1
|
Rahman MA, Amirkhani A, Mempin M, Ahn SB, Deva AK, Baker MS, Vickery K, Hu H. The Low-Abundance Plasma Proteome Reveals Differentially Abundant Proteins Associated with Breast Implant Capsular Contracture: A Pilot Study. Proteomes 2024; 12:22. [PMID: 39189262 PMCID: PMC11348101 DOI: 10.3390/proteomes12030022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 08/02/2024] [Accepted: 08/04/2024] [Indexed: 08/28/2024] Open
Abstract
Capsular contracture (CC) is one of the most common postoperative complications associated with breast implant-associated infections. The mechanisms that lead to CC remain poorly understood. Plasma is an ideal biospecimen for early proteomics biomarker discovery. However, as high-abundance proteins mask signals from low-abundance proteins, identifying novel or specific proteins as biomarkers for a particular disease has been hampered. Here, we employed depletion of high-abundance plasma proteins followed by Tandem Mass Tag (TMT)-based quantitative proteomics to compare 10 healthy control patients against 10 breast implant CC patients. A total of 450 proteins were identified from these samples. Among them, 16 proteins were significantly differentially expressed in which 5 proteins were upregulated and 11 downregulated in breast implant CC patients compared to healthy controls. Gene Ontology enrichment analysis revealed that proteins related to cell, cellular processes and catalytic activity were highest in the cellular component, biological process, and molecular function categories, respectively. Further, pathway analysis revealed that inflammatory responses, focal adhesion, platelet activation, and complement and coagulation cascades were enriched pathways. The differentially abundant proteins from TMT-based quantitative proteomics have the potential to provide important information for future mechanistic studies and in the development of breast implant CC biomarkers.
Collapse
Affiliation(s)
- Md. Arifur Rahman
- Macquarie Medical School, Macquarie University, Sydney, NSW 2109, Australia (S.B.A.); (A.K.D.); (M.S.B.); (K.V.)
| | | | - Maria Mempin
- Macquarie Medical School, Macquarie University, Sydney, NSW 2109, Australia (S.B.A.); (A.K.D.); (M.S.B.); (K.V.)
| | - Seong Beom Ahn
- Macquarie Medical School, Macquarie University, Sydney, NSW 2109, Australia (S.B.A.); (A.K.D.); (M.S.B.); (K.V.)
| | - Anand K. Deva
- Macquarie Medical School, Macquarie University, Sydney, NSW 2109, Australia (S.B.A.); (A.K.D.); (M.S.B.); (K.V.)
| | - Mark S. Baker
- Macquarie Medical School, Macquarie University, Sydney, NSW 2109, Australia (S.B.A.); (A.K.D.); (M.S.B.); (K.V.)
| | - Karen Vickery
- Macquarie Medical School, Macquarie University, Sydney, NSW 2109, Australia (S.B.A.); (A.K.D.); (M.S.B.); (K.V.)
| | - Honghua Hu
- Macquarie Medical School, Macquarie University, Sydney, NSW 2109, Australia (S.B.A.); (A.K.D.); (M.S.B.); (K.V.)
- Jinhua Institute of Zhejiang University, Jinhua 321016, China
| |
Collapse
|
2
|
Sivanand A, Talati D, Kalariya Y, Patel P, Gandhi SK. Associations of Liver Fluke Infection and Cholangiocarcinoma: A Scoping Review. Cureus 2023; 15:e46400. [PMID: 37927641 PMCID: PMC10620839 DOI: 10.7759/cureus.46400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/03/2023] [Indexed: 11/07/2023] Open
Abstract
Cholangiocarcinoma (CCa) is a highly lethal malignancy of biliary tract epithelial cells. Liver fluke infection is one of the well-known causes of CCa in endemic areas of Southeast Asian and Western Pacific regions. Multistep processes underlie carcinogenesis induced by chronic infection with the fish-borne liver fluke. Mechanical injury from fluke feeding and migrating in the bile duct causes damage to the bile duct epithelial cells. The excretory or secretory product of a parasite called OvGRN-1 is internalized by human cholangiocytes and induces changes in gene and protein expression associated with wound healing and cancer pathways. Inflammatory cytokines and their gene polymorphisms may also be linked to biliary pathologies. High plasma levels of interleukin 6 (IL-6) increase the risk of developing advanced periductal fibrosis (APF) and CCa by promoting CCa cell line proliferation. Anti-helminthic drugs can help decrease the risk of CCa caused by flukes. Surgical resection of the tumor and liver transplantation might be helpful too. Chemotherapy is considered for patients with advanced CCa when they cannot undergo surgery or when other treatment options fail to show improvement. Improvements in hygiene, health education, screening for fluke infection, and anti-helminthic therapy can help prevent liver fluke infection and thus the occurrence of CCa.
Collapse
Affiliation(s)
- Ankitha Sivanand
- Department of Internal Medicine, Civil Hospital Ahmedabad, Ahmedabad, IND
| | - Durva Talati
- Department of Internal Medicine, Civil Hospital Ahmedabad, Ahmedabad, IND
| | - Yash Kalariya
- Department of Internal Medicine, Civil Hospital Ahmedabad, Ahmedabad, IND
| | - Priyansh Patel
- Department of Internal Medicine, Medical College Baroda, Vadodara, IND
| | | |
Collapse
|
3
|
Ritchoo S, Havanapan PO, Sussadee M, Maneeruttanarungroj C, Rucksaken R. Proteomics identification of overexpressed serum proteins in dogs with Babesiacanis infection. Vet World 2023; 16:2042-2048. [PMID: 38023278 PMCID: PMC10668562 DOI: 10.14202/vetworld.2023.2042-2048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 09/05/2023] [Indexed: 12/01/2023] Open
Abstract
Background and Aim Canine babesiosis, caused by the protozoan parasite Babesia canis, is characterized by clinical manifestations, including hemolytic anemia, thrombocytopenia, multiple organ failure, and may result in death. This disease is detected using conventional blood smears, which are time-consuming and have low sensitivity. This study aimed to investigate a more rapid and sensitive method for detecting B. canis infection in dogs by examining the expressed serum protein profiles using proteomics. Materials and Methods We collected six sera samples from three healthy and three B. canis-infected dogs diagnosed using blood smear and polymerase chain reaction. We analyzed the proteins using two-dimensional gel electrophoresis. The candidate spots from the gel were subjected to protein identification using a nano-liquid chromatography system coupled to an ion-trap mass spectrometer equipped with an electrospray ionization nano-sprayer. Results We found that 10 protein spots were overexpressed in the serum samples from infected dogs compared with healthy dogs, which corresponded to three proteins: serotransferrin, serotransferrin isoforms X1, and hemopexin. Furthermore, analysis of the protein-protein interaction network confirmed that they strongly interacted with each other. Conclusion This study suggests that high levels of serotransferrin and hemopexin are related to B. canis infection, making these proteins potential candidates for the development of diagnostic molecules or vaccines.
Collapse
Affiliation(s)
- Sudpatchara Ritchoo
- Department of Veterinary Technology, Faculty of Veterinary Technology, Kasetsart University, Bangkok, Thailand
| | - Phattara-orn Havanapan
- Institute of Molecular Biosciences, Mahidol University, Salaya Campus, Nakhon Pathom, Thailand
| | - Metita Sussadee
- Department of Veterinary Technology, Faculty of Veterinary Technology, Kasetsart University, Bangkok, Thailand
| | | | - Rucksak Rucksaken
- Department of Veterinary Technology, Faculty of Veterinary Technology, Kasetsart University, Bangkok, Thailand
| |
Collapse
|
4
|
Mordvinov VA, Minkova GA, Kovner AV, Ponomarev DV, Lvova MN, Zaparina O, Romanenko SA, Shilov AG, Pakharukova MY. A tumorigenic cell line derived from a hamster cholangiocarcinoma associated with Opisthorchis felineus liver fluke infection. Life Sci 2021; 277:119494. [PMID: 33862109 DOI: 10.1016/j.lfs.2021.119494] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 03/19/2021] [Accepted: 04/01/2021] [Indexed: 01/23/2023]
Abstract
AIMS The food-born trematode Opisthorchis felineus colonizes bile ducts of the liver of fish-eating mammals including humans. There is growing evidence that this liver fluke is a risk factor for cholangiocarcinoma (CCA). Cancer cell lines are necessary for drug screening and for identifying protein markers of CCA. The aim was to establish a cell line derived from cholangiocarcinoma associated with opisthorchiasis felinea. MAIN METHODS Allotransplantation, immunohistochemistry, karyotype analysis, cell culture techniques, immunocytochemistry and real-time PCR. KEY FINDINGS Here we repot the establishment of first CCA cell line, CCA-OF, from a primary tumor of an experimental CCA in Syrian hamsters treated with low doses of dimethyl nitrosamine and associated with O. felineus infection. The cell line was found to be allotransplantable. Expression of epithelial and mesenchymal markers (cytokeratin 7, glycosyltransferase exostosin 1, Ca2+-dependent phospholipid-binding protein annexin A1 and vimentin) was demonstrated by immunostaining of the primary tumors, CCA-OF cells, and allotransplants. CCA-OF cells were found to express presumed CCA biomarkers previously detected in both human and experimental tumors associated with the liver fluke infection. The cells were diploid-like (2n = 42-46) with complex chromosomal rearrangements and have morphological features of epithelial-like cells. The usefulness of the CCA-OF cell model for antitumor activity testing was demonstrated by an analysis of effects of resveratrol treatment. It was shown that resveratrol treatment inhibited the proliferation and the migration ability of CCA-OF cells. SIGNIFICANCE Thus, the allotransplantable CCA-OF cell line can be used in studies on helminth-associated cholangiocarcinogenesis and for the testing of antitumor drugs.
