1
|
Pan J, Chang Z, Zhang X, Dong Q, Zhao H, Shi J, Wang G. Research progress of single-cell sequencing in tuberculosis. Front Immunol 2023; 14:1276194. [PMID: 37901241 PMCID: PMC10611525 DOI: 10.3389/fimmu.2023.1276194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 09/29/2023] [Indexed: 10/31/2023] Open
Abstract
Tuberculosis is a major infectious disease caused by Mycobacterium tuberculosis infection. The pathogenesis and immune mechanism of tuberculosis are not clear, and it is urgent to find new drugs, diagnosis, and treatment targets. A useful tool in the quest to reveal the enigmas related to Mycobacterium tuberculosis infection and disease is the single-cell sequencing technique. By clarifying cell heterogeneity, identifying pathogenic cell groups, and finding key gene targets, the map at the single cell level enables people to better understand the cell diversity of complex organisms and the immune state of hosts during infection. Here, we briefly reviewed the development of single-cell sequencing, and emphasized the different applications and limitations of various technologies. Single-cell sequencing has been widely used in the study of the pathogenesis and immune response of tuberculosis. We review these works summarizing the most influential findings. Combined with the multi-molecular level and multi-dimensional analysis, we aim to deeply understand the blank and potential future development of the research on Mycobacterium tuberculosis infection using single-cell sequencing technology.
Collapse
Affiliation(s)
| | | | | | | | | | - Jingwei Shi
- Key Laboratory of Pathobiology Ministry of Education, College of Basic Medical Sciences/China-Japan Union Hospital of Jilin University, Jilin University, Changchun, China
| | - Guoqing Wang
- Key Laboratory of Pathobiology Ministry of Education, College of Basic Medical Sciences/China-Japan Union Hospital of Jilin University, Jilin University, Changchun, China
| |
Collapse
|
2
|
Liu FF, Wan YX, Cao WX, Zhang QQ, Li Y, Li Y, Zhang PZ, Si HQ. Novel function of a putative TaCOBL ortholog associated with cold response. Mol Biol Rep 2023; 50:4375-4384. [PMID: 36944863 DOI: 10.1007/s11033-023-08297-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Accepted: 01/19/2023] [Indexed: 03/23/2023]
Abstract
The plant COBRA protein family plays an important role in secondary cell wall biosynthesis and the orientation of cell expansion. The COBRA gene family has been well studied in Arabidopsis thaliana, maize, rice, etc., but no systematic studies were conducted in wheat. In this study, the full-length sequence of TaCOBLs was obtained by homology cloning from wheat, and a conserved motif analysis confirmed that TaCOBLs belonged to the COBRA protein family. qRT-PCR results showed that the TaCOBL transcripts were induced by abiotic stresses, including cold, drought, salinity, and abscisic acid (ABA). Two haplotypes of TaCOBL-5B (Hap5B-a and Hap5B-b), harboring one indel (----/TATA) in the 5' flanking region (- 550 bp), were found on chromosome 5BS. A co-dominant marker, Ta5BF/Ta5BR, was developed based on the polymorphism of the two TaCOBL-5B haplotypes. Significant correlations between the two TaCOBL-5B haplotypes and cold resistance were observed under four environmental conditions. Hap5B-a, a favored haplotype acquired during wheat polyploidization, may positively contribute to enhanced cold resistance in wheat. Based on the promoter activity analysis, the Hap5B-a promoter containing a TATA-box was more active than that of Hap5B-b without the TATA-box under low temperature. Our study provides valuable information indicating that the TaCOBL genes are associated with cold response in wheat.
Collapse
Affiliation(s)
- Fang-Fang Liu
- Crop Research Institute, Anhui Academy of Agricultural Sciences, Anhui Key Laboratory of Crop Quality Improvement, Hefei, 230031, China
| | - Ying-Xiu Wan
- Crop Research Institute, Anhui Academy of Agricultural Sciences, Anhui Key Laboratory of Crop Quality Improvement, Hefei, 230031, China
| | - Wen-Xin Cao
- Crop Research Institute, Anhui Academy of Agricultural Sciences, Anhui Key Laboratory of Crop Quality Improvement, Hefei, 230031, China
| | - Qi-Qi Zhang
- Crop Research Institute, Anhui Academy of Agricultural Sciences, Anhui Key Laboratory of Crop Quality Improvement, Hefei, 230031, China
| | - Yao Li
- Crop Research Institute, Anhui Academy of Agricultural Sciences, Anhui Key Laboratory of Crop Quality Improvement, Hefei, 230031, China
| | - Yan Li
- Crop Research Institute, Anhui Academy of Agricultural Sciences, Anhui Key Laboratory of Crop Quality Improvement, Hefei, 230031, China
| | - Ping-Zhi Zhang
- Crop Research Institute, Anhui Academy of Agricultural Sciences, Anhui Key Laboratory of Crop Quality Improvement, Hefei, 230031, China.
| | - Hong-Qi Si
- School of Agronomy, Anhui Agricultural University, Hefei, 230036, China.
| |
Collapse
|
3
|
Swain SP, Gupta S, Das N, Franca TCC, Goncalves ADS, Ramalho TC, Subrahmanya S, Narsaria U, Deb D, Mishra N. Flavanones: A potential natural inhibitor of the ATP binding site of PknG of Mycobacterium tuberculosis. J Biomol Struct Dyn 2022; 40:11885-11899. [PMID: 34409917 DOI: 10.1080/07391102.2021.1965913] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Over the years, Mycobacterium tuberculosis has been one of the major causes of death worldwide. As several clinical isolates of the bacteria have developed drug resistance against the target sites of the current therapeutic agents, the development of a novel drug is the pressing priority. According to recent studies on Mycobacterium tuberculosis, ATP binding sites of Mycobacterium tuberculosis serine/threonine protein kinases (MTPKs) have been identified as the new promising drug target. Among the several other protein kinases (PKs), Protein kinase G (PknG) was selected for the study because of its crucial role in modulating bacterium's metabolism to survive in host macrophages. In this work, we have focused on the H37Rv strain of Mycobacterium tuberculosis. A list of 477 flavanones obtained from the PubChem database was docked one by one against the crystallized and refined structure of PknG by in-silico techniques. Initially, potential inhibitors were narrowed down by preliminary docking. Flavanones were then selected using binding energies ranging from -7.9 kcal.mol-1 to -10.8 kcal.mol-1. This was followed by drug-likeness prediction, redocking analysis, and molecular dynamics simulations. Here, we have used experimentally confirmed drug AX20017 as a reference to determine candidate compounds that can act as potential inhibitors for PknG. PubChem165506, PubChem242065, PubChem688859, PubChem101367767, PubChem3534982, and PubChem42607933 were identified as possible target site inhibitors for PknG with a desirable negative binding energy of -8.1, -8.3, -8.4, -8.8, -8.6 and -7.9 kcal.mol-1 respectively. Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
| | - Subhi Gupta
- Independent Researcher, Karnataka, Bangalore, India
| | - Nidhi Das
- Independent Researcher, Karnataka, Bangalore, India
| | - Tanos Celmar Costa Franca
- Laboratory of Molecular Modeling Applied to Chemical and Biological Defense (LMCBD), Military Institute of Engineering, Rio de Janeiro, RJ, Brazil.,Faculty of Science, Department of Chemistry, University of Hradec Kralove, Hradec Kralove, Czech Republic
| | - Arlan da Silva Goncalves
- Department of Chemistry, Federal Institute of Espirito Santo - Unit Vila Velha, Vila Velha, ES, Brazil.,PPGQUI (Graduate Program in Chemistry), Federal University of Espirito Santo, Vitoria, ES, Brazil
| | - Teodorico Castro Ramalho
- Faculty of Science, Department of Chemistry, University of Hradec Kralove, Hradec Kralove, Czech Republic.,Laboratory of Computational Chemistry, Department of Chemisry, UFLA, Lavras, MG, Brazil
| | - Shreya Subrahmanya
- Department of Botany, St. Joseph's College (autonomous), Bangalore, Karnataka, India
| | | | | | - Neelam Mishra
- Department of Botany, St. Joseph's College (autonomous), Bangalore, Karnataka, India
| |
Collapse
|
4
|
Proteome remodeling in the Mycobacterium tuberculosis PknG knockout: Molecular evidence for the role of this kinase in cell envelope biogenesis and hypoxia response. J Proteomics 2021; 244:104276. [PMID: 34044169 DOI: 10.1016/j.jprot.2021.104276] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 05/13/2021] [Accepted: 05/20/2021] [Indexed: 02/07/2023]
Abstract
Mycobacterium tuberculosis, the etiological agent of tuberculosis, is among the deadliest human pathogens. One of M. tuberculosis's pathogenic hallmarks is its ability to persist in a dormant state in the host. Thus, this pathogen has developed mechanisms to withstand stressful conditions found in the human host. Particularly, the Ser/Thr-protein kinase PknG has gained relevance since it regulates nitrogen metabolism and facilitates bacterial survival inside macrophages. Nevertheless, the molecular mechanisms underlying these effects are far from being elucidated. To further investigate these issues, we performed quantitative proteomic analyses of protein extracts from M. tuberculosis H37Rv and a mutant lacking pknG. We found that in the absence of PknG the mycobacterial proteome was remodeled since 5.7% of the proteins encoded by M. tuberculosis presented significant changes in its relative abundance compared with the wild-type. The main biological processes affected by pknG deletion were cell envelope components biosynthesis and response to hypoxia. Thirteen DosR-regulated proteins were underrepresented in the pknG deletion mutant, including Hrp-1, which was 12.5-fold decreased according to Parallel Reaction Monitoring experiments. Altogether, our results allow us to postulate that PknG regulation of bacterial adaptation to stress conditions might be an important mechanism underlying its reported effect on intracellular bacterial survival. SIGNIFICANCE: PknG is a Ser/Thr kinase from Mycobacterium tuberculosis with key roles in bacterial metabolism and bacterial survival within the host. However, at present the molecular mechanisms underlying these functions remain largely unknown. In this work, we evaluate the effect of pknG deletion on M. tuberculosis proteome using different approaches. Our results clearly show that the global proteome was remodeled in the absence of PknG and shed light on new molecular mechanism underlying PknG role. Altogether, this work contributes to a better understanding of the molecular bases of the adaptation of M. tuberculosis, one of the most deadly human pathogens, to its host.
Collapse
|
5
|
Qu D, Zhao X, Sun Y, Wu FL, Tao SC. Mycobacterium tuberculosis Thymidylyltransferase RmlA Is Negatively Regulated by Ser/Thr Protein Kinase PknB. Front Microbiol 2021; 12:643951. [PMID: 33868202 PMCID: PMC8044546 DOI: 10.3389/fmicb.2021.643951] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Accepted: 02/28/2021] [Indexed: 11/13/2022] Open
Abstract
Ser/Thr phosphorylation by serine/threonine protein kinases (STPKs) plays significant roles in molecular regulation, which allows Mycobacteria to adapt their cell wall structure in response to the environment changes. Identifying direct targets of STPKs and determining their activities are therefore critical to revealing their function in Mycobacteria, for example, in cell wall formation and virulence. Herein, we reported that RmlA, a crucial L-rhamnose biosynthesis enzyme, is a substrate of STPK PknB in Mycobacterium tuberculosis (M. tuberculosis). Mass spectrometry analysis revealed that RmlA is phosphorylated at Thr-12, Thr-54, Thr-197, and Thr-12 is located close to the catalytic triad of RmlA. Biochemical and phenotypic analysis of two RmlA mutants, T12A/T12D, showed that their activities were reduced, and cell wall formation was negatively affected. Moreover, virulence of RmlA T12D mutant was attenuated in a macrophage model. Overall, these results provide the first evidence for the role of PknB-dependent RmlA phosphorylation in regulating cell wall formation in Mycobacteria, with significant implications for pathogenicity.
Collapse
Affiliation(s)
- Dehui Qu
- Key Laboratory of Molecular Module-Based Breeding of High Yield and Abiotic Resistant Plants in Universities of Shandong, School of Agriculture, Ludong University, Yantai, China.,State Key Laboratory of Microbial Metabolism and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaohui Zhao
- Key Laboratory of Molecular Module-Based Breeding of High Yield and Abiotic Resistant Plants in Universities of Shandong, School of Agriculture, Ludong University, Yantai, China
| | - Yao Sun
- Key Laboratory of Molecular Module-Based Breeding of High Yield and Abiotic Resistant Plants in Universities of Shandong, School of Agriculture, Ludong University, Yantai, China
| | - Fan-Lin Wu
- Key Laboratory of Molecular Module-Based Breeding of High Yield and Abiotic Resistant Plants in Universities of Shandong, School of Agriculture, Ludong University, Yantai, China
| | - Sheng-Ce Tao
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
6
|
Ding L, Xie S, Zhang S, Shen H, Zhong H, Li D, Shi P, Chi L, Zhang Q. Delayed Comparison and Apriori Algorithm (DCAA): A Tool for Discovering Protein-Protein Interactions From Time-Series Phosphoproteomic Data. Front Mol Biosci 2020; 7:606570. [PMID: 33363212 PMCID: PMC7758479 DOI: 10.3389/fmolb.2020.606570] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 11/02/2020] [Indexed: 01/04/2023] Open
Abstract
Analysis of high-throughput omics data is one of the most important approaches for obtaining information regarding interactions between proteins/genes. Time-series omics data are a series of omics data points indexed in time order and normally contain more abundant information about the interactions between biological macromolecules than static omics data. In addition, phosphorylation is a key posttranslational modification (PTM) that is indicative of possible protein function changes in cellular processes. Analysis of time-series phosphoproteomic data should provide more meaningful information about protein interactions. However, although many algorithms, databases, and websites have been developed to analyze omics data, the tools dedicated to discovering molecular interactions from time-series omics data, especially from time-series phosphoproteomic data, are still scarce. Moreover, most reported tools ignore the lag between functional alterations and the corresponding changes in protein synthesis/PTM and are highly dependent on previous knowledge, resulting in high false-positive rates and difficulties in finding newly discovered protein–protein interactions (PPIs). Therefore, in the present study, we developed a new method to discover protein–protein interactions with the delayed comparison and Apriori algorithm (DCAA) to address the aforementioned problems. DCAA is based on the idea that there is a lag between functional alterations and the corresponding changes in protein synthesis/PTM. The Apriori algorithm was used to mine association rules from the relationships between items in a dataset and find PPIs based on time-series phosphoproteomic data. The advantage of DCAA is that it does not rely on previous knowledge and the PPI database. The analysis of actual time-series phosphoproteomic data showed that more than 68% of the protein interactions/regulatory relationships predicted by DCAA were accurate. As an analytical tool for PPIs that does not rely on a priori knowledge, DCAA should be useful to predict PPIs from time-series omics data, and this approach is not limited to phosphoproteomic data.
Collapse
Affiliation(s)
- Lianhong Ding
- School of Information, Beijing Wuzi University, Beijing, China
| | - Shaoshuai Xie
- National Glycoengineering Research Center, Shandong University, Qingdao, China
| | - Shucui Zhang
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Qilu Hospital of Shandong University, Jinan, China
| | - Hangyu Shen
- National Center for Materials Service Safety, University of Science and Technology Beijing, Beijing, China
| | - Huaqiang Zhong
- National Center for Materials Service Safety, University of Science and Technology Beijing, Beijing, China
| | - Daoyuan Li
- National Glycoengineering Research Center, Shandong University, Qingdao, China
| | - Peng Shi
- National Center for Materials Service Safety, University of Science and Technology Beijing, Beijing, China
| | - Lianli Chi
- National Glycoengineering Research Center, Shandong University, Qingdao, China
| | - Qunye Zhang
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Qilu Hospital of Shandong University, Jinan, China
| |
Collapse
|
7
|
Banerjee U, Sankar S, Singh A, Chandra N. A Multi-Pronged Computational Pipeline for Prioritizing Drug Target Strategies for Latent Tuberculosis. Front Chem 2020; 8:593497. [PMID: 33381491 PMCID: PMC7767875 DOI: 10.3389/fchem.2020.593497] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 11/24/2020] [Indexed: 12/02/2022] Open
Abstract
Tuberculosis is one of the deadliest infectious diseases worldwide and the prevalence of latent tuberculosis acts as a huge roadblock in the global effort to eradicate tuberculosis. Most of the currently available anti-tubercular drugs act against the actively replicating form of Mycobacterium tuberculosis (Mtb), and are not effective against the non-replicating dormant form present in latent tuberculosis. With about 30% of the global population harboring latent tuberculosis and the requirement for prolonged treatment duration with the available drugs in such cases, the rate of adherence and successful completion of therapy is low. This necessitates the discovery of new drugs effective against latent tuberculosis. In this work, we have employed a combination of bioinformatics and chemoinformatics approaches to identify potential targets and lead candidates against latent tuberculosis. Our pipeline adopts transcriptome-integrated metabolic flux analysis combined with an analysis of a transcriptome-integrated protein-protein interaction network to identify perturbations in dormant Mtb which leads to a shortlist of 6 potential drug targets. We perform a further selection of the candidate targets and identify potential leads for 3 targets using a range of bioinformatics methods including structural modeling, binding site association and ligand fingerprint similarities. Put together, we identify potential new strategies for targeting latent tuberculosis, new candidate drug targets as well as important lead clues for drug design.
Collapse
Affiliation(s)
- Ushashi Banerjee
- Department of Biochemistry, Indian Institute of Science, Bangalore, India
| | - Santhosh Sankar
- Department of Biochemistry, Indian Institute of Science, Bangalore, India
| | - Amit Singh
- Center for Infectious Disease Research, Indian Institute of Science, Bangalore, India
| | - Nagasuma Chandra
- Department of Biochemistry, Indian Institute of Science, Bangalore, India.,Center for Biosystems Science and Engineering, Indian Institute of Science, Bangalore, India
| |
Collapse
|
8
|
Hermann C, Karamchand L, Blackburn JM, Soares NC. Cell Envelope Proteomics of Mycobacteria. J Proteome Res 2020; 20:94-109. [PMID: 33140963 DOI: 10.1021/acs.jproteome.0c00650] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The World Health Organization (WHO) estimates that Mycobacterium tuberculosis, the most pathogenic mycobacterium species to humans, has infected up to a quarter of the world's population, with the occurrence of multidrug-resistant strains on the rise. Research into the detailed composition of the cell envelope proteome in mycobacteria over the last 20 years has formed a key part of the efforts to understand host-pathogen interactions and to control the current tuberculosis epidemic. This is due to the great importance of the cell envelope proteome during infection and during the development of antibiotic resistance as well as the search of surface-exposed proteins that could be targeted by therapeutics and vaccines. A variety of experimental approaches and mycobacterial species have been used in proteomic studies thus far. Here we provide for the first time an extensive summary of the different approaches to isolate the mycobacterial cell envelope, highlight some of the limitations of the studies performed thus far, and comment on how the recent advances in membrane proteomics in other fields might be translated into the field of mycobacteria to provide deeper coverage.
Collapse
Affiliation(s)
- Clemens Hermann
- Department of Integrative Biomedical Sciences, Institute of Infectious Disease & Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town 7925, South Africa
| | - Leshern Karamchand
- National Research Council Canada, Nanotechnology Research Centre, Biomedical Nanotechnologies, 11421 Saskatchewan Drive NW, Edmonton, Alberta T6G 2M9, Canada
| | - Jonathan M Blackburn
- Department of Integrative Biomedical Sciences, Institute of Infectious Disease & Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town 7925, South Africa
| | - Nelson C Soares
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah 27272, United Arab Emirates.,College of Pharmacy, Department of Medicinal Chemistry, University of Sharjah, Sharjah 27272, United Arab Emirates
| |
Collapse
|
9
|
Stokas H, Rhodes HL, Purdy GE. Modulation of the M. tuberculosis cell envelope between replicating and non-replicating persistent bacteria. Tuberculosis (Edinb) 2020; 125:102007. [PMID: 33035766 DOI: 10.1016/j.tube.2020.102007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 09/24/2020] [Accepted: 10/02/2020] [Indexed: 12/18/2022]
Abstract
The success of Mycobacterium tuberculosis as a human pathogen depends on the bacterium's ability to persist in a quiescent form in oxygen and nutrient-poor host environments. In vitro studies have demonstrated that these restricting environments induce a shift from bacterial replication to non-replicating persistence (NRP). Entry into NRP involves changes in bacterial metabolism and remodeling of the cell envelope. Findings consistent with the phenotypes observed in vitro have been observed in patient and animal model samples. This review focuses on the cell envelope differences seen between replicating and NRP M. tuberculosis and summarizes the ways in which serine/threonine protein kinases (STPKs) may mediate this process.
Collapse
Affiliation(s)
- Haley Stokas
- Oregon Health & Science University, Department of Molecular Microbiology & Immunology, Portland, OR, 97239, United States
| | - Heather L Rhodes
- Oregon Health & Science University, Department of Molecular Microbiology & Immunology, Portland, OR, 97239, United States
| | - Georgiana E Purdy
- Oregon Health & Science University, Department of Molecular Microbiology & Immunology, Portland, OR, 97239, United States.
| |
Collapse
|
10
|
Syu GD, Dunn J, Zhu H. Developments and Applications of Functional Protein Microarrays. Mol Cell Proteomics 2020; 19:916-927. [PMID: 32303587 PMCID: PMC7261817 DOI: 10.1074/mcp.r120.001936] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 03/24/2020] [Indexed: 12/19/2022] Open
Abstract
Protein microarrays are crucial tools in the study of proteins in an unbiased, high-throughput manner, as they allow for characterization of up to thousands of individually purified proteins in parallel. The adaptability of this technology has enabled its use in a wide variety of applications, including the study of proteome-wide molecular interactions, analysis of post-translational modifications, identification of novel drug targets, and examination of pathogen-host interactions. In addition, the technology has also been shown to be useful in profiling antibody specificity, as well as in the discovery of novel biomarkers, especially for autoimmune diseases and cancers. In this review, we will summarize the developments that have been made in protein microarray technology in both in basic and translational research over the past decade. We will also introduce a novel membrane protein array, the GPCR-VirD array, and discuss the future directions of functional protein microarrays.
Collapse
Affiliation(s)
- Guan-Da Syu
- Department of Biotechnology and Bioindustry Sciences, National Cheng Kung University, Tainan 701, Taiwan R.O.C..
| | - Jessica Dunn
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | - Heng Zhu
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205; Center for High-Throughput Biology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205; Viral Oncology Program, Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland 21231.
| |
Collapse
|
11
|
Baros SS, Blackburn JM, Soares NC. Phosphoproteomic Approaches to Discover Novel Substrates of Mycobacterial Ser/Thr Protein Kinases. Mol Cell Proteomics 2020; 19:233-244. [PMID: 31839597 PMCID: PMC7000118 DOI: 10.1074/mcp.r119.001668] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 11/15/2019] [Indexed: 12/21/2022] Open
Abstract
Mycobacterial Ser/Thr protein kinases (STPKs) play a critical role in signal transduction pathways that ultimately determine mycobacterial growth and metabolic adaptation. Identification of key physiological substrates of these protein kinases is, therefore, crucial to better understand how Ser/Thr phosphorylation contributes to mycobacterial environmental adaptation, including response to stress, cell division, and host-pathogen interactions. Various substrate detection methods have been employed with limited success, with direct targets of STPKs remaining elusive. Recently developed mass spectrometry (MS)-based phosphoproteomic approaches have expanded the list of potential STPK substrate identifications, yet further investigation is required to define the most functionally significant phosphosites and their physiological importance. Prior to the application of MS workflows, for instance, GarA was the only known and validated physiological substrate for protein kinase G (PknG) from pathogenic mycobacteria. A subsequent list of at least 28 candidate PknG substrates has since been reported with the use of MS-based analyses. Herein, we integrate and critically review MS-generated datasets available on novel STPK substrates and report new functional and subcellular localization enrichment analyses on novel candidate protein kinase A (PknA), protein kinase B (PknB) and PknG substrates to deduce the possible physiological roles of these kinases. In addition, we assess substrate specificity patterns across different mycobacterial STPKs by analyzing reported sets of phosphopeptides, in order to determine whether novel motifs or consensus regions exist for mycobacterial Ser/Thr phosphorylation sites. This review focuses on MS-based techniques employed for STPK substrate identification in mycobacteria, while highlighting the advantages and challenges of the various applications.
Collapse
Affiliation(s)
- Seanantha S Baros
- Division of Chemical & Systems Biology, Department of Integrative Biomedical Sciences, Faculty of Health Sciences, University of Cape Town, South Africa
| | - Jonathan M Blackburn
- Division of Chemical & Systems Biology, Department of Integrative Biomedical Sciences, Faculty of Health Sciences, University of Cape Town, South Africa; Institute of Infectious Disease & Molecular Medicine, Faculty of Health Sciences, University of Cape Town, South Africa
| | - Nelson C Soares
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, United Arab Emirates; College of Pharmacy, University of Sharjah, Sharjah, United Arab Emirates.
| |
Collapse
|
12
|
Hegde SR. Computational Identification of the Proteins Associated With Quorum Sensing and Biofilm Formation in Mycobacterium tuberculosis. Front Microbiol 2020; 10:3011. [PMID: 32038515 PMCID: PMC6988586 DOI: 10.3389/fmicb.2019.03011] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 12/16/2019] [Indexed: 12/23/2022] Open
Abstract
With prolonged therapy and increased instances of drug resistance, tuberculosis is viewed as a serious infectious disease causing high mortality. Emerging concepts in Mycobacterium tuberculosis pathogenicity include biofilm formation, which endows bacterial survival in the host for a long time. To tackle chronic tuberculosis infection, a detailed understanding of the bacterial survival mechanisms is crucial. Using comparative genomics and literature mining, 115 M. tuberculosis proteins were shortlisted for their likely association with biofilm formation or quorum sensing. These include essential genes such as secA2, lpqY-sugABC, Rv1176c, and Rv0195, many of which are also known virulence factors. Furthermore, the functional relationship among these proteins was established by considering known protein-protein interactions, regulatory interactions, and gene expression correlation data/information. Graph centrality and motif analyses predicted the importance of proteins, such as Rv0081, DevR, RegX3, Rv0097, and Rv1996 in M. tuberculosis biofilm formation. Analysis of conservation across other biofilm-forming bacteria suggests that most of these genes are conserved in mycobacteria. As the processes, such as quorum sensing, leading to biofilm formation involve diverse pathways and interactions between proteins, these system-wide studies provide a novel perspective toward understanding mycobacterial persistence.
Collapse
Affiliation(s)
- Shubhada R Hegde
- Institute of Bioinformatics and Applied Biotechnology, Bengaluru, India
| |
Collapse
|
13
|
Li KK, Qu DH, Zhang HN, Chen FY, Xu L, Wang MY, Su HY, Tao SC, Wu FL. Global discovery the PstP interactions using Mtb proteome microarray and revealing novel connections with EthR. J Proteomics 2020; 215:103650. [PMID: 31958639 DOI: 10.1016/j.jprot.2020.103650] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 01/08/2020] [Accepted: 01/16/2020] [Indexed: 10/25/2022]
Abstract
Mycobacterium tuberculosis (Mtb) serine/threonine protein phosphatase PstP plays an important role in regulating Mtb cell division and growth by reversible phosphorylation signaling. However, the substrates of Mtb with which the PstP interacts, and the underlying molecular mechanisms are still largely unknown. In this study, we performed an Mtb proteome microarray to globally identify the PstP bindings. In this way, we discovered 78 interactors between PstP and Mtb proteins, and found a novel connections with EthR. The interaction between PstP and EthR has been validated by Bio-Layer interferometry and Yeast-two-hybrid. And functional studies showed that PstP significantly enhances the binding between EthR and related DNA domain through its interaction with EthR. Phenotypically, overexpression of PstP promoted the resistance of Mycobacterium smegmatis with the antibiotic of ethionamide. Overall, we hopefully wish that the PstP interactors identified in this study will serve as a useful resource for further systematic studies of the roles that PstP plays in the regulation of Mtb dephosphorylation. SIGNIFICANCE: Mycobacterium tuberculosis (Mtb) is the causative agent of tuberculosis, which is responsible of ~1.5 million death per year. Understanding the knowledge about the basic biological regulation pathways in Mtb is an effective approach to discover the novel drug targets for cure TB. PstP is a serine/threonine protein phosphatase in Mtb, and plays important roles in regulating Mtb cell division and growth by reversible phosphorylation signaling. In this study, we identified 78 PstP interacting Mtb proteins using Mtb proteome microarray, which could preliminarily explain the roles of PstP played in Mtb. Moreover, functional analysis showed that a novel transcription factor EthR had been found regulated by PstP through binding, which could enhance the resistance to the antibiotic ETH. Overall, this network constructed with PstP-Mtb proteins could serve as a valuable resource for studying Mtb growth.
Collapse
Affiliation(s)
- Ke-Ke Li
- Key Laboratory of Molecular Module-Based Breeding of High Yield and Abiotic Resistant Plants in Universities of Shandong, School of Agriculture, Ludong University, Yantai 264025, China
| | - De-Hui Qu
- State Key Laboratory of Microbial Metabolism and School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Hai-Nan Zhang
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Fei-Yan Chen
- Key Laboratory of Molecular Module-Based Breeding of High Yield and Abiotic Resistant Plants in Universities of Shandong, School of Agriculture, Ludong University, Yantai 264025, China
| | - Lei Xu
- Key Laboratory of Molecular Module-Based Breeding of High Yield and Abiotic Resistant Plants in Universities of Shandong, School of Agriculture, Ludong University, Yantai 264025, China
| | - Meng-Yun Wang
- Key Laboratory of Molecular Module-Based Breeding of High Yield and Abiotic Resistant Plants in Universities of Shandong, School of Agriculture, Ludong University, Yantai 264025, China
| | - Hong-Yan Su
- Key Laboratory of Molecular Module-Based Breeding of High Yield and Abiotic Resistant Plants in Universities of Shandong, School of Agriculture, Ludong University, Yantai 264025, China
| | - Sheng-Ce Tao
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China.
| | - Fan-Lin Wu
- Key Laboratory of Molecular Module-Based Breeding of High Yield and Abiotic Resistant Plants in Universities of Shandong, School of Agriculture, Ludong University, Yantai 264025, China.
| |
Collapse
|
14
|
Dynamic Characterization of Protein and Posttranslational Modification Levels in Mycobacterial Cholesterol Catabolism. mSystems 2020; 5:5/1/e00424-19. [PMID: 31911463 PMCID: PMC6946793 DOI: 10.1128/msystems.00424-19] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Cholesterol assimilation is a critical step in mycobacterial chronic infection. However, knowledge from the dynamic characterization of cholesterol metabolism in mycobacteria at the protein expression and PTM levels remains limited. Our study uncovered the landscape of protein expression, lysine acetylation, lysine propionylation, and S/T/Y phosphorylation during the metabolic changes from glucose to cholesterol in mycobacteria. The data showed that cholesterol-induced carbon shift resulted in the elevation of protein expression and lysine acylation in diverse metabolic enzymes involved in cholesterol degradation and that the presence of cholesterol also promoted the perturbations at the phosphorylation level in the kinase system in mycobacteria. This study systematically characterized the regulation of cholesterol catabolism at several different levels, which provided the detailed references in mycobacterial proteome and potential antimycobacterial strategies. Cholesterol of the host macrophage membrane is vital for mycobacterial infection, replication, and persistence. During chronic infection within host lung tissues, cholesterol facilitates the phagocytosis of mycobacteria into macrophages. Cholesterol degradation leads to increased flux of acetyl-coenzyme A (CoA) and propionyl-CoA, providing energy and building blocks for virulence macromolecules as well as donors for global protein acylation. Potential functions of lysine acylation are gradually revealed in bacterial survival and pathogenesis. However, the mycobacterial proteome and posttranslational modification (PTM) changes involved in the cholesterol catabolism bioprocess remain unclear. Here, we used nonpathogenic Mycobacterium smegmatis as a model and simultaneously monitored mycobacterial proteome and acetylome changes in the presence of glucose and cholesterol. We discovered that cholesterol metabolic enzymes were upregulated with respect to both protein expression levels and lysine acylation levels during the metabolic shift from glucose to cholesterol. After that, adenylating enzymes related to cholesterol metabolism were proven to be precisely regulated at the propionylation level by mycobacterial acyltransferase M. smegmatis Kat (MsKat) in response to cellular propionyl-CoA accumulation. Furthermore, the kinase expression and phosphorylation levels were also changed along with fluctuations in cholesterol levels. Our results expanded current knowledge of acylation regulation in the cholesterol catabolism of mycobacteria and provided references for possible antimycobacterium strategy. IMPORTANCE Cholesterol assimilation is a critical step in mycobacterial chronic infection. However, knowledge from the dynamic characterization of cholesterol metabolism in mycobacteria at the protein expression and PTM levels remains limited. Our study uncovered the landscape of protein expression, lysine acetylation, lysine propionylation, and S/T/Y phosphorylation during the metabolic changes from glucose to cholesterol in mycobacteria. The data showed that cholesterol-induced carbon shift resulted in the elevation of protein expression and lysine acylation in diverse metabolic enzymes involved in cholesterol degradation and that the presence of cholesterol also promoted the perturbations at the phosphorylation level in the kinase system in mycobacteria. This study systematically characterized the regulation of cholesterol catabolism at several different levels, which provided the detailed references in mycobacterial proteome and potential antimycobacterial strategies.
Collapse
|
15
|
Veyron-Churlet R, Locht C. In Vivo Methods to Study Protein-Protein Interactions as Key Players in Mycobacterium Tuberculosis Virulence. Pathogens 2019; 8:pathogens8040173. [PMID: 31581602 PMCID: PMC6963305 DOI: 10.3390/pathogens8040173] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 09/19/2019] [Accepted: 09/24/2019] [Indexed: 02/07/2023] Open
Abstract
Studies on protein–protein interactions (PPI) can be helpful for the annotation of unknown protein functions and for the understanding of cellular processes, such as specific virulence mechanisms developed by bacterial pathogens. In that context, several methods have been extensively used in recent years for the characterization of Mycobacterium tuberculosis PPI to further decipher tuberculosis (TB) pathogenesis. This review aims at compiling the most striking results based on in vivo methods (yeast and bacterial two-hybrid systems, protein complementation assays) for the specific study of PPI in mycobacteria. Moreover, newly developed methods, such as in-cell native mass resonance and proximity-dependent biotinylation identification, will have a deep impact on future mycobacterial research, as they are able to perform dynamic (transient interactions) and integrative (multiprotein complexes) analyses.
Collapse
Affiliation(s)
- Romain Veyron-Churlet
- Institut Pasteur de Lille, CHU Lille, CNRS, Inserm, Université de Lille, U1019 - UMR 8204 - CIIL - Center for Infection and Immunity of Lille, F-59000 Lille, France.
| | - Camille Locht
- Institut Pasteur de Lille, CHU Lille, CNRS, Inserm, Université de Lille, U1019 - UMR 8204 - CIIL - Center for Infection and Immunity of Lille, F-59000 Lille, France.
| |
Collapse
|
16
|
Qi H, Wang F, Tao SC. Proteome microarray technology and application: higher, wider, and deeper. Expert Rev Proteomics 2019; 16:815-827. [PMID: 31469014 DOI: 10.1080/14789450.2019.1662303] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Introduction: Protein microarray is a powerful tool for both biological study and clinical research. The most useful features of protein microarrays are their miniaturized size (low reagent and sample consumption), high sensitivity and their capability for parallel/high-throughput analysis. The major focus of this review is functional proteome microarray. Areas covered: For proteome microarray, this review will discuss some recently constructed proteome microarrays and new concepts that have been used for constructing proteome microarrays and data interpretation in past few years, such as PAGES, M-NAPPA strategy, VirD technology, and the first protein microarray database. this review will summarize recent proteomic scale applications and address the limitations and future directions of proteome microarray technology. Expert opinion: Proteome microarray is a powerful tool for basic biological and clinical research. It is expected to see improvements in the currently used proteome microarrays and the construction of more proteome microarrays for other species by using traditional strategies or novel concepts. It is anticipated that the maximum number of features on a single microarray and the number of possible applications will be increased, and the information that can be obtained from proteome microarray experiments will more in-depth in the future.
Collapse
Affiliation(s)
- Huan Qi
- Shanghai Center for Systems Biomedicine, Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Jiao Tong University , Shanghai , China
| | - Fei Wang
- School of Pharmacy, Shanghai Jiao Tong University , Shanghai , China
| | - Sheng-Ce Tao
- Shanghai Center for Systems Biomedicine, Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Jiao Tong University , Shanghai , China
| |
Collapse
|
17
|
Wei S, Wang D, Li H, Bi L, Deng J, Zhu G, Zhang J, Li C, Li M, Fang Y, Zhang G, Chen J, Tao S, Zhang XE. Fatty acylCoA synthetase FadD13 regulates proinflammatory cytokine secretion dependent on the NF-κB signalling pathway by binding to eEF1A1. Cell Microbiol 2019; 21:e13090. [PMID: 31364251 PMCID: PMC6899955 DOI: 10.1111/cmi.13090] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 07/26/2019] [Accepted: 07/28/2019] [Indexed: 12/17/2022]
Abstract
Mycobacterium tuberculosis (Mtb) manipulates multiple host defence pathways to survive and persist in host cells. Understanding Mtb–host cell interaction is crucial to develop an efficient means to control the disease. Here, we applied the Mtb proteome chip, through separately interacting with H37Ra and H37Rv stimulated macrophage lysates, screened 283 Mtb differential proteins. Through primary screening, we focused on fatty acylCoA synthetase FadD13. Mtb FadD13 is a potential drug target, but its role in infection remains unclear. Deletion of FadD13 in Mtb reduced the production of proinflammatory cytokines IL‐1β, IL‐18, and IL‐6. Bimolecular fluorescence complementation and colocalization showed that the binding partner of FadD13 in macrophage was eEF1A1 (a translation elongation factor). Knockdown eEF1A1 expression in macrophage abrogated the promotion of proinflammatory cytokines induced by FadD13. In addition, ΔfadD13 mutant decreased the expression of the NF‐κB signalling pathway related proteins p50 and p65, so did the eEF1A1 knockdown macrophage infected with H37Rv. Meanwhile, we found that deletion of FadD13 reduced Mtb survival in macrophages during Mtb infection, and purified FadD13 proteins induced broken of macrophage membrane. Taken together, FadD13 is crucial for Mtb proliferation in macrophages, and it plays a key role in the production of proinflammatory cytokines during Mtb infection.
Collapse
Affiliation(s)
- Sha Wei
- State Key Laboratory of Agromicrobiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China.,National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Dianbing Wang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Hua Li
- State Key Laboratory of Agromicrobiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China.,National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Lijun Bi
- Key Laboratory of Non-Coding RNA and State Key Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Jiaoyu Deng
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Guofeng Zhu
- Key Laboratory of Non-Coding RNA and State Key Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Jibin Zhang
- State Key Laboratory of Agromicrobiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Chuanyou Li
- Beijing Chest Hospital, Capital Medical University, Beijing, China
| | - Min Li
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Yuan Fang
- College of Life Science, Hubei University, Wuhan, China
| | - Guimin Zhang
- College of Life Science, Hubei University, Wuhan, China
| | - Jian Chen
- College of Life Science, Hubei University, Wuhan, China
| | - Shengce Tao
- Shanghai Center for Systems Biomedicine, Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Jiao Tong University, Shanghai, China
| | - Xian-En Zhang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Science, Beijing, China
| |
Collapse
|
18
|
Mori M, Sammartino JC, Costantino L, Gelain A, Meneghetti F, Villa S, Chiarelli LR. An Overview on the Potential Antimycobacterial Agents Targeting Serine/Threonine Protein Kinases from Mycobacterium tuberculosis. Curr Top Med Chem 2019; 19:646-661. [PMID: 30827246 DOI: 10.2174/1568026619666190227182701] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 09/27/2018] [Accepted: 10/09/2018] [Indexed: 01/07/2023]
Abstract
Mycobacterium tuberculosis (Mtb), the causative agent of tuberculosis (TB), still remains an urgent global health issue, mainly due to the emergence of multi-drug resistant strains. Therefore, there is a pressing need to develop novel and more efficient drugs to control the disease. In this context, targeting the pathogen virulence factors, and particularly signal mechanisms, seems to be a promising approach. An important transmembrane signaling system in Mtb is represented by receptor-type Serine/ Threonine protein kinases (STPKs). Mtb has 11 different STPKs, two of them, PknA and PknB, are essential. By contrast PknG and PknH are involved in Mtb virulence and adaptation, and are fundamental for the pathogen growth in infection models. Therefore, STPKs represent a very interesting group of pharmacological targets in M. tuberculosis. In this work, the principal inhibitors of the mycobacterial STPKs will be presented and discussed. In particular, medicinal chemistry efforts have been focused on discovering new antimycobacterial compounds, targeting three of these kinases, namely PknA, PknB and PknG. Generally, the inhibitory effect on these enzymes do not correlate with a significant antimycobacterial action in whole-cell assays. However, compounds with activity in the low micromolar range have been obtained, demonstrating that targeting Mtb STPKs could be a new promising strategy for the development of drugs to treat TB infections.
Collapse
Affiliation(s)
- Matteo Mori
- Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, via L. Mangiagalli 25, 20133 Milano, Italy
| | - José Camilla Sammartino
- Dipartimento di Biologia e Biotecnologie "Lazzaro Spallanzani", Università degli Studi di Pavia, via Ferrata 9, 27100 Pavia, Italy
| | - Luca Costantino
- Dipartimento Scienze della Vita, Universita degli Studi di Modena e Reggio Emilia, via Campi 103, 41121 Modena, Italy
| | - Arianna Gelain
- Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, via L. Mangiagalli 25, 20133 Milano, Italy
| | - Fiorella Meneghetti
- Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, via L. Mangiagalli 25, 20133 Milano, Italy
| | - Stefania Villa
- Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, via L. Mangiagalli 25, 20133 Milano, Italy
| | - Laurent Roberto Chiarelli
- Dipartimento di Biologia e Biotecnologie "Lazzaro Spallanzani", Università degli Studi di Pavia, via Ferrata 9, 27100 Pavia, Italy
| |
Collapse
|
19
|
New substrates and interactors of the mycobacterial Serine/Threonine protein kinase PknG identified by a tailored interactomic approach. J Proteomics 2019; 192:321-333. [DOI: 10.1016/j.jprot.2018.09.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 07/27/2018] [Accepted: 09/25/2018] [Indexed: 11/18/2022]
|
20
|
Wu FL, Liu Y, Zhang HN, Jiang HW, Cheng L, Guo SJ, Deng JY, Bi LJ, Zhang XE, Gao HF, Tao SC. Global Profiling of PknG Interactions Using a Human Proteome Microarray Reveals Novel Connections with CypA. Proteomics 2018; 18:e1800265. [PMID: 30281201 DOI: 10.1002/pmic.201800265] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Revised: 09/12/2018] [Indexed: 11/10/2022]
Abstract
Mycobacterium tuberculosis (Mtb) serine/threonine kinase PknG plays an important role in the Mtb-host interaction by facilitating the survival of Mtb in macrophages. However, the human proteins with which the PknG interacts, and the underlying molecular mechanisms are still largely unknown. In this study, a HuProt array is been applied to globally identify the host proteins to which PknG binds. In this way, 125 interactors are discovered, including a cyclophilin protein, CypA. This interaction between PknG and CypA is validated both in vitro and in vivo, and functional studies show that PknG significantly reduces the protein levels of CypA through phosphorylation, which consequently inhibit the inflammatory response through downregulation of NF-κB and ERK1/2 pathways. Phenotypically, overexpression of PknG reduces cytokine levels and promotes the survival of Mycobacterium smegmatis (Msm) in macrophages. Overall, it is expected that the PknG interactors identified in this study will serve as a useful resource for further systematic studies of the roles that PknG plays in the Mtb-host interactions.
Collapse
Affiliation(s)
- Fan-Lin Wu
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, 200240, Shanghai, P. R. China.,School of Biomedical Engineering, Shanghai Jiao Tong University, 200240, Shanghai, P. R. China.,School of Agriculture, Ludong University, Yantai, 264025, P. R. China
| | - Yin Liu
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, 200240, Shanghai, P. R. China.,School of Biomedical Engineering, Shanghai Jiao Tong University, 200240, Shanghai, P. R. China
| | - Hai-Nan Zhang
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, 200240, Shanghai, P. R. China.,School of Biomedical Engineering, Shanghai Jiao Tong University, 200240, Shanghai, P. R. China
| | - He-Wei Jiang
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, 200240, Shanghai, P. R. China.,School of Biomedical Engineering, Shanghai Jiao Tong University, 200240, Shanghai, P. R. China
| | - Li Cheng
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, 200240, Shanghai, P. R. China.,School of Biomedical Engineering, Shanghai Jiao Tong University, 200240, Shanghai, P. R. China
| | - Shu-Juan Guo
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, 200240, Shanghai, P. R. China.,School of Biomedical Engineering, Shanghai Jiao Tong University, 200240, Shanghai, P. R. China
| | - Jiao-Yu Deng
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, P. R. China
| | - Li-Jun Bi
- National Key Laboratory of Biomacromolecules, Key Laboratory of Non-Coding RNA and Key Laboratory of Protein and Peptide Pharmaceuticals, Institute of Biophysics, Chinese Academy of Sciences, 100101, Beijing, P. R. China.,School of Stomatology and Medicine, Foshan University, Foshan, 528000, Guangdong Province, P. R. China.,TB Healthcare Biotechnology Co., Ltd., Foshan, 528000, Guangdong Province, P. R. China.,Guangdong Province Key Laboratory of TB Systems Biology and Translational Medicine, Foshan, 528000, Guangdong Province, P. R. China
| | - Xian-En Zhang
- National Key Laboratory of Biomacromolecules, Key Laboratory of Non-Coding RNA and Key Laboratory of Protein and Peptide Pharmaceuticals, Institute of Biophysics, Chinese Academy of Sciences, 100101, Beijing, P. R. China
| | - Hua-Fang Gao
- National Research Institute for Health and Family Planning, 100081, Beijing, P. R. China
| | - Sheng-Ce Tao
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, 200240, Shanghai, P. R. China.,School of Biomedical Engineering, Shanghai Jiao Tong University, 200240, Shanghai, P. R. China
| |
Collapse
|
21
|
Girardin RC, Bai G, He J, Sui H, McDonough KA. AbmR (Rv1265) is a novel transcription factor of Mycobacterium tuberculosis that regulates host cell association and expression of the non-coding small RNA Mcr11. Mol Microbiol 2018; 110:811-830. [PMID: 30207611 PMCID: PMC6282994 DOI: 10.1111/mmi.14126] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 09/07/2018] [Accepted: 09/09/2018] [Indexed: 12/11/2022]
Abstract
Gene regulatory networks used by Mycobacterium tuberculosis (Mtb) during infection include many genes of unknown function, confounding efforts to determine their roles in Mtb biology. Rv1265 encodes a conserved hypothetical protein that is expressed during infection and in response to elevated levels of cyclic AMP. Here, we report that Rv1265 is a novel auto‐inhibitory ATP‐binding transcription factor that upregulates expression of the small non‐coding RNA Mcr11, and propose that Rv1265 be named ATP‐binding mcr11regulator (AbmR). AbmR directly and specifically bound DNA, as determined by electrophoretic mobility shift assays, and this DNA‐binding activity was enhanced by AbmR’s interaction with ATP. Genetic knockout of abmR in Mtb increased abmR promoter activity and eliminated growth phase‐dependent increases in mcr11 expression during hypoxia. Mutagenesis identified arginine residues in the carboxy terminus that are critical for AbmR’s DNA‐binding activity and gene regulatory function. Limited similarity to other DNA‐ or ATP‐binding domains suggests that AbmR belongs to a novel class of DNA‐ and ATP‐binding proteins. AbmR was also found to form large organized structures in solution and facilitate the serum‐dependent association of Mtb with human lung epithelial cells. These results indicate a potentially complex role for AbmR in Mtb biology.
Collapse
Affiliation(s)
- Roxie C Girardin
- Department of Biomedical Sciences, School of Public Health, University at Albany, PO Box 22002, Albany, NY, 12201-2002, USA
| | - Guangchun Bai
- Department of Immunology and Microbial Disease, Albany Medical College, Albany, NY, USA
| | - Jie He
- Wadsworth Center, New York State Department of Health, Albany, NY, USA
| | - Haixin Sui
- Department of Biomedical Sciences, School of Public Health, University at Albany, PO Box 22002, Albany, NY, 12201-2002, USA.,Wadsworth Center, New York State Department of Health, Albany, NY, USA
| | - Kathleen A McDonough
- Department of Biomedical Sciences, School of Public Health, University at Albany, PO Box 22002, Albany, NY, 12201-2002, USA.,Wadsworth Center, New York State Department of Health, Albany, NY, USA
| |
Collapse
|
22
|
Chaurasiya SK. Tuberculosis: Smart manipulation of a lethal host. Microbiol Immunol 2018; 62:361-379. [PMID: 29687912 DOI: 10.1111/1348-0421.12593] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 03/21/2018] [Accepted: 04/16/2018] [Indexed: 11/28/2022]
Abstract
Tuberculosis (TB) caused by Mycobacterium tuberculosis remains a global threat to human health. Development of drug resistance and co-infection with HIV has increased the morbidity and mortality caused by TB. Macrophages serve as primary defense against microbial infections, including TB. Upon recognition and uptake of mycobacteria, macrophages initiate a series of events designed to lead to generation of effective immune responses and clearance of infection. However, pathogenic mycobacteria utilize multiple mechanisms for manipulating macrophage responses to protect itself from being killed and to survive within these cells that are designed to kill them. The outcomes of mycobacterial infection are determined by several host- and pathogen-related factors. Significant advancements in understanding mycobacterial pathogenesis have been made in recent years. In this review, some of the important factors/mechanisms regulating mycobacterial survival inside macrophages are discussed.
Collapse
Affiliation(s)
- Shivendra K Chaurasiya
- Host-pathogen Interaction and Signal Transduction Laboratory, Department of Microbiology, School of Biological Sciences, Dr. Hari Singh Gour University, Sagar, MP-470003, India
| |
Collapse
|
23
|
Turapov O, Forti F, Kadhim B, Ghisotti D, Sassine J, Straatman-Iwanowska A, Bottrill AR, Moynihan PJ, Wallis R, Barthe P, Cohen-Gonsaud M, Ajuh P, Vollmer W, Mukamolova GV. Two Faces of CwlM, an Essential PknB Substrate, in Mycobacterium tuberculosis. Cell Rep 2018; 25:57-67.e5. [PMID: 30282038 PMCID: PMC6180346 DOI: 10.1016/j.celrep.2018.09.004] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 06/11/2018] [Accepted: 08/31/2018] [Indexed: 11/26/2022] Open
Abstract
Tuberculosis claims >1 million lives annually, and its causative agent Mycobacterium tuberculosis is a highly successful pathogen. Protein kinase B (PknB) is reported to be critical for mycobacterial growth. Here, we demonstrate that PknB-depleted M. tuberculosis can replicate normally and can synthesize peptidoglycan in an osmoprotective medium. Comparative phosphoproteomics of PknB-producing and PknB-depleted mycobacteria identify CwlM, an essential regulator of peptidoglycan synthesis, as a major PknB substrate. Our complementation studies of a cwlM mutant of M. tuberculosis support CwlM phosphorylation as a likely molecular basis for PknB being essential for mycobacterial growth. We demonstrate that growing mycobacteria produce two forms of CwlM: a non-phosphorylated membrane-associated form and a PknB-phosphorylated cytoplasmic form. Furthermore, we show that the partner proteins for the phosphorylated and non-phosphorylated forms of CwlM are FhaA, a fork head-associated domain protein, and MurJ, a proposed lipid II flippase, respectively. From our results, we propose a model in which CwlM potentially regulates both the biosynthesis of peptidoglycan precursors and their transport across the cytoplasmic membrane.
Collapse
Affiliation(s)
- Obolbek Turapov
- Leicester Tuberculosis Research Group, Department of Infection, Immunity and Inflammation, University of Leicester, Leicester LE1 9HN, UK
| | - Francesca Forti
- Department of Biosciences, University of Milan, Milan 20133, Italy
| | - Baleegh Kadhim
- Leicester Tuberculosis Research Group, Department of Infection, Immunity and Inflammation, University of Leicester, Leicester LE1 9HN, UK; Biology Department, College of Science, University of Al-Qadisiyah, Al-Diwaniyah 58002, Iraq
| | - Daniela Ghisotti
- Department of Biosciences, University of Milan, Milan 20133, Italy
| | - Jad Sassine
- Centre for Bacterial Cell Biology, Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne NE2 4AX, UK
| | - Anna Straatman-Iwanowska
- Electron Microscopy Facility, Core Biotechnology Services, University of Leicester, Leicester LE1 7RH, UK
| | - Andrew R Bottrill
- Protein Nucleic Acid Laboratory, University of Leicester, Leicester LE1 7RH, UK
| | - Patrick J Moynihan
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Russell Wallis
- Leicester Tuberculosis Research Group, Department of Infection, Immunity and Inflammation, University of Leicester, Leicester LE1 9HN, UK; The Leicester Institute of Structural and Chemical Biology, Henry Wellcome Building, University of Leicester, Lancaster Road, Leicester LE1 7HB, UK
| | - Philippe Barthe
- Centre de Biochimie Structurale, CNRS, INSERM, University of Montpellier, Montpellier 34090, France
| | - Martin Cohen-Gonsaud
- Centre de Biochimie Structurale, CNRS, INSERM, University of Montpellier, Montpellier 34090, France
| | - Paul Ajuh
- Gemini Biosciences, Liverpool Science Park, Liverpool L3 5TF, UK
| | - Waldemar Vollmer
- Centre for Bacterial Cell Biology, Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne NE2 4AX, UK
| | - Galina V Mukamolova
- Leicester Tuberculosis Research Group, Department of Infection, Immunity and Inflammation, University of Leicester, Leicester LE1 9HN, UK.
| |
Collapse
|
24
|
Khan MZ, Kaur P, Nandicoori VK. Targeting the messengers: Serine/threonine protein kinases as potential targets for antimycobacterial drug development. IUBMB Life 2018; 70:889-904. [DOI: 10.1002/iub.1871] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Accepted: 04/22/2018] [Indexed: 02/03/2023]
Affiliation(s)
- Mehak Zahoor Khan
- National Institute of Immunology, Aruna Asaf Ali Marg; New Delhi India
| | - Prabhjot Kaur
- National Institute of Immunology, Aruna Asaf Ali Marg; New Delhi India
| | | |
Collapse
|
25
|
Biophysical Characterization of the Tandem FHA Domain Regulatory Module from the Mycobacterium tuberculosis ABC Transporter Rv1747. Structure 2018; 26:972-986.e6. [PMID: 29861345 DOI: 10.1016/j.str.2018.04.018] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 04/13/2018] [Accepted: 04/27/2018] [Indexed: 11/23/2022]
Abstract
The Mycobacterium tuberculosis ATP-binding cassette transporter Rv1747 is a putative exporter of cell wall biosynthesis intermediates. Rv1747 has a cytoplasmic regulatory module consisting of two pThr-interacting Forkhead-associated (FHA) domains connected by a conformationally disordered linker with two phospho-acceptor threonines (pThr). The structures of FHA-1 and FHA-2 were determined by X-ray crystallography and nuclear magnetic resonance (NMR) spectroscopy, respectively. Relative to the canonical 11-strand β-sandwich FHA domain fold of FHA-1, FHA-2 is circularly permuted and lacking one β-strand. Nevertheless, the two share a conserved pThr-binding cleft. FHA-2 is less stable and more dynamic than FHA-1, yet binds model pThr peptides with moderately higher affinity (∼50 μM versus 500 μM equilibrium dissociation constants). Based on NMR relaxation and chemical shift perturbation measurements, when joined within a polypeptide chain, either FHA domain can bind either linker pThr to form intra- and intermolecular complexes. We hypothesize that this enables tunable phosphorylation-dependent multimerization to regulate Rv1747 transporter activity.
Collapse
|
26
|
Hameed HMA, Islam MM, Chhotaray C, Wang C, Liu Y, Tan Y, Li X, Tan S, Delorme V, Yew WW, Liu J, Zhang T. Molecular Targets Related Drug Resistance Mechanisms in MDR-, XDR-, and TDR- Mycobacterium tuberculosis Strains. Front Cell Infect Microbiol 2018; 8:114. [PMID: 29755957 PMCID: PMC5932416 DOI: 10.3389/fcimb.2018.00114] [Citation(s) in RCA: 108] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2017] [Accepted: 03/23/2018] [Indexed: 01/08/2023] Open
Abstract
Tuberculosis (TB) is a formidable infectious disease that remains a major cause of death worldwide today. Escalating application of genomic techniques has expedited the identification of increasing number of mutations associated with drug resistance in Mycobacterium tuberculosis. Unfortunately the prevalence of bacillary resistance becomes alarming in many parts of the world, with the daunting scenarios of multidrug-resistant tuberculosis (MDR-TB), extensively drug-resistant tuberculosis (XDR-TB) and total drug-resistant tuberculosis (TDR-TB), due to number of resistance pathways, alongside some apparently obscure ones. Recent advances in the understanding of the molecular/ genetic basis of drug targets and drug resistance mechanisms have been steadily made. Intriguing findings through whole genome sequencing and other molecular approaches facilitate the further understanding of biology and pathology of M. tuberculosis for the development of new therapeutics to meet the immense challenge of global health.
Collapse
Affiliation(s)
- H M Adnan Hameed
- State Key Laboratory of Respiratory Disease, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Md Mahmudul Islam
- State Key Laboratory of Respiratory Disease, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Chiranjibi Chhotaray
- State Key Laboratory of Respiratory Disease, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Changwei Wang
- State Key Laboratory of Respiratory Disease, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Yang Liu
- State Key Laboratory of Respiratory Disease, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.,Institute of Health Sciences, Anhui University, Hefei, China
| | - Yaoju Tan
- State Key Laboratory of Respiratory Disease, Guangzhou Chest Hospital, Guangzhou, China
| | - Xinjie Li
- State Key Laboratory of Respiratory Disease, Guangzhou Chest Hospital, Guangzhou, China
| | - Shouyong Tan
- State Key Laboratory of Respiratory Disease, Guangzhou Chest Hospital, Guangzhou, China
| | - Vincent Delorme
- Tuberculosis Research Laboratory, Institut Pasteur Korea, Seongnam-si, South Korea
| | - Wing W Yew
- Stanley Ho Centre for Emerging Infectious Diseases, The Chinese University of Hong Kong, Hong Kong, China
| | - Jianxiong Liu
- State Key Laboratory of Respiratory Disease, Guangzhou Chest Hospital, Guangzhou, China
| | - Tianyu Zhang
- State Key Laboratory of Respiratory Disease, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.,University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
27
|
PknG supports mycobacterial adaptation in acidic environment. Mol Cell Biochem 2017; 443:69-80. [PMID: 29124568 DOI: 10.1007/s11010-017-3211-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Accepted: 10/14/2017] [Indexed: 01/20/2023]
Abstract
Mycobacterium tuberculosis (Mtb), causative agent of human tuberculosis (TB), has the remarkable ability to adapt to the hostile environment inside host cells. Eleven eukaryotic like serine-threonine protein kinases (STPKs) are present in Mtb. Protein kinase G (PknG) has been shown to promote mycobacterial survival inside host cells. A homolog of PknG is also present in Mycobacterium smegmatis (MS), a fast grower, non-pathogenic mycobacterium. In the present study, we have analyzed the role of PknG in mycobacteria during exposure to acidic environment. Expression of pknG in MS was decreased in acidic medium. Recombinant MS ectopically expressing pknG (MS-G) showed higher growth in acidic medium compared to wild type counterpart. MS-G also showed higher resistance upon exposure to 3.0 pH and better adaptability to acidic pH. Western blot analysis showed differential threonine but not serine phosphorylation of cellular proteins in MS at acidic pH which was restored by ectopic expression of pknG in MS. In Mtb H37Ra (Mtb-Ra), expression of pknG was increased at acidic pH. We also observed decreased expression of pknG in MS during infection in macrophages while the expression of pknG in Mtb-Ra was increased in similar conditions. Taken together, our data strongly suggests that pknG regulates growth of mycobacteria in acidic environment and is differentially transcribed in MS and Mtb under these conditions.
Collapse
|
28
|
He X, Jiang HW, Chen H, Zhang HN, Liu Y, Xu ZW, Wu FL, Guo SJ, Hou JL, Yang MK, Yan W, Deng JY, Bi LJ, Zhang XE, Tao SC. Systematic Identification of Mycobacterium tuberculosis Effectors Reveals that BfrB Suppresses Innate Immunity. Mol Cell Proteomics 2017; 16:2243-2253. [PMID: 29018126 DOI: 10.1074/mcp.ra117.000296] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Indexed: 12/14/2022] Open
Abstract
Mycobacterium tuberculosis (Mtb) has evolved multiple strategies to counter the human immune system. The effectors of Mtb play important roles in the interactions with the host. However, because of the lack of highly efficient strategies, there are only a handful of known Mtb effectors, thus hampering our understanding of Mtb pathogenesis. In this study, we probed Mtb proteome microarray with biotinylated whole-cell lysates of human macrophages, identifying 26 Mtb membrane proteins and secreted proteins that bind to macrophage proteins. Combining GST pull-down with mass spectroscopy then enabled the specific identification of all binders. We refer to this proteome microarray-based strategy as SOPHIE (Systematic unlOcking of Pathogen and Host Interacting Effectors). Detailed investigation of a novel effector identified here, the iron storage protein BfrB (Rv3841), revealed that BfrB inhibits NF-κB-dependent transcription through binding and reducing the nuclear abundance of the ribosomal protein S3 (RPS3), which is a functional subunit of NF- κB. The importance of this interaction was evidenced by the promotion of survival in macrophages of the mycobacteria, Mycobacterium smegmatis, by overexpression of BfrB. Thus, beyond demonstrating the power of SOPHIE in the discovery of novel effectors of human pathogens, we expect that the set of Mtb effectors identified in this work will greatly facilitate the understanding of the pathogenesis of Mtb, possibly leading to additional potential molecular targets in the battle against tuberculosis.
Collapse
Affiliation(s)
- Xiang He
- From the ‡Shanghai Center for Systems Biomedicine, Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200240, China.,§School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - He-Wei Jiang
- From the ‡Shanghai Center for Systems Biomedicine, Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200240, China
| | - Hong Chen
- From the ‡Shanghai Center for Systems Biomedicine, Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200240, China
| | - Hai-Nan Zhang
- From the ‡Shanghai Center for Systems Biomedicine, Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yin Liu
- From the ‡Shanghai Center for Systems Biomedicine, Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zhao-Wei Xu
- From the ‡Shanghai Center for Systems Biomedicine, Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200240, China
| | - Fan-Lin Wu
- From the ‡Shanghai Center for Systems Biomedicine, Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200240, China
| | - Shu-Juan Guo
- From the ‡Shanghai Center for Systems Biomedicine, Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jing-Li Hou
- ¶Instrumental Analysis Center of Shanghai Jiao Tong University, Shanghai 200240, China
| | - Ming-Kun Yang
- ‖Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Wei Yan
- From the ‡Shanghai Center for Systems Biomedicine, Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jiao-Yu Deng
- **State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China
| | - Li-Jun Bi
- ‡‡National Key Laboratory of Biomacromolecules, Key Laboratory of Non-Coding; RNA and Key Laboratory of Protein and Peptide Pharmaceuticals, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China.,§§School of Stomatology and Medicine, Foshan University, Foshan 528000, Guangdong Province, China
| | - Xian-En Zhang
- ‡‡National Key Laboratory of Biomacromolecules, Key Laboratory of Non-Coding; RNA and Key Laboratory of Protein and Peptide Pharmaceuticals, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Sheng-Ce Tao
- From the ‡Shanghai Center for Systems Biomedicine, Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200240, China; .,§School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.,¶¶State Key Laboratory of Oncogenes and Related Genes, Shanghai 200240, China
| |
Collapse
|