1
|
Pagliara V, Amodio G, Vestuto V, Franceschelli S, Russo NA, Cirillo V, Mottola G, Remondelli P, Moltedo O. Myogenesis in C2C12 Cells Requires Phosphorylation of ATF6α by p38 MAPK. Biomedicines 2023; 11:biomedicines11051457. [PMID: 37239128 DOI: 10.3390/biomedicines11051457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 04/28/2023] [Accepted: 05/12/2023] [Indexed: 05/28/2023] Open
Abstract
Activating transcription factor 6α (ATF6α) is an endoplasmic reticulum protein known to participate in unfolded protein response (UPR) during ER stress in mammals. Herein, we show that in mouse C2C12 myoblasts induced to differentiate, ATF6α is the only pathway of the UPR activated. ATF6α stimulation is p38 MAPK-dependent, as revealed by the use of the inhibitor SB203580, which halts myotube formation and, at the same time, impairs trafficking of ATF6α, which accumulates at the cis-Golgi without being processed in the p50 transcriptional active form. To further evaluate the role of ATF6α, we knocked out the ATF6α gene, thus inhibiting the C2C12 myoblast from undergoing myogenesis, and this occurred independently from p38 MAPK activity. The expression of exogenous ATF6α in knocked-out ATF6α cells recover myogenesis, whereas the expression of an ATF6α mutant in the p38 MAPK phosphorylation site (T166) was not able to regain myogenesis. Genetic ablation of ATF6α also prevents the exit from the cell cycle, which is essential for muscle differentiation. Furthermore, when we inhibited differentiation by the use of dexamethasone in C2C12 cells, we found inactivation of p38 MAPK and, consequently, loss of ATF6α activity. All these findings suggest that the p-p38 MAPK/ATF6α axis, in pathophysiological conditions, regulates myogenesis by promoting the exit from the cell cycle, an essential step to start myoblasts differentiation.
Collapse
Affiliation(s)
- Valentina Pagliara
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, Via Salvador Allende, 84081 Baronissi, Italy
| | - Giuseppina Amodio
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, Via Salvador Allende, 84081 Baronissi, Italy
| | - Vincenzo Vestuto
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 84084 Fisciano, Italy
| | - Silvia Franceschelli
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 84084 Fisciano, Italy
| | - Nicola Antonino Russo
- Biogem, Istituto di Biologia e Genetica Molecolare, Via Camporeale, 83031 Ariano Irpino, Italy
| | - Vittorio Cirillo
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 84084 Fisciano, Italy
| | - Giovanna Mottola
- Centre de Recherche en Cardiovasculaire et Nutrition (C2VN) (AMU-INSERM 1263-INRAE 1260), Aix Marseille Université, Campus Timone, 27 Bd. Jean Moulin, 13005 Marseille, France
- Biogénopôle (BGP), Laboratoires de Biologie Médicale, Secteur Biochimie, Hôpital de La Timone, 264 Rue Saint-Pierre, 13005 Marseille, France
| | - Paolo Remondelli
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, Via Salvador Allende, 84081 Baronissi, Italy
| | - Ornella Moltedo
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 84084 Fisciano, Italy
| |
Collapse
|
2
|
Xu Y, Li R, Zhang K, Wu W, Wang S, Zhang P, Xu H. The multifunctional RNA-binding protein hnRNPK is critical for the proliferation and differentiation of myoblasts. BMB Rep 2018; 51:350-355. [PMID: 29898807 PMCID: PMC6089871 DOI: 10.5483/bmbrep.2018.51.7.043] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Indexed: 11/20/2022] Open
Abstract
HnRNPK is a multifunctional protein that participates in chromatin remodeling, transcription, RNA splicing, mRNA stability and translation. Here, we uncovered the function of hnRNPK in regulating the proliferation and differentiation of myoblasts. hnRNPK was mutated in the C2C12 myoblast cell line using the CRISPR/Cas9 system. A decreased proliferation rate was observed in hnRNPK-mutated cells, suggesting an impaired proliferation phenotype. Furthermore, increased G2/M phase, decreased S phase and increased sub-G1 phase cells were detected in the hnRNPK-mutated cell lines. The expression analysis of key cell cycle regulators indicated mRNA of Cyclin A2 was significantly increased in the mutant myoblasts compared to the control cells, while Cyclin B1, Cdc25b and Cdc25c were decreased sharply. In addition to the myoblast proliferation defect, the mutant cells exhibited defect in myotube formation. The myotube formation marker, myosin heavy chain (MHC), was decreased sharply in hnRNPK-mutated cells compared to control myoblasts during differentiation. The deficiency in hnRNPK also resulted in the repression of Myog expression, a key myogenic regulator during differentiation. Together, our data demonstrate that hnRNPK is required for myoblast proliferation and differentiation and may be an essential regulator of myoblast function.
