proteins and metabolites play a pivotal role in regulating the molecular pathways associated with physiological functions of spermatozoa. Semen analysis, physical examination and laboratory work up cannot identify the etiology of infertility in 30%-40% of cases, which are classified as idiopathic. Therefore, the application of proteomics and metabolomics in the field of andrology will aid to overcome the limitations of the standard semen analysis. Understanding the molecular pathways associated with male infertility will help in planning ad hoc treatments, contributing to the clinical management of infertile patients. In this review, proteomics and metabolomics studies on spermatozoa and seminal plasma are discussed with a focus on molecular biomarkers associated with male infertility-related conditions.
Collapse
Affiliation(s)
| | - Renata Finelli
- American Center for Reproductive Medicine, Cleveland Clinic, Cleveland, OH, USA
| | - Ashok Agarwal
- American Center for Reproductive Medicine, Cleveland Clinic, Cleveland, OH, USA
| | - Ralf Henkel
- American Center for Reproductive Medicine, Cleveland Clinic, Cleveland, OH, USA.,Department of Medical Bioscience, University of the Western Cape, Bellville, South Africa
| |
Collapse
|
17
|
Sironen A, Shoemark A, Patel M, Loebinger MR, Mitchison HM. Sperm defects in primary ciliary dyskinesia and related causes of male infertility. Cell Mol Life Sci 2020; 77:2029-2048. [PMID: 31781811 PMCID: PMC7256033 DOI: 10.1007/s00018-019-03389-7] [Citation(s) in RCA: 138] [Impact Index Per Article: 27.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 11/12/2019] [Accepted: 11/19/2019] [Indexed: 01/22/2023]
Abstract
The core axoneme structure of both the motile cilium and sperm tail has the same ultrastructural 9 + 2 microtubular arrangement. Thus, it can be expected that genetic defects in motile cilia also have an effect on sperm tail formation. However, recent studies in human patients, animal models and model organisms have indicated that there are differences in components of specific structures within the cilia and sperm tail axonemes. Primary ciliary dyskinesia (PCD) is a genetic disease with symptoms caused by malfunction of motile cilia such as chronic nasal discharge, ear, nose and chest infections and pulmonary disease (bronchiectasis). Half of the patients also have situs inversus and in many cases male infertility has been reported. PCD genes have a role in motile cilia biogenesis, structure and function. To date mutations in over 40 genes have been identified cause PCD, but the exact effect of these mutations on spermatogenesis is poorly understood. Furthermore, mutations in several additional axonemal genes have recently been identified to cause a sperm-specific phenotype, termed multiple morphological abnormalities of the sperm flagella (MMAF). In this review, we discuss the association of PCD genes and other axonemal genes with male infertility, drawing particular attention to possible differences between their functions in motile cilia and sperm tails.
Collapse
Affiliation(s)
- Anu Sironen
- Genetics and Genomic Medicine, UCL Great Ormond Street Institute of Child Health, University College London, 30 Guilford Street, London, WC1N 1EH, UK.
| | - Amelia Shoemark
- Department of Paediatrics, Royal Brompton Hospital, London, UK
- School of Medicine, University of Dundee, Dundee, UK
| | - Mitali Patel
- Genetics and Genomic Medicine, UCL Great Ormond Street Institute of Child Health, University College London, 30 Guilford Street, London, WC1N 1EH, UK
| | - Michael R Loebinger
- Host Defence Unit, Royal Brompton and Harefield NHS Foundation Trust, London, UK
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Hannah M Mitchison
- Genetics and Genomic Medicine, UCL Great Ormond Street Institute of Child Health, University College London, 30 Guilford Street, London, WC1N 1EH, UK
| |
Collapse
|
18
|
Netherton J, Ogle RA, Hetherington L, Silva Balbin Villaverde AI, Hondermarck H, Baker MA. Proteomic Analysis Reveals that Topoisomerase 2A is Associated with Defective Sperm Head Morphology. Mol Cell Proteomics 2020; 19:444-455. [PMID: 31848259 PMCID: PMC7050105 DOI: 10.1074/mcp.ra119.001626] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 11/19/2019] [Indexed: 12/15/2022] Open
Abstract
Male infertility is widespread and estimated to affect 1 in 20 men. Although in some cases the etiology of the condition is well understood, for at least 50% of men, the underlying cause is yet to be classified. Male infertility, or subfertility, is often diagnosed by looking at total sperm produced, motility of the cells and overall morphology. Although counting spermatozoa and their associated motility is routine, morphology assessment is highly subjective, mainly because of the procedure being based on microscopic examination. A failure to diagnose male-infertility or sub-fertility has led to a situation where assisted conception is often used unnecessarily. As such, biomarkers of male infertility are needed to help establish a more consistent diagnosis. In the present study, we compared nuclear extracts from both high- and low-quality spermatozoa by LC-MS/MS based proteomic analysis. Our data shows that nuclear retention of specific proteins is a common facet among low-quality sperm cells. We demonstrate that the presence of Topoisomerase 2A in the sperm head is highly correlated to poor head morphology. Topoisomerase 2A is therefore a potential new biomarker for confirming male infertility in clinical practice.
Collapse
Affiliation(s)
- Jacob Netherton
- Priority Research Centre in Reproductive Science, School of Environmental and Life Sciences, University of Newcastle, Callaghan, New South Wales, Australia
| | - Rachel A Ogle
- Priority Research Centre in Reproductive Science, School of Environmental and Life Sciences, University of Newcastle, Callaghan, New South Wales, Australia
| | - Louise Hetherington
- Priority Research Centre in Reproductive Science, School of Environmental and Life Sciences, University of Newcastle, Callaghan, New South Wales, Australia
| | | | - Hubert Hondermarck
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, University of Newcastle, New Lambton, New South Wales, Australia, Hunter Medical Research Institute, University of Newcastle, New Lambton, New South Wales, Australia
| | - Mark A Baker
- Priority Research Centre in Reproductive Science, School of Environmental and Life Sciences, University of Newcastle, Callaghan, New South Wales, Australia.
| |
Collapse
|
19
|
Netherton JK, Hetherington L, Ogle RA, Gavgani MM, Velkov T, Villaverde AIB, Tanphaichitr N, Baker MA. Mass Spectrometry Reveals New Insights into the Production of Superoxide Anions and 4-Hydroxynonenal Adducted Proteins in Human Sperm. Proteomics 2020; 20:e1900205. [PMID: 31846556 DOI: 10.1002/pmic.201900205] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 09/10/2019] [Indexed: 01/09/2023]
Abstract
The free-radical theory of male infertility suggests that reactive oxygen species produced by the spermatozoa themselves are a leading cause of sperm dysfunction, including loss of sperm motility. However, the field is overshadowed on several fronts, primarily because: i) the probes used to measure reactive oxygen species (ROS) are imprecise; and ii) many reports suggesting that oxygen radicals are detrimental to sperm function add an exogenous source of ROS. Herein, a more reliable approach to measure superoxide anion production by human spermatozoa based on MS analysis is used. Furthermore, the formation of the lipid-peroxidation product 4-hydroxynonenal (4-HNE) during in vitro incubation using proteomics is also investigated. The data demonstrate that neither superoxide anion nor other free radicals that cause 4-HNE production are related to the loss of sperm motility during incubation. Interestingly, it appears that many of the 4-HNE adducted proteins, found within spermatozoa, originate from the prostate. A quantitative SWATH analysis demonstrate that these proteins transiently bind to sperm and are then shed during in vitro incubation. These proteomics-based findings propose a revised understanding of oxidative stress within the male reproductive tract.
Collapse
Affiliation(s)
| | - Louise Hetherington
- Department of Biological Science, University of Newcastle, Callaghan, 2308, Australia
| | - Rachel Anne Ogle
- Department of Biological Science, University of Newcastle, Callaghan, 2308, Australia
| | | | - Tony Velkov
- Department of Pharmacology and Therapeutics, University of Melbourne, Parkville, 3010, Australia
| | | | - Nuch Tanphaichitr
- Chronic Disease Program, Ottawa Hospital Research Institute, Department of Obstetrics and Gynaecology and, Department of Biochemistry, Microbiology, Immunology, University of Ottawa, Ottawa, Ontario, K1H 8L6, Canada
| | - Mark Andrew Baker
- Department of Biological Science, University of Newcastle, Callaghan, 2308, Australia
| |
Collapse
|
20
|
Cabrillana ME, Bocanegra V, Monclus MA, Lancellotti TS, Simón L, Funes AK, Colombo R, Ruiz Estrabón M, Vincenti AE, Oliva R, Fornés MW. ODF1, sperm flagelar protein is expressed in kidney collecting ducts of rats. Heliyon 2019; 5:e02932. [PMID: 31867458 PMCID: PMC6906709 DOI: 10.1016/j.heliyon.2019.e02932] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2019] [Revised: 11/04/2019] [Accepted: 11/25/2019] [Indexed: 11/15/2022] Open
Abstract
ODF1 has been described as an exclusively expressed testicular protein and is located in the outer dense fibers along the sperm tail. ODF1 has been involved in the sperm motility and in the development of the flagellum, but the function of ODF1 is not already clear. Other ODF proteins, such as ODF2 have been characterized in other tissues like the basal body of the kidney primary cilium, but so far only the mRNA of ODF1 has been described in other tissues. These observations let us to hypothesize that the expression of the protein ODF1 could not be limited to the testis. Therefore, in the present work we proposed to evaluate if the ODF1 protein could also be present in tissues other than the testis. Here we demonstrated through western blot, immunofluorescence, and RT-PCR techniques that the protein and mRNA of ODF1 have been identified in the rat kidney. Finally, the presence of ODF1 in kidney has also been confirmed through proteomic analysis using mass spectrometry. The results derived from these different complementary approaches indicate that, to our knowledge and for the first time, ODF1 is demonstrated to be present in an additional organ different to testis. This results raise new questions about potential other functions and locations of the ODF1 protein.
Collapse
Affiliation(s)
- M E Cabrillana
- Andrologic Research Laboratory of Mendoza (LIAM), Histology and Embryology Institute of Mendoza (IHEM), CONICET (National Council of Scientific and Technical Research of Argentina), 5500, Mendoza, Argentina.,Research Institute, School of Medicine, University of Aconcagua, 5500, Mendoza, Argentina
| | - V Bocanegra
- IMBECU-CONICET, UNCuyo (National University of Cuyo), 5500, Mendoza, Argentina
| | - M A Monclus
- Andrologic Research Laboratory of Mendoza (LIAM), Histology and Embryology Institute of Mendoza (IHEM), CONICET (National Council of Scientific and Technical Research of Argentina), 5500, Mendoza, Argentina.,Research Institute, School of Medicine, University of Aconcagua, 5500, Mendoza, Argentina
| | - Te Saez Lancellotti
- Andrologic Research Laboratory of Mendoza (LIAM), Histology and Embryology Institute of Mendoza (IHEM), CONICET (National Council of Scientific and Technical Research of Argentina), 5500, Mendoza, Argentina.,Research Institute, School of Medicine, University of Aconcagua, 5500, Mendoza, Argentina
| | - L Simón
- Andrologic Research Laboratory of Mendoza (LIAM), Histology and Embryology Institute of Mendoza (IHEM), CONICET (National Council of Scientific and Technical Research of Argentina), 5500, Mendoza, Argentina
| | - A K Funes
- Andrologic Research Laboratory of Mendoza (LIAM), Histology and Embryology Institute of Mendoza (IHEM), CONICET (National Council of Scientific and Technical Research of Argentina), 5500, Mendoza, Argentina
| | - R Colombo
- Andrologic Research Laboratory of Mendoza (LIAM), Histology and Embryology Institute of Mendoza (IHEM), CONICET (National Council of Scientific and Technical Research of Argentina), 5500, Mendoza, Argentina
| | - M Ruiz Estrabón
- Research Institute, School of Medicine, University of Aconcagua, 5500, Mendoza, Argentina
| | - A E Vincenti
- Andrologic Research Laboratory of Mendoza (LIAM), Histology and Embryology Institute of Mendoza (IHEM), CONICET (National Council of Scientific and Technical Research of Argentina), 5500, Mendoza, Argentina
| | - R Oliva
- Institut D'Investigacions Biomediques August Pi I Sunyer (IDIBAPS), University of Barcelona, And Hospital Clinic, Molecular Biology of Reproduction and Development Research Group, 08036, Barcelona, Spain
| | - M W Fornés
- Andrologic Research Laboratory of Mendoza (LIAM), Histology and Embryology Institute of Mendoza (IHEM), CONICET (National Council of Scientific and Technical Research of Argentina), 5500, Mendoza, Argentina.,Research Institute, School of Medicine, University of Aconcagua, 5500, Mendoza, Argentina
| |
Collapse
|
21
|
Mortimer D. The functional anatomy of the human spermatozoon: relating ultrastructure and function. Mol Hum Reprod 2019; 24:567-592. [PMID: 30215807 DOI: 10.1093/molehr/gay040] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Accepted: 09/11/2018] [Indexed: 12/16/2022] Open
Abstract
The Internet, magazine articles, and even biomedical journal articles, are full of cartoons of spermatozoa that bear minimal resemblance to real spermatozoa, especially human spermatozoa, and this had led to many misconceptions about what spermatozoa look like and how they are constituted. This review summarizes the historical and current state of knowledge of mammalian sperm ultrastructure, with particular emphasis on and relevance to human spermatozoa, combining information obtained from a variety of electron microscopic (EM) techniques. Available information on the composition and configuration of the various ultrastructural components of the spermatozoon has been related to their mechanistic purpose and roles in the primary aspects of sperm function and fertilization: motility, hyperactivation, capacitation, the acrosome reaction and sperm-oocyte fusion.
Collapse
Affiliation(s)
- David Mortimer
- Oozoa Biomedical Inc., Caulfeild Village, West Vancouver, BC, Canada
| |
Collapse
|
22
|
Scott C, de Souza FF, Aristizabal VHV, Hethrington L, Krisp C, Molloy M, Baker MA, Dell'Aqua JA. Proteomic profile of sex-sorted bull sperm evaluated by SWATH-MS analysis. Anim Reprod Sci 2018; 198:121-128. [PMID: 30274742 DOI: 10.1016/j.anireprosci.2018.09.010] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 08/29/2018] [Accepted: 09/18/2018] [Indexed: 11/16/2022]
Abstract
The identification of distinct proteins present on the membrane of spermatozoa with X and Y chromosomes allows the development of immuno-sexing techniques. The aim of this study, therefore, was to use mass spectrometry to analyze the protein profile of sperm previously categorized using flow cytometry into X or Y-bearing semen pools. Sex-sorted sperm samples (n = 6 X and n = 6 Y) were used. Proteins were extracted and analyzed by mass spectrometry using data independent acquisition (DIA). The data were searched against taxonomy Bos taurus in the Swiss Prot database. In total, 459 protein groups were identified. Of these, eight proteins were in differential abundances between the X- and Y-bearing sperm population. Among the major proteinsdetected, EF-hand domain-containing protein 1, a protein involved in embryonic development, is more abundant in Y-bearing spermatozoa. In addition, proteins FUN14, domain-containing protein 2, NADH dehydrogenase [ubiquinone] iron-sulfur protein 7 mitochondrial, cytochrome C oxidase subunit 2, acetyl -CoA carboxylase type beta were more abundant in X-bearing sperm. In conclusion, there were differences in abundance of proteins between X- and Y-bearing bull spermatozoa. This fact, may contribute to future studies related to sperm physiology and possibility development of immuno-sexing techniques.
Collapse
Affiliation(s)
- Caroline Scott
- São Paulo State University (UNESP), School of Veterinary Medicine and Animal Science, Department of Animal Reproduction and Veterinary Radiology, Botucatu, Brazil
| | - Fabiana F de Souza
- São Paulo State University (UNESP), School of Veterinary Medicine and Animal Science, Department of Animal Reproduction and Veterinary Radiology, Botucatu, Brazil
| | - Viviana H V Aristizabal
- São Paulo State University (UNESP), School of Veterinary Medicine and Animal Science, Department of Animal Reproduction and Veterinary Radiology, Botucatu, Brazil
| | - Louise Hethrington
- Reproductive Science Group, Faculty of Science, University of Newcastle, Australia
| | - Christoph Krisp
- Australian Proteome Analysis Facility (APAF), Department of Chemistry and Biomolecular Sciences, Macquarie University, Sydney, Australia
| | - Mark Molloy
- Australian Proteome Analysis Facility (APAF), Department of Chemistry and Biomolecular Sciences, Macquarie University, Sydney, Australia
| | - Mark A Baker
- Reproductive Science Group, Faculty of Science, University of Newcastle, Australia
| | - José Antônio Dell'Aqua
- São Paulo State University (UNESP), School of Veterinary Medicine and Animal Science, Department of Animal Reproduction and Veterinary Radiology, Botucatu, Brazil.