Collapse
Affiliation(s)
- Viatcheslav A Mordvinov
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences (ICG SB RAS), 10 Lavrentiev Ave., Novosibirsk 630090, Russia.
| | - Galina A Minkova
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences (ICG SB RAS), 10 Lavrentiev Ave., Novosibirsk 630090, Russia
| | - Anna V Kovner
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences (ICG SB RAS), 10 Lavrentiev Ave., Novosibirsk 630090, Russia
| | - Dmitriy V Ponomarev
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences (ICG SB RAS), 10 Lavrentiev Ave., Novosibirsk 630090, Russia
| | - Maria N Lvova
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences (ICG SB RAS), 10 Lavrentiev Ave., Novosibirsk 630090, Russia.
| | - Oxana Zaparina
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences (ICG SB RAS), 10 Lavrentiev Ave., Novosibirsk 630090, Russia
| | - Svetlana A Romanenko
- Institute of Molecular and Cellular Biology, Siberian Branch of Russian Academy of Sciences, 8/2 Lavrentiev Ave., Novosibirsk 630090, Russia.
| | - Alexander G Shilov
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences (ICG SB RAS), 10 Lavrentiev Ave., Novosibirsk 630090, Russia.
| | - Maria Y Pakharukova
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences (ICG SB RAS), 10 Lavrentiev Ave., Novosibirsk 630090, Russia; Department of Natural Sciences, Novosibirsk State University, 2 Pirogova Str., Novosibirsk 630090, Russia
| |
Collapse
|
5
|
Okada F, Izutsu R, Goto K, Osaki M. Inflammation-Related Carcinogenesis: Lessons from Animal Models to Clinical Aspects. Cancers (Basel) 2021; 13:cancers13040921. [PMID: 33671768 PMCID: PMC7926701 DOI: 10.3390/cancers13040921] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 02/11/2021] [Accepted: 02/12/2021] [Indexed: 12/13/2022] Open
Abstract
Simple Summary In multicellular organisms, inflammation is the body’s most primitive and essential protective response against any external agent. Inflammation, however, not only causes various modern diseases such as cardiovascular disorders, neurological disorders, autoimmune diseases, metabolic syndrome, infectious diseases, and cancer but also shortens the healthy life expectancy. This review focuses on the onset of carcinogenesis due to chronic inflammation caused by pathogen infections and inhalation/ingestion of foreign substances. This study summarizes animal models associated with inflammation-related carcinogenesis by organ. By determining factors common to inflammatory carcinogenesis models, we examined strategies for the prevention and treatment of inflammatory carcinogenesis in humans. Abstract Inflammation-related carcinogenesis has long been known as one of the carcinogenesis patterns in humans. Common carcinogenic factors are inflammation caused by infection with pathogens or the uptake of foreign substances from the environment into the body. Inflammation-related carcinogenesis as a cause for cancer-related death worldwide accounts for approximately 20%, and the incidence varies widely by continent, country, and even region of the country and can be affected by economic status or development. Many novel approaches are currently available concerning the development of animal models to elucidate inflammation-related carcinogenesis. By learning from the oldest to the latest animal models for each organ, we sought to uncover the essential common causes of inflammation-related carcinogenesis. This review confirmed that a common etiology of organ-specific animal models that mimic human inflammation-related carcinogenesis is prolonged exudation of inflammatory cells. Genotoxicity or epigenetic modifications by inflammatory cells resulted in gene mutations or altered gene expression, respectively. Inflammatory cytokines/growth factors released from inflammatory cells promote cell proliferation and repair tissue injury, and inflammation serves as a “carcinogenic niche”, because these fundamental biological events are common to all types of carcinogenesis, not just inflammation-related carcinogenesis. Since clinical strategies are needed to prevent carcinogenesis, we propose the therapeutic apheresis of inflammatory cells as a means of eliminating fundamental cause of inflammation-related carcinogenesis.
Collapse
Affiliation(s)
- Futoshi Okada
- Division of Experimental Pathology, Faculty of Medicine, Tottori University, Yonago 683-8503, Japan; (R.I.); (K.G.); (M.O.)
- Chromosome Engineering Research Center, Tottori University, Yonago 683-8503, Japan
- Correspondence: ; Tel.: +81-859-38-6241
| | - Runa Izutsu
- Division of Experimental Pathology, Faculty of Medicine, Tottori University, Yonago 683-8503, Japan; (R.I.); (K.G.); (M.O.)
| | - Keisuke Goto
- Division of Experimental Pathology, Faculty of Medicine, Tottori University, Yonago 683-8503, Japan; (R.I.); (K.G.); (M.O.)
- Division of Gastrointestinal and Pediatric Surgery, Faculty of Medicine, Tottori University, Yonago 683-8503, Japan
| | - Mitsuhiko Osaki
- Division of Experimental Pathology, Faculty of Medicine, Tottori University, Yonago 683-8503, Japan; (R.I.); (K.G.); (M.O.)
- Chromosome Engineering Research Center, Tottori University, Yonago 683-8503, Japan
| |
Collapse
|
6
|
Bandu R, Oh JW, Kim KP. Mass spectrometry-based proteome profiling of extracellular vesicles and their roles in cancer biology. Exp Mol Med 2019; 51:1-10. [PMID: 30872566 PMCID: PMC6418213 DOI: 10.1038/s12276-019-0218-2] [Citation(s) in RCA: 95] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Accepted: 12/12/2018] [Indexed: 01/19/2023] Open
Abstract
Over the past three decades, extracellular vesicles (EVs) have arisen as important mediators of intercellular communication that are involved in the transmission of biological signals between cells to regulate various biological processes. EVs are largely responsible for intercellular communication through the delivery of bioactive molecules, such as proteins, messenger RNAs (mRNAs), microRNAs (miRNAs), DNAs, lipids, and metabolites. EVs released from cancer cells play a significant role in signal transduction between cancer cells and the surrounding cells, which contributes to the formation of tumors and metastasis in the tumor microenvironment. In addition, EVs released from cancer cells migrate to blood vessels and flow into various biological fluids, including blood and urine. EVs and EV-loaded functional cargoes, including proteins and miRNAs, found in these biological fluids are important biomarkers for cancer diagnosis. Therefore, EV proteomics greatly contributes to the understanding of carcinogenesis and tumor progression and is critical for the development of biomarkers for the early diagnosis of cancer. To explore the potential use of EVs as a gateway to understanding cancer biology and to develop cancer biomarkers, we discuss the mass spectrometric identification and characterization of EV proteins from different cancers. Information provided in this review may help in understanding recent progress regarding EV biology and the potential roles of EVs as new noninvasive biomarkers and therapeutic targets. Tumor cells release tiny membrane-encapsulated packages known as extracellular vesicles containing proteins which could serve as prognostic disease biomarkers or therapeutic targets. Kwang Pyo Kim and colleagues from Kyung Hee University in Yongin, South Korea, review the use of mass spectrometry to profile the diversity of proteins found in these tumor-derived packages. The proteins found in these vesicles help mediate communication between cancer cells and their surrounding tissues. Different tumor types share many of these proteins in common, but there are differences in the protein profile related to cancer-associated biological processes such as metastasis and cell proliferation. Tests based on the proteins contained in these vesicles could help clinicians better identify, diagnose and treat specific cancers, although large, multicenter studies are needed to validate such strategies.