Collapse
Affiliation(s)
- Yongjie Xu
- College of Life Science, Xinyang Normal University, Xinyang 464000, China
| | - Rui Li
- College of Life Science, Xinyang Normal University, Xinyang 464000, China
| | - Kaili Zhang
- College of Life Science, Xinyang Normal University, Xinyang 464000, China
| | - Wei Wu
- College of Life Science, Xinyang Normal University, Xinyang 464000, China
| | - Suying Wang
- College of Life Science, Xinyang Normal University, Xinyang 464000, China
| | - Pengpeng Zhang
- College of Life Science, Xinyang Normal University, Xinyang 464000, China
| | - Haixia Xu
- College of Life Science, Xinyang Normal University, Xinyang 464000, China
| |
Collapse
|
3
|
Dürnberger G, Camurdanoglu BZ, Tomschik M, Schutzbier M, Roitinger E, Hudecz O, Mechtler K, Herbst R. Global analysis of muscle-specific kinase signaling by quantitative phosphoproteomics. Mol Cell Proteomics 2014; 13:1993-2003. [PMID: 24899341 DOI: 10.1074/mcp.m113.036087] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The development of the neuromuscular synapse depends on signaling processes that involve protein phosphorylation as a crucial regulatory event. Muscle-specific kinase (MuSK) is the key signaling molecule at the neuromuscular synapse whose activity is required for the formation of a mature and functional synapse. However, the signaling cascade downstream of MuSK and the regulation of the different components are still poorly understood. In this study we used a quantitative phosphoproteomics approach to study the phosphorylation events and their temporal regulation downstream of MuSK. We identified a total of 10,183 phosphopeptides, of which 203 were significantly up- or down-regulated. Regulated phosphopeptides were classified into four different clusters according to their temporal profiles. Within these clusters we found an overrepresentation of specific protein classes associated with different cellular functions. In particular, we found an enrichment of regulated phosphoproteins involved in posttranscriptional mechanisms and in cytoskeletal organization. These findings provide novel insights into the complex signaling network downstream of MuSK and form the basis for future mechanistic studies.
Collapse
Affiliation(s)
- Gerhard Dürnberger
- From the ‡Gregor Mendel Institute of Molecular Plant Biology, Dr. Bohr-Gasse 3, 1030 Vienna, Austria; §Institute for Molecular Pathology (IMP), Dr. Bohr-Gasse 7, 1030 Vienna, Austria; ¶Institute of Molecular Biotechnology (IMBA), Dr. Bohr-Gasse 3, 1030 Vienna, Austria
| | - Bahar Z Camurdanoglu
- ‖Center for Brain Research, Medical University of Vienna, Spitalgasse 4, 1090 Vienna, Austria
| | - Matthias Tomschik
- ‖Center for Brain Research, Medical University of Vienna, Spitalgasse 4, 1090 Vienna, Austria
| | - Michael Schutzbier
- From the ‡Gregor Mendel Institute of Molecular Plant Biology, Dr. Bohr-Gasse 3, 1030 Vienna, Austria; §Institute for Molecular Pathology (IMP), Dr. Bohr-Gasse 7, 1030 Vienna, Austria
| | - Elisabeth Roitinger
- §Institute for Molecular Pathology (IMP), Dr. Bohr-Gasse 7, 1030 Vienna, Austria; ¶Institute of Molecular Biotechnology (IMBA), Dr. Bohr-Gasse 3, 1030 Vienna, Austria
| | - Otto Hudecz
- §Institute for Molecular Pathology (IMP), Dr. Bohr-Gasse 7, 1030 Vienna, Austria; ¶Institute of Molecular Biotechnology (IMBA), Dr. Bohr-Gasse 3, 1030 Vienna, Austria
| | - Karl Mechtler
- §Institute for Molecular Pathology (IMP), Dr. Bohr-Gasse 7, 1030 Vienna, Austria; ¶Institute of Molecular Biotechnology (IMBA), Dr. Bohr-Gasse 3, 1030 Vienna, Austria
| | - Ruth Herbst
- ‖Center for Brain Research, Medical University of Vienna, Spitalgasse 4, 1090 Vienna, Austria; ‡‡Institute of Immunology, Medical University of Vienna, Lazarettgasse 19, 1090 Vienna, Austria
| |
Collapse
|
4
|
Celikbiçak O, Kaynar G, Atakay M, Güler U, Kayili HM, Salih B. Specific enrichment and direct detection of phosphopeptides on insoluble transition metal oxide particles in matrix-assisted laser desorption/ionization mass spectrometry applications. EUROPEAN JOURNAL OF MASS SPECTROMETRY (CHICHESTER, ENGLAND) 2013; 19:151-162. [PMID: 24308196 DOI: 10.1255/ejms.1228] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Several transition metