1
|
Babaei-Abraki S, Karamali F, Nasr-Esfahani MH. The Role of Endoplasmic Reticulum and Mitochondria in Maintaining Redox Status and Glycolytic Metabolism in Pluripotent Stem Cells. Stem Cell Rev Rep 2022; 18:1789-1808. [PMID: 35141862 DOI: 10.1007/s12015-022-10338-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/20/2022] [Indexed: 10/19/2022]
Abstract
Pluripotent stem cells (PSCs), including embryonic stem cells and induced pluripotent stem cells (iPSCs), can be applicable for regenerative medicine. They strangely rely on glycolysis metabolism akin to aerobic glycolysis in cancer cells. Upon differentiation, PSCs undergo a metabolic shift from glycolysis to oxidative phosphorylation (OXPHOS). The metabolic shift depends on organelles maturation, transcriptome modification, and metabolic switching. Besides, metabolism-driven chromatin regulation is necessary for cell survival, self-renewal, proliferation, senescence, and differentiation. In this respect, mitochondria may serve as key organelle to adapt environmental changes with metabolic intermediates which are necessary for maintaining PSCs identity. The endoplasmic reticulum (ER) is another organelle whose role in cellular identity remains under-explored. The purpose of our article is to highlight the recent progress on these two organelles' role in maintaining PSCs redox status focusing on metabolism. Topics include redox status, metabolism regulation, mitochondrial dynamics, and ER stress in PSCs. They relate to the maintenance of stem cell properties and subsequent differentiation of stem cells into specific cell types.
Collapse
Affiliation(s)
- Shahnaz Babaei-Abraki
- Department of Plant and Animal Biology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran.,Department of Animal Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Fereshteh Karamali
- Department of Animal Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Mohammad Hossein Nasr-Esfahani
- Department of Animal Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran.
| |
Collapse
|
2
|
Kabir M, Barradas A, Tzotzos GT, Hentges KE, Doig AJ. Properties of genes essential for mouse development. PLoS One 2017; 12:e0178273. [PMID: 28562614 PMCID: PMC5451031 DOI: 10.1371/journal.pone.0178273] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Accepted: 05/10/2017] [Indexed: 12/20/2022] Open
Abstract
Essential genes are those that are critical for life. In the specific case of the mouse, they are the set of genes whose deletion means that a mouse is unable to survive after birth. As such, they are the key minimal set of genes needed for all the steps of development to produce an organism capable of life ex utero. We explored a wide range of sequence and functional features to characterise essential (lethal) and non-essential (viable) genes in mice. Experimental data curated manually identified 1301 essential genes and 3451 viable genes. Very many sequence features show highly significant differences between essential and viable mouse genes. Essential genes generally encode complex proteins, with multiple domains and many introns. These genes tend to be: long, highly expressed, old and evolutionarily conserved. These genes tend to encode ligases, transferases, phosphorylated proteins, intracellular proteins, nuclear proteins, and hubs in protein-protein interaction networks. They are involved with regulating protein-protein interactions, gene expression and metabolic processes, cell morphogenesis, cell division, cell proliferation, DNA replication, cell differentiation, DNA repair and transcription, cell differentiation and embryonic development. Viable genes tend to encode: membrane proteins or secreted proteins, and are associated with functions such as cellular communication, apoptosis, behaviour and immune response, as well as housekeeping and tissue specific functions. Viable genes are linked to transport, ion channels, signal transduction, calcium binding and lipid binding, consistent with their location in membranes and involvement with cell-cell communication. From the analysis of the composite features of essential and viable genes, we conclude that essential genes tend to be required for intracellular functions, and viable genes tend to be involved with extracellular functions and cell-cell communication. Knowledge of the features that are over-represented in essential genes allows for a deeper understanding of the functions and processes implemented during mammalian development.
Collapse
Affiliation(s)
- Mitra Kabir
- Faculty of Biology, Medicine, and Health, University of Manchester, Manchester, United Kingdom
- Manchester Institute of Biotechnology and Department of Chemistry, Faculty of Science and Engineering, The University of Manchester, Manchester, United Kingdom
| | - Ana Barradas
- Faculty of Biology, Medicine, and Health, University of Manchester, Manchester, United Kingdom
| | - George T. Tzotzos
- Department of Agriculture, Food and Environmental Sciences, Marche Polytechnic University, Ancona, Italy
| | - Kathryn E. Hentges
- Faculty of Biology, Medicine, and Health, University of Manchester, Manchester, United Kingdom
| | - Andrew J. Doig
- Manchester Institute of Biotechnology and Department of Chemistry, Faculty of Science and Engineering, The University of Manchester, Manchester, United Kingdom
| |
Collapse
|
3
|
Abstract
Human embryonic stem cells potentially represent an unlimited source of cells and tissues for regenerative medicine. Understanding signaling events that drive proliferation and specialization of these cells into various differentiated derivatives is of utmost importance for controlling their behavior in vitro. Major progress has been made in unraveling these signaling events with large-scale studies at the transcriptional level, but analysis of protein expression, interaction and modification has been more limited, since it requires different strategies. Recent advances in mass spectrometry-based proteomics indicate that proteome characterization can contribute significantly to our understanding of embryonic stem cell biology. In this article, we review mass spectrometry-based studies of human and mouse embryonic stem cells and their differentiated progeny, as well as studies of conditioned media that have been reported to support self-renewal of the undifferentiated cells in the absence of the more commonly used feeder cells. In addition, we make concise comparisons with related transcriptome profiling reports.
Collapse
Affiliation(s)
- Dennis Van Hoof
- Netherlands Institute of Developmental Biology, Hubrecht Laboratory, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands.
| | | | | | | |
Collapse
|
4
|
Santamaría E, Sánchez-Quiles V, Fernández-Irigoyen J, Corrales FJ. A combination of affinity chromatography, 2D DIGE, and mass spectrometry to analyze the phosphoproteome of liver progenitor cells. Methods Mol Biol 2012; 909:165-80. [PMID: 22903716 DOI: 10.1007/978-1-61779-959-4_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Reversible protein phosphorylation is a ubiquitous posttranslational modification that regulates cellular signaling pathways in multiple biological processes. A comprehensive analysis of protein phosphorylation patterns can only be achieved by employing different complementary experimental strategies all aiming at selective enrichment of phosphorylated proteins/peptides. In this chapter, we describe a method that utilizes a phosphoprotein affinity chromatography (Qiagen) to isolate intact phosphoproteins. These are subsequently detected by difference in two-dimensional gel electrophoresis and identified by mass spectrometry techniques. Additional experiments using a specific stain for phosphoproteins demonstrated that phosphoprotein affinity column was an effective method for enriching phosphate-containing proteins. Further validating the method, this workflow was applied to probe changes in the activation patterns of intermediates involved in different signaling pathways, such as NDRG1 and stathmin, in liver progenitor cells (MLP-29) upon proteasome inhibition.
Collapse
Affiliation(s)
- Enrique Santamaría
- Proteomics Unit, Biomedical Research Center, Navarra Health Service, Pamplona, Spain.
| | | | | | | |
Collapse
|
5
|
Gundry RL, Burridge PW, Boheler KR. Pluripotent stem cell heterogeneity and the evolving role of proteomic technologies in stem cell biology. Proteomics 2011; 11:3947-61. [PMID: 21834136 DOI: 10.1002/pmic.201100100] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2011] [Revised: 04/29/2011] [Accepted: 06/08/2011] [Indexed: 12/13/2022]
Abstract
Stem cells represent obvious choices for regenerative medicine and are invaluable for studies of human development and drug testing. The proteomic landscape of pluripotent stem cells (PSCs), in particular, is not yet clearly defined; consequently, this field of research would greatly benefit from concerted efforts designed to better characterize these cells. In this concise review, we provide an overview of stem cell potency, highlight the types and practical implications of heterogeneity in PSCs and provide a detailed analysis of the current view of the pluripotent proteome in a unique resource for this rapidly evolving field. Our goal in this review is to provide specific insights into the current status of the known proteome of both mouse and human PSCs. This has been accomplished by integrating published data into a unified PSC proteome to facilitate the identification of proteins, which may be informative for the stem cell state as well as to reveal areas where our current view is limited. These analyses provide insight into the challenges faced in the proteomic analysis of PSCs and reveal one area--the cell surface subproteome--that would especially benefit from enhanced research efforts.
Collapse
Affiliation(s)
- Rebekah L Gundry
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI 53226, USA.
| | | | | |
Collapse
|
6
|
Guevel L, Lavoie JR, Perez-Iratxeta C, Rouger K, Dubreil L, Feron M, Talon S, Brand M, Megeney LA. Quantitative proteomic analysis of dystrophic dog muscle. J Proteome Res 2011; 10:2465-78. [PMID: 21410286 DOI: 10.1021/pr2001385] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Duchenne muscular dystrophy (DMD) is caused by null mutations in the dystrophin gene, leading to progressive and unrelenting muscle loss. Although the genetic basis of DMD is well resolved, the cellular mechanisms associated with the physiopathology remain largely unknown. Increasing evidence suggests that secondary mechanisms, as the alteration of key signaling pathways, may play an important role. In order to identify reliable biomarkers and potential therapeutic targets, and taking advantage of the clinically relevant Golden Retriever Muscular Dystrophy (GRMD) dog model, a proteomic study was performed. Isotope-coded affinity tag (ICAT) profiling was used to compile quantitative changes in protein expression profiles of the vastus lateralis muscles of 4-month old GRMD vs healthy dogs. Interestingly, the set of under-expressed proteins detected appeared primarily composed of metabolic proteins, many of which have been shown to be regulated by the transcriptional peroxisome proliferator-activated receptor-gamma co-activator 1 alpha (PGC-1α). Subsequently, we were able to showed that PGC1-α expression is dramatically reduced in GRMD compared to healthy muscle. Collectively, these results provide novel insights into the molecular pathology of the clinically relevant animal model of DMD, and indicate that defective energy metabolism is a central hallmark of the disease in the canine model.
Collapse
Affiliation(s)
- Laetitia Guevel
- CNRS UMR6204, Faculté des Sciences et des Techniques, F-44322 Nantes Cedex 3, France.
| | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Bagherpoor AJ, Bahrami AR, Matin MM, Mahdavi-Shahri N, Edalatmanesh MA. Investigating the effects of vitreous humour (crude extract) on growth and differentiation of rat mesenchymal stem cells (rMSCs) and human NTERA2 cells. CYTOL GENET+ 2010. [DOI: 10.3103/s0095452710060034] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
8
|
He J, Liu Y, Zhu TS, Xie X, Costello MA, Talsma CE, Flack CG, Crowley JG, Dimeco F, Vescovi AL, Fan X, Lubman DM. Glycoproteomic analysis of glioblastoma stem cell differentiation. J Proteome Res 2010; 10:330-8. [PMID: 21110520 DOI: 10.1021/pr101158p] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Cancer stem cells are responsible for tumor formation through self-renewal and differentiation into multiple cell types and thus represent a new therapeutic target for tumors. Glycoproteins play a critical role in determining the fates of stem cells such as self-renewal, proliferation, and differentiation. Here we applied a multilectin affinity chromatography and quantitative glycoproteomics approach to analyze alterations of glycoproteins relevant to the differentiation of a glioblastoma-derived stem cell line HSR-GBM1. Three lectins including concanavalin A (Con A), wheat germ agglutinin (WGA), and peanut agglutinin (PNA) were used to capture glycoproteins, followed by LC-MS/MS analysis. A total of 73 and 79 high-confidence (FDR < 0.01) glycoproteins were identified from the undifferentiated and differentiated cells, respectively. Label-free quantitation resulted in the discovery of 18 differentially expressed glycoproteins, wherein 9 proteins are localized in the lysosome. All of these lysosomal glycoproteins were up-regulated after differentiation, where their principal function was hydrolysis of glycosyl residues. Protein-protein interaction and functional analyses revealed the active involvement of lysosomes during the process of glioblastoma stem cell differentiation. This work provides glycoprotein markers to characterize differentiation status of glioblastoma stem cells that may be useful in stem-cell therapy of glioblastoma.
Collapse
Affiliation(s)
- Jintang He
- Department of Surgery, University of Michigan Medical Center, Ann Arbor, Michigan 48109, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Blanco-Gelaz MA, Suarez-Alvarez B, Ligero G, Sanchez L, Vidal-Castiñeira JR, Coto E, Moore H, Menendez P, Lopez-Larrea C. Endoplasmic reticulum stress signals in defined human embryonic stem cell lines and culture conditions. Stem Cell Rev Rep 2010; 6:462-72. [PMID: 20352530 DOI: 10.1007/s12015-010-9135-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Human embryonic stem cells (hESCs) are especially resistant to several cellular stresses, but the existence and induction of Endoplasmic Reticulum (ER) stress by culture conditions are unknown. Using qPCR, here, we investigated the behavior of the principal sensors of ER stress and their relation with the feeder layer, the type of conditioned media used in feeder free systems and the upregulation of several differentiation markers. We observed the preservation of pluripotency, and detected differential expression of differentiation markers in HS181 and SHEF1 hESCs growing on Adipose-derived mesenchymal stem cells (ASCs) and feeder-free system with different conditioned media (HEF-CM and ASC-CM). Taken together, these results demonstrate evidence of ER stress events that cells must resolve to survive and maintenance of markers of pluripotency. The early differentiation status defined could progress into a more differentiated state, and may be influenced by culture conditions.
Collapse
Affiliation(s)
- Miguel Angel Blanco-Gelaz
- Histocompatibility and Transplantation Unit, Hospital Universitario Central de Asturias, 33006, Oviedo, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Santamaría E, Mora MI, Muñoz J, Sánchez-Quiles V, Fernández-Irigoyen J, Prieto J, Corrales FJ. Regulation of stathmin phosphorylation in mouse liver progenitor-29 cells during proteasome inhibition. Proteomics 2009; 9:4495-4506. [PMID: 19688729 DOI: 10.1002/pmic.200900110] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2009] [Accepted: 07/13/2009] [Indexed: 11/08/2022]
Abstract
Proteasome inhibitors are potential therapeutic agents in the treatment of hepatocarcinoma and other liver diseases. The analysis of alternative protein phosphorylation states might contribute to elucidate the underlying mechanisms of proteasome inhibitor-induced apoptosis. We have investigated the response of mouse liver progenitor-29 (MLP-29) cells to MG132 using a combination of phosphoprotein affinity chromatography, DIGE, and nano LC-MS/MS. Thirteen unique deregulated phosphoproteins involved in chaperone activity, stress response, mRNA processing and cell cycle control were unambiguously identified. Alterations in NDRG1 and stathmin suggest new mechanisms associated to proteasome inhibitor-induced apoptosis in MLP-29 cells. Particularly, a transient modification of the phosphorylation state of Ser(16), Ser(25) and Ser(38), which are involved in the regulation of stathmin activity, was detected in three distinct isoforms upon proteasome inhibition. The parallel deregulation of calcium/calmodulin-activated protein kinase II, extracellular regulated kinase-1/2 and cyclin-dependent kinase-2, might explain the modified phosphorylation pattern of stathmin. Interestingly, stathmin phosphorylation profile was also modified in response to epoxomicin treatment, a more specific proteasome inhibitor. In summary, we report here data supporting that regulation of NDRG1 and stathmin by phosphorylation at specific Ser/Thr residues may participate in the cellular response induced by proteasome inhibitors.
Collapse
Affiliation(s)
- Enrique Santamaría
- Center for Applied Medical Research, University of Navarra, Proteomics Laboratory, 31008 Pamplona, Spain
| | | | | | | | | | | | | |
Collapse
|
11
|
Ficarro SB, Zhang Y, Lu Y, Moghimi AR, Askenazi M, Hyatt E, Smith ED, Boyer L, Schlaeger TM, Luckey CJ, Marto JA. Improved electrospray ionization efficiency compensates for diminished chromatographic resolution and enables proteomics analysis of tyrosine signaling in embryonic stem cells. Anal Chem 2009; 81:3440-7. [PMID: 19331382 DOI: 10.1021/ac802720e] [Citation(s) in RCA: 101] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Characterization of signaling pathways in embryonic stem cells is a prerequisite for future application of these cells to treat human disease and other disorders. Identification of tyrosine signaling cascades is of particular interest but is complicated by the relatively low levels of tyrosine phosphorylation in embryonic stem cells. These hurdles correlate with the primary limitations of mass spectrometry-based proteomics; namely, poor detection limit and dynamic range. To overcome these obstacles, we fabricated miniaturized LC-electrospray assemblies that provided approximately 15-fold improvement in LC-MS performance. Significantly, our characterization data demonstrate that electrospray ionization efficiency compensates for diminished chromatographic performance at effluent flow rates below Van Deemter minima. Use of these assemblies facilitated quantitative proteomics-based analysis of tyrosine signaling cascades in embryonic stem cells. Our results suggest that a renewed focus on miniaturized LC coupled to ultralow flow electrospray will provide a viable path for proteomic analysis of primary cells and rare post-translational modifications.
Collapse
Affiliation(s)
- Scott B Ficarro
- Department of Cancer Biology, Dana-Farber Cancer Institute, 44 Binney Street, Smith 1158A, Boston, Massachusetts 02115-6084, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Li Y, Kang X, Guo K, Li X, Gao D, Cui J, Sun L, Yang P, Liu Y. Proteome alteration of early-stage differentiation of mouse embryonic stem cells into hepatocyte-like cells. Electrophoresis 2009; 30:1431-1440. [PMID: 19424999 DOI: 10.1002/elps.200800836] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
To explore the molecular basis of inducible differentiation of embryonic stem cells into hepatocyte-like cells, a proteomic strategy was utilized to examine the global protein expression alterations after early-stage differentiation of a mouse D3 embryonic stem (ES) cell line along hepatic lineage. The undifferentiated D3 cells were treated stepwise with combinations of defined chemicals and growth factors. The differentiated cells were identified by hepatocyte-like morphology, expressed liver-specific markers as well as the evidence of glycogen storage. The subsequent proteomic separation and identification were performed with 2-DE followed by MALDI-TOF-MS/MS analysis. Of the 119 differentially displayed protein spots analyzed, 90 spots presenting 64 distinct proteins were finally identified. The interested protein expressions were validated by Western blotting such as albumin and cytokeratin-8. Bioinformatic annotations indicated that this set of proteins was enriched with transcription, translation regulation and protein processing, energy/metabolism and chaperone functions. A part of them had been found to be involved in the differentiation of mouse ES cells. Interestingly, approximately 40% of these proteins had been previously reported as being dysregulated in hepatocellular carcinoma. It suggested that these changed proteins may be candidate regulators of ES cell differentiation, some of them may be specific to hepatic differentiation.
Collapse
Affiliation(s)
- Yan Li
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, PR China
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Placzek MR, Chung IM, Macedo HM, Ismail S, Mortera Blanco T, Lim M, Cha JM, Fauzi I, Kang Y, Yeo DCL, Ma CYJ, Polak JM, Panoskaltsis N, Mantalaris A. Stem cell bioprocessing: fundamentals and principles. J R Soc Interface 2009; 6:209-32. [PMID: 19033137 PMCID: PMC2659585 DOI: 10.1098/rsif.2008.0442] [Citation(s) in RCA: 147] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
In recent years, the potential of stem cell research for tissue engineering-based therapies and regenerative medicine clinical applications has become well established. In 2006, Chung pioneered the first entire organ transplant using adult stem cells and a scaffold for clinical evaluation. With this a new milestone was achieved, with seven patients with myelomeningocele receiving stem cell-derived bladder transplants resulting in substantial improvements in their quality of life. While a bladder is a relatively simple organ, the breakthrough highlights the incredible benefits that can be gained from the cross-disciplinary nature of tissue engineering and regenerative medicine (TERM) that encompasses stem cell research and stem cell bioprocessing. Unquestionably, the development of bioprocess technologies for the transfer of the current laboratory-based practice of stem cell tissue culture to the clinic as therapeutics necessitates the application of engineering principles and practices to achieve control, reproducibility, automation, validation and safety of the process and the product. The successful translation will require contributions from fundamental research (from developmental biology to the 'omics' technologies and advances in immunology) and from existing industrial practice (biologics), especially on automation, quality assurance and regulation. The timely development, integration and execution of various components will be critical-failures of the past (such as in the commercialization of skin equivalents) on marketing, pricing, production and advertising should not be repeated. This review aims to address the principles required for successful stem cell bioprocessing so that they can be applied deftly to clinical applications.
Collapse
Affiliation(s)
- Mark R Placzek
- Biological Systems Engineering Laboratory, Centre for Process Systems Engineering, Department of Chemical Engineering, Imperial College London, South Kensington Campus, London SW7 2AZ, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Prinsloo E, Setati MM, Longshaw VM, Blatch GL. Chaperoning stem cells: a role for heat shock proteins in the modulation of stem cell self-renewal and differentiation? Bioessays 2009; 31:370-7. [DOI: 10.1002/bies.200800158] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
15
|
Chambery A, Vissers JPC, Langridge JI, Lonardo E, Minchiotti G, Ruvo M, Parente A. Qualitative and Quantitative Proteomic Profiling of Cripto−/− Embryonic Stem Cells by Means of Accurate Mass LC−MS Analysis. J Proteome Res 2009; 8:1047-58. [DOI: 10.1021/pr800485c] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Angela Chambery
- Dipartimento di Scienze della Vita, Seconda Università di Napoli, I-81100 Caserta, Italy, Waters Corporation, MS Technologies Center, M22 5PP Manchester, United Kingdom, Istituto di Genetica e Biofisica “A Buzzati-Traverso”, CNR, I-80131 Napoli, Italy, and Istituto di Biostrutture e Bioimmagini, CNR, I-80134, Napoli, Italy
| | - Johannes P. C. Vissers
- Dipartimento di Scienze della Vita, Seconda Università di Napoli, I-81100 Caserta, Italy, Waters Corporation, MS Technologies Center, M22 5PP Manchester, United Kingdom, Istituto di Genetica e Biofisica “A Buzzati-Traverso”, CNR, I-80131 Napoli, Italy, and Istituto di Biostrutture e Bioimmagini, CNR, I-80134, Napoli, Italy
| | - James I. Langridge
- Dipartimento di Scienze della Vita, Seconda Università di Napoli, I-81100 Caserta, Italy, Waters Corporation, MS Technologies Center, M22 5PP Manchester, United Kingdom, Istituto di Genetica e Biofisica “A Buzzati-Traverso”, CNR, I-80131 Napoli, Italy, and Istituto di Biostrutture e Bioimmagini, CNR, I-80134, Napoli, Italy
| | - Enza Lonardo
- Dipartimento di Scienze della Vita, Seconda Università di Napoli, I-81100 Caserta, Italy, Waters Corporation, MS Technologies Center, M22 5PP Manchester, United Kingdom, Istituto di Genetica e Biofisica “A Buzzati-Traverso”, CNR, I-80131 Napoli, Italy, and Istituto di Biostrutture e Bioimmagini, CNR, I-80134, Napoli, Italy
| | - Gabriella Minchiotti
- Dipartimento di Scienze della Vita, Seconda Università di Napoli, I-81100 Caserta, Italy, Waters Corporation, MS Technologies Center, M22 5PP Manchester, United Kingdom, Istituto di Genetica e Biofisica “A Buzzati-Traverso”, CNR, I-80131 Napoli, Italy, and Istituto di Biostrutture e Bioimmagini, CNR, I-80134, Napoli, Italy
| | - Menotti Ruvo
- Dipartimento di Scienze della Vita, Seconda Università di Napoli, I-81100 Caserta, Italy, Waters Corporation, MS Technologies Center, M22 5PP Manchester, United Kingdom, Istituto di Genetica e Biofisica “A Buzzati-Traverso”, CNR, I-80131 Napoli, Italy, and Istituto di Biostrutture e Bioimmagini, CNR, I-80134, Napoli, Italy