Collapse
Affiliation(s)
- Raju Bandu
- Department of Applied Chemistry, Institute of Natural Science, Global Center for Pharmaceutical Ingredient Materials, Kyung Hee University, Yongin, Republic of Korea
| | - Jae Won Oh
- Department of Applied Chemistry, Institute of Natural Science, Global Center for Pharmaceutical Ingredient Materials, Kyung Hee University, Yongin, Republic of Korea
| | - Kwang Pyo Kim
- Department of Applied Chemistry, Institute of Natural Science, Global Center for Pharmaceutical Ingredient Materials, Kyung Hee University, Yongin, Republic of Korea. .,Department of Biomedical Science and Technology, Kyung Hee Medical Science Research Institute, Kyung Hee University, Seoul, Republic of Korea.
| |
Collapse
|
7
|
Discovering proteins for chemoprevention and chemotherapy by curcumin in liver fluke infection-induced bile duct cancer. PLoS One 2018; 13:e0207405. [PMID: 30440021 PMCID: PMC6237386 DOI: 10.1371/journal.pone.0207405] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Accepted: 10/30/2018] [Indexed: 12/17/2022] Open
Abstract
Modulation or prevention of protein changes during the cholangiocarcinoma (CCA) process induced by Opisthorchis viverrini (Ov) infection may become a key strategy for prevention and treatment of CCA. Monitoring of such changes could lead to discovery of protein targets for CCA treatment. Curcumin exerts anti-inflammatory and anti-CCA activities partly through its protein-modulatory ability. To support the potential use of curcumin and to discover novel target molecules for CCA treatment, we used a quantitative proteomic approach to investigate the effects of curcumin on protein changes in an Ov-induced CCA-harboring hamster model. Isobaric labelling and tandem mass spectrometry were used to compare the protein expression profiles of liver tissues from CCA hamsters with or without curcumin dietary supplementation. Among the dysregulated proteins, five were upregulated in liver tissues of CCA hamsters but markedly downregulated in the CCA hamsters supplemented with curcumin: S100A6, lumican, plastin-2, 14-3-3 zeta/delta and vimentin. Western blot and immunohistochemical analyses also showed similar expression patterns of these proteins in liver tissues of hamsters in the CCA and CCA + curcumin groups. Proteins such as clusterin and S100A10, involved in the NF-κB signaling pathway, an important signaling cascade involved in CCA genesis, were also upregulated in CCA hamsters and were then suppressed by curcumin treatment. Taken together, our results demonstrate the important changes in the proteome during the genesis of O. viverrini-induced CCA and provide an insight into the possible protein targets for prevention and treatment of this cancer.
Collapse
|
8
|
Jing H, He X, Zheng J. Exosomes and regenerative medicine: state of the art and perspectives. Transl Res 2018; 196:1-16. [PMID: 29432720 DOI: 10.1016/j.trsl.2018.01.005] [Citation(s) in RCA: 102] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 01/18/2018] [Accepted: 01/18/2018] [Indexed: 12/19/2022]
Abstract
Exosomes have attracted the attention of the scientific community in recent years due to their widespread distribution, their possible functions as biomarkers of disease, and their great potential to be applied as therapeutic agents. Exosomes carry proteins and nucleic acids that can facilitate their uptake by distant target cells through endocytosis, such that exosomes could be targeted to a specific cell or cells to enhance or interfere with specific biological processes. This review will mainly focus on their roles in tissue repair and regenerative processes. Exosomal engineering and their potential applications in tissue regeneration are also reviewed here as an outlook for future research.
Collapse
Affiliation(s)
- Hui Jing
- Department of Cardiothoracic Surgery, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaomin He
- Department of Cardiothoracic Surgery, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Jinghao Zheng
- Department of Cardiothoracic Surgery, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
9
|
Robertson LJ. Parasites in Food: From a Neglected Position to an Emerging Issue. ADVANCES IN FOOD AND NUTRITION RESEARCH 2018; 86:71-113. [PMID: 30077225 PMCID: PMC7129657 DOI: 10.1016/bs.afnr.2018.04.003] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Foodborne parasites have long been a neglected group of pathogens, as they often have insidious, chronic effects, rather than being acute diseases, and they are often associated with impoverished or marginalized populations. In addition, due to the long incubation period for most foodborne parasites, source attribution is often difficult, if not impossible. However, global trends have enabled foodborne parasites to emerge in different populations in new locations, transmitted through different food types, and sometimes with unexpected symptoms. This emergence of foodborne parasites has brought them into focus. In this chapter, six foodborne parasites are used as examples on emergence: Echinococcus multilocularis is spreading to new locations; Cryptosporidium spp. are beginning to be associated not only with water, but also with salads; Trypanosoma cruzi is being manifest with acute disease due to foodborne transmission, particularly transmitted with juices; Trichinella spp. have become less of a burden regarding transmission via pork in many countries, but now game animals are becoming a concern; anisakiasis is becoming a global problem as the world develops a taste for sushi, and similarly for opisthorchiasis, which is increasingly being associated with cholangiocarcinoma. However, the emergence of these foodborne parasites provides an incentive for increased efforts being made toward control. In this chapter, having described how the parasites are emerging from their neglected position, the focus turns toward control. In addition to considering control measures that may be applied to the specific parasites, an overview is provided of some of the organized collaborations, projects, and consortia, as well as some of their outputs, that have in focus the control of these emerging and important pathogens.
Collapse
Affiliation(s)
- Lucy J Robertson
- Department of Food Safety and Infection Biology, Norwegian University of Life Sciences, Oslo, Norway.
| |
Collapse
|
10
|
Kokova DA, Kostidis S, Morello J, Dementeva N, Perina EA, Ivanov VV, Ogorodova LM, Sazonov AE, Saltykova IV, Mayboroda OA. Exploratory metabolomics study of the experimental opisthorchiasis in a laboratory animal model (golden hamster, Mesocricetus auratus). PLoS Negl Trop Dis 2017; 11:e0006044. [PMID: 29088234 PMCID: PMC5681294 DOI: 10.1371/journal.pntd.0006044] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 11/10/2017] [Accepted: 10/17/2017] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Opisthorchiasis is a parasitic infection caused by the liver flukes of the Opisthorchiidae family. Both experimental and epidemiological data strongly support a role of these parasites in the etiology of the hepatobiliary pathologies and an increased risk of intrahepatic cholangiocarcinoma. Understanding a functional link between the infection and hepatobiliary pathologies requires a detailed description a host-parasite interaction on different levels of biological regulation including the metabolic response on the infection. The last one, however, remains practically undocumented. Here we are describing a host response on Opisthorchiidae infection using a metabolomics approach and present the first exploratory metabolomics study of an experimental model of O. felineus infection. METHODOLOGY AND PRINCIPAL FINDINGS We conducted a Nuclear Magnetic Resonance (NMR) based longitudinal metabolomics study involving a cohort of 30 animals with two degrees of infection and a control group. An exploratory analysis shows that the most noticeable trend (30% of total variance) in the data was related to the gender differences. Therefore further analysis was done of each gender group separately applying a multivariate extension of the ANOVA-ASCA (ANOVA simultaneous component analysis). We show that in the males the infection specific time trends are present in the main component (43.5% variance), while in the females it is presented only in the second component and covers 24% of the variance. We have selected and annotated 24 metabolites associated with the observed effects and provided a physiological interpretation of the findings. CONCLUSIONS The first exploratory metabolomics study an experimental model of O. felineus infection is presented. Our data show that at early stage of infection a response of an organism unfolds in a gender specific manner. Also main physiological mechanisms affected appear rather nonspecific (a status of the metabolic stress) the data provides a set of the hypothesis for a search of the more specific metabolic markers of the Opisthorchiidae infection.
Collapse
Affiliation(s)
- Daria A. Kokova
- Department of Parasitology, Leiden University Medical Center, Leiden, The Netherlands
| | - Sarantos Kostidis
- Center for Proteomics and Metabolomics, Leiden University Medical Centre, Leiden, The Netherlands
| | - Judit Morello
- Center for Proteomics and Metabolomics, Leiden University Medical Centre, Leiden, The Netherlands
- Translational Pharmacology, Chronic Diseases Research Center, NOVA Medical School, Lisbon, Portugal
| | - Nataly Dementeva
- Department of Chemistry, Tomsk State University, Tomsk, Russian Federation
| | - Ekaterina A. Perina
- Central Research Laboratory Siberian State Medical University, Tomsk, Tomsk, Russian Federation
| | - Vladimir V. Ivanov
- Central Research Laboratory Siberian State Medical University, Tomsk, Tomsk, Russian Federation
| | - Ludmila M. Ogorodova
- Department of Faculty Pediatrics, Siberian State Medical University, Tomsk, Tomsk, Russian Federation
| | - Aleksey E. Sazonov
- Department of Chemistry, Tomsk State University, Tomsk, Russian Federation
| | - Irina V. Saltykova
- Translational Pharmacology, Chronic Diseases Research Center, NOVA Medical School, Lisbon, Portugal
| | - Oleg A. Mayboroda
- Center for Proteomics and Metabolomics, Leiden University Medical Centre, Leiden, The Netherlands
- Department of Chemistry, Tomsk State University, Tomsk, Russian Federation
| |
Collapse
|