| |
Collapse
|
23
|
Castillo J, Jodar M, Oliva R. The contribution of human sperm proteins to the development and epigenome of the preimplantation embryo. Hum Reprod Update 2018; 24:535-555. [DOI: 10.1093/humupd/dmy017] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Accepted: 04/25/2018] [Indexed: 02/07/2023] Open
Affiliation(s)
- Judit Castillo
- Molecular Biology of Reproduction and Development Group, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Fundació Clínic per a la Recerca Biomèdica, Faculty of Medicine, University of Barcelona, Casanova, Barcelona, Spain
| | - Meritxell Jodar
- Molecular Biology of Reproduction and Development Group, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Fundació Clínic per a la Recerca Biomèdica, Faculty of Medicine, University of Barcelona, Casanova, Barcelona, Spain
| | - Rafael Oliva
- Molecular Biology of Reproduction and Development Group, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Fundació Clínic per a la Recerca Biomèdica, Faculty of Medicine, University of Barcelona, Casanova, Barcelona, Spain
- Biochemistry and Molecular Genetics Service, Hospital Clínic, Villarroel, Barcelona, Spain
| |
Collapse
|
24
|
Netherton JK, Hetherington L, Ogle RA, Velkov T, Baker MA. Proteomic analysis of good- and poor-quality human sperm demonstrates that several proteins are routinely aberrantly regulated. Biol Reprod 2017; 99:395-408. [DOI: 10.1093/biolre/iox166] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Accepted: 12/06/2017] [Indexed: 01/10/2023] Open
Affiliation(s)
- Jacob K Netherton
- Department of Environmental and Life Science, University of Newcastle, Callaghan, New South Wales, Australia
| | - Louise Hetherington
- Department of Environmental and Life Science, University of Newcastle, Callaghan, New South Wales, Australia
| | - Rachel A Ogle
- Department of Environmental and Life Science, University of Newcastle, Callaghan, New South Wales, Australia
| | - Tony Velkov
- Facility for Drug Development and Innovation, Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | - Mark A Baker
- Department of Environmental and Life Science, University of Newcastle, Callaghan, New South Wales, Australia
| |
Collapse
|
25
|
Zhao W, Li Z, Ping P, Wang G, Yuan X, Sun F. Outer dense fibers stabilize the axoneme to maintain sperm motility. J Cell Mol Med 2017; 22:1755-1768. [PMID: 29168316 PMCID: PMC5824370 DOI: 10.1111/jcmm.13457] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Accepted: 10/13/2017] [Indexed: 11/28/2022] Open
Abstract
Outer dense fibers (ODFs), as unique accessory structures in mammalian sperm, are considered to play a role in the protection of the sperm tail against shear forces. However, the role and relevant mechanisms of ODFs in modulating sperm motility and its pathological involvement in asthenozoospermia were unknown. Here, we found that the percentage of ODF defects was higher in asthenozoospermic samples than that in control samples and was significantly correlated with the percentage of axoneme defects and non-motile sperm. Furthermore, the expression levels of ODF major components (Odf1, 2, 3, 4) were frequently down-regulated in asthenozoospermic samples. Intriguingly, the positive relationship between ODF size and sperm motility existed across species. The conditional disruption of Odf2 expression in mice led to reduced sperm motility and the characteristics of asthenozoospermia. Meanwhile, the expression of acetylated α-tubulin was decreased in sperm from both Odf2 conditional knockout (cKO) mice and asthenozoospermic men. Immunofluorescence and biochemistry analyses showed that Odf2 could bind to acetylated α-tubulin and protect the acetylation level of α-tubulin in HEK293T cells in a cold environment. Finally, we found that lithium elevated the expression levels of Odf family proteins and acetylated α-tubulin, elongated the midpiece length and increased the percentage of rapidly moving sperm in mice. Our results demonstrate that ODFs are beneficial for sperm motility via stabilization of the axoneme and that hypo-expression of Odf family proteins is involved in the pathogenesis of asthenozoospermia. The lithium administration assay will provide valuable insights into the development of new treatments for asthenozoospermia.
Collapse
Affiliation(s)
- Wenlong Zhao
- International Peace Maternity & Child Health Hospital, Shanghai Key Laboratory for Reproductive Medicine, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Zhengzheng Li
- International Peace Maternity & Child Health Hospital, Shanghai Key Laboratory for Reproductive Medicine, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Ping Ping
- International Peace Maternity & Child Health Hospital, Shanghai Key Laboratory for Reproductive Medicine, School of Medicine, Shanghai Jiaotong University, Shanghai, China.,Department of Assistant Reproduction, International Peace Maternity & Child Health Hospital, Shanghai, China
| | - Guishuan Wang
- Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong, Jiangsu, China
| | - Xiaobing Yuan
- Shanghai Key Laboratory of Brain Functional Genomics (East China Normal University), Ministry of Education, School of Life Sciences, East China Normal University, Shanghai, China.,Hussman Institute for Autism, Baltimore, MD, USA
| | - Fei Sun
- International Peace Maternity & Child Health Hospital, Shanghai Key Laboratory for Reproductive Medicine, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| |
Collapse
|
26
|
Lehti MS, Sironen A. Formation and function of sperm tail structures in association with sperm motility defects†. Biol Reprod 2017; 97:522-536. [DOI: 10.1093/biolre/iox096] [Citation(s) in RCA: 103] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Accepted: 08/28/2017] [Indexed: 12/26/2022] Open
|