| | - Augusto Parente
- Dipartimento di Scienze della Vita, Seconda Università di Napoli, I-81100 Caserta, Italy, Waters Corporation, MS Technologies Center, M22 5PP Manchester, United Kingdom, Istituto di Genetica e Biofisica “A Buzzati-Traverso”, CNR, I-80131 Napoli, Italy, and Istituto di Biostrutture e Bioimmagini, CNR, I-80134, Napoli, Italy
| |
Collapse
|
16
|
Behfar A, Faustino RS, Arrell DK, Dzeja PP, Perez-Terzic C, Terzic A. Guided stem cell cardiopoiesis: discovery and translation. J Mol Cell Cardiol 2008; 45:523-9. [PMID: 18835562 DOI: 10.1016/j.yjmcc.2008.09.122] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2008] [Revised: 08/06/2008] [Accepted: 09/08/2008] [Indexed: 01/01/2023]
Abstract
Over 1000 patients have participated worldwide in clinical trials exploring the therapeutic value of bone marrow-derived cells in ischemic heart disease. Meta-analysis evaluation of this global effort indicates that adult stem cell therapy is in general safe, but yields a rather modest level of improvement in cardiac function and structural remodeling in the setting of acute myocardial infarction or chronic heart failure. Although promising, the potential of translating adult stem cell-based therapy from bench to bedside has yet to be fully realized. Inter-trial and inter-patient variability contribute to disparity in the regenerative potential of transplanted stem cells with unpredictable efficacy on follow-up. Strategies that mimic the natural embryonic program for uniform recruitment of cardiogenic progenitors from adult sources are currently tested to secure consistent outcome. Guided cardiopoiesis has been implemented with mesenchymal stem cells obtained from bone marrow of healthy volunteers, using a cocktail of secreted proteins that recapitulate components of the endodermal secretome critical for cardiogenic induction of embryonic mesoderm. With appropriate validation of this newly derived cardiopoietic phenotype, the next generation of trials should achieve demonstrable benefit across patient populations.
Collapse
Affiliation(s)
- Atta Behfar
- Marriott Heart Disease Research Program, Division of Cardiovascular Diseases, Department of Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | | | | | | | | | | |
Collapse
|
17
|
Yener B, Acar E, Aguis P, Bennett K, Vandenberg SL, Plopper GE. Multiway modeling and analysis in stem cell systems biology. BMC SYSTEMS BIOLOGY 2008; 2:63. [PMID: 18625054 PMCID: PMC2527292 DOI: 10.1186/1752-0509-2-63] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/05/2008] [Accepted: 07/14/2008] [Indexed: 12/22/2022]
Abstract
Background Systems biology refers to multidisciplinary approaches designed to uncover emergent properties of biological systems. Stem cells are an attractive target for this analysis, due to their broad therapeutic potential. A central theme of systems biology is the use of computational modeling to reconstruct complex systems from a wealth of reductionist, molecular data (e.g., gene/protein expression, signal transduction activity, metabolic activity, etc.). A number of deterministic, probabilistic, and statistical learning models are used to understand sophisticated cellular behaviors such as protein expression during cellular differentiation and the activity of signaling networks. However, many of these models are bimodal i.e., they only consider row-column relationships. In contrast, multiway modeling techniques (also known as tensor models) can analyze multimodal data, which capture much more information about complex behaviors such as cell differentiation. In particular, tensors can be very powerful tools for modeling the dynamic activity of biological networks over time. Here, we review the application of systems biology to stem cells and illustrate application of tensor analysis to model collagen-induced osteogenic differentiation of human mesenchymal stem cells. Results We applied Tucker1, Tucker3, and Parallel Factor Analysis (PARAFAC) models to identify protein/gene expression patterns during extracellular matrix-induced osteogenic differentiation of human mesenchymal stem cells. In one case, we organized our data into a tensor of type protein/gene locus link × gene ontology category × osteogenic stimulant, and found that our cells expressed two distinct, stimulus-dependent sets of functionally related genes as they underwent osteogenic differentiation. In a second case, we organized DNA microarray data in a three-way tensor of gene IDs × osteogenic stimulus × replicates, and found that application of tensile strain to a collagen I substrate accelerated the osteogenic differentiation induced by a static collagen I substrate. Conclusion Our results suggest gene- and protein-level models whereby stem cells undergo transdifferentiation to osteoblasts, and lay the foundation for mechanistic, hypothesis-driven studies. Our analysis methods are applicable to a wide range of stem cell differentiation models.
Collapse
Affiliation(s)
- Bülent Yener
- Department of Computer Science, Rensselaer Polytechnic Institute, 110 8th Street, Troy, NY 12180, USA.
| | | | | | | | | | | |
Collapse
|
18
|
Knauer O, Binai NA, Carra G, Beckhaus T, Hanschmann KM, Renné T, Backert S, Karas M, Wessler S. Differential phosphoproteome profiling reveals a functional role for VASP in Helicobacter pylori-induced cytoskeleton turnover in gastric epithelial cells. Cell Microbiol 2008; 10:2285-96. [PMID: 18637808 DOI: 10.1111/j.1462-5822.2008.01207.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Infection with Helicobacter pylori induces various gastric diseases, including ulceration, gastritis and neoplasia. As H. pylori-induced cellular mechanisms leading to these disease states are widely unclear, we analysed the phosphoproteome of H. pylori-infected gastric epithelial cells. Phosphoproteins from infected cells were enriched using affinity columns and analysed by two-dimensional gel electrophoresis and mass spectrometry. Eleven novel phosphoproteins that showed differentially regulated phosphorylation levels during H. pylori infection were identified. Interestingly, the identified proteins were actin-binding, transport and folding, RNA/DNA-binding or cancer-associated proteins. We analysed functions of one identified H. pylori-regulated candidate, the vasodilator-stimulated phosphoprotein (VASP). H. pylori induced VASP phosphorylation at residues Ser157, Ser239 and Thr278, which was enhanced by the bacterial oncogene cytotoxin-associated gene A. Overexpression of a phosphorylation-resistant VASP mutant efficiently blocked host cell elongation. We identified cGMP-dependent protein kinase G-mediated Ser239 and Thr278 phosphorylation of VASP as a crucial event in H. pylori-dependent host cell elongation. These results suggest that phosphorylated VASP could be a novel target candidate for therapeutic intervention in H. pylori-related gastric diseases.
Collapse
Affiliation(s)
- Olivia Knauer
- Junior Research Group, Paul-Ehrlich Institute, Paul-Ehrlich Str. 51-59, D-63225 Langen, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Kristjansdottir K, Wolfgeher D, Lucius N, Angulo DS, Kron SJ. Phosphoprotein profiling by PA-GeLC-MS/MS. J Proteome Res 2008; 7:2812-24. [PMID: 18510356 DOI: 10.1021/pr700816k] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A significant consequence of protein phosphorylation is to alter protein-protein interactions, leading to dynamic regulation of the components of protein complexes that direct many core biological processes. Recent proteomic studies have populated databases with extensive compilations of cellular phosphoproteins and phosphorylation sites and a similarly deep coverage of the subunit compositions and interactions in multiprotein complexes. However, considerably less data are available on the dynamics of phosphorylation, composition of multiprotein complexes or that define their interdependence. We describe a method to identify candidate phosphoprotein complexes by combining phosphoprotein affinity chromatography, separation by size, denaturing gel electrophoresis, protein identification by tandem mass spectrometry, and informatics analysis. Toward developing phosphoproteome profiling, we have isolated native phosphoproteins using a phosphoprotein affinity matrix, Pro-Q Diamond resin (Molecular Probes-Invitrogen). This resin quantitatively retains phosphoproteins and associated proteins from cell extracts. Pro-Q Diamond purification of a yeast whole cell extract followed by 1-D PAGE separation, proteolysis and ESI LC-MS/MS, a method we term PA-GeLC-MS/MS, yielded 108 proteins, a majority of which were known phosphoproteins. To identify proteins that were purified as parts of phosphoprotein complexes, the Pro-Q eluate was separated into two fractions by size, <100 kDa and >100 kDa, before analysis by PAGE and ESI LC-MS/MS and the component proteins queried against databases to identify protein-protein interactions. The <100 kDa fraction was enriched in phosphoproteins indicating the presence of monomeric phosphoproteins. The >100 kDa fraction contained 171 proteins of 20-80 kDa, nearly all of which participate in known protein-protein interactions. Of these 171, few are known phosphoproteins, consistent with their purification by participation in protein complexes. By comparing the results of our phosphoprotein profiling with the informational databases on phosphoproteomics, protein-protein interactions and protein complexes, we have developed an approach to examining the correlation between protein interactions and protein phosphorylation.
Collapse
Affiliation(s)
- Kolbrun Kristjansdottir
- Department of Molecular Genetics and Cell Biology, and Ludwig Center for Metastasis Research, The University of Chicago, Chicago, Illinois 60637, USA
| | | | | | | | | |
Collapse
|
20
|
Yeo GW, Coufal N, Aigner S, Winner B, Scolnick JA, Marchetto MC, Muotri AR, Carson C, Gage FH. Multiple layers of molecular controls modulate self-renewal and neuronal lineage specification of embryonic stem cells. Hum Mol Genet 2008; 17:R67-75. [DOI: 10.1093/hmg/ddn065] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
|
21
|
Abstract
Phosphorylation is one of the most abundant post-translational modifications on protein and one that frequently has functional biological consequences. For this reason, screening protein samples for phosphorylations has become an important tool in biochemical research. Affinity purification by immunological or chemical reagents can be used to isolate phosphoproteins from other cellular materials.
Collapse
|
22
|
Stanton LW, Bakre MM. Genomic and proteomic characterization of embryonic stem cells. Curr Opin Chem Biol 2007; 11:399-404. [PMID: 17646122 DOI: 10.1016/j.cbpa.2007.05.029] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2007] [Accepted: 05/24/2007] [Indexed: 11/28/2022]
Abstract
Stem cell biology, like all areas of cell biology, has been significantly affected by the arrival of the genomics era. The rendering of the human and mouse genome sequences and the development of attendant technologies have made it possible to comprehensively explore embryonic stem cell biology at the molecular level. Recently, there has been emphasis on global characterization of the transcriptome, epigenome, and proteome of embryonic stem cells. These omic evaluations of embryonic stem cells are leading to improved methods for cell-based therapies and are advancing our basic understanding of early embryonic development.
Collapse
Affiliation(s)
- Lawrence W Stanton
- Stem Cell and Developmental Biology Program, Genome Institute of Singapore, 60 Biopolis Street, Singapore 138672, Singapore.
| | | |
Collapse
|
23
|
Abstract
Gene expression analyses of stem cells (SCs) will help to uncover or further define signaling pathways and molecular mechanisms involved in the maintenance of self-renewal, pluripotency, and/or multipotency. In recent years, proteomic approaches have produced a wealth of data identifying proteins and mechanisms involved in SC proliferation and differentiation. Although many proteomics techniques have been developed and improved in peptide and protein separation, as well as mass spectrometry, several important issues, including sample heterogeneity, post-translational modifications, protein-protein interaction, and high-throughput quantification of hydrophobic and low-abundance proteins, still remain to be addressed and require further technical optimization. This review summarizes the methodologies used and the information gathered with proteome analyses of SCs, and it discusses biological and technical challenges for proteomic study of SCs. Disclosure of potential conflicts of interest is found at the end of this article.
Collapse
|
24
|
Baharvand H, Hajheidari M, Ashtiani SK, Salekdeh GH. Proteomic signature of human embryonic stem cells. Proteomics 2006; 6:3544-9. [PMID: 16758447 DOI: 10.1002/pmic.200500844] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Human embryonic stem cells (hESC) represent a population of undifferentiated pluripotent cells with both self-renewal and multilineage differentiation characteristics. Proteomics provides a powerful approach for studying the characteristics of hESC and discovering molecular markers. We have analyzed proteome profiles of three hESC lines using 2-DE and MALDI TOF-TOF. Out of 844 spots analyzed with MALDI TOF-TOF, 685 proteins were identified of which 60 proteins were classified as the most abundant proteins on 2-D gels. A large number of proteins particularly high abundant ones were identified as chaperones, heat shock proteins, ubiquitin/proteasome, and oxidative stress responsive proteins underscoring the ability of these cells to resist oxidative stress and increase the life span. Several proteins involved in cell proliferation and differentiation were also among the highly expressed proteins. Although overall expression pattern of three hESC were similar, 54 spots changed quantitatively and 14 spots changed qualitatively among the hESC cell lines. Most of these proteins were identified as proteins involved in cell growth, metabolism and signal transduction, which may affect the self-renewal and pluripotency. To our knowledge, this study represents the first proteomic dataset for hESC and provides a better insight into the biology of hESC. Proteome maps of hESC are accessible at http://www.RoyanProteomics.ir.
Collapse
|
25
|
Kirouac DC, Zandstra PW. Understanding cellular networks to improve hematopoietic stem cell expansion cultures. Curr Opin Biotechnol 2006; 17:538-47. [PMID: 16899360 DOI: 10.1016/j.copbio.2006.07.003] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2006] [Revised: 07/02/2006] [Accepted: 07/21/2006] [Indexed: 12/16/2022]
Abstract
Efforts to develop culture technologies capable of eliciting robust human blood stem cell growth have met with limited success. Considering that adult stem cell cultures are complex systems, comprising multiple cell types with dynamically changing intracellular signalling environments and cellular compositions, this is not surprising. Typically treated as single-input single-output systems, adult stem cell cultures are better described as complex, non-linear, multiple-input multiple-output systems wherein the proliferation of subpopulations of cells leads to the formation of intercellular endogenously secreted protein interaction networks. Genomic and proteomic tools need to be applied to generate high-throughput (and ideally high-content) biological measurements of stem cell culture evolution. Datasets describing cellular interaction networks need to be integrated into predictive models of in vitro stem cell development. Ultimately, such models will serve as a starting point for the rational design of blood stem cell expansion bioprocesses utilizing dynamic system perturbations to achieve the preferential expansion of target cell populations.
Collapse
Affiliation(s)
- Daniel C Kirouac
- Institute of Biomaterials and Biomedical Engineering, Terrance Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Room 1116 11th Floor, 160 College Street, M5S 3E1 Toronto, Ontario, Canada
| | | |
Collapse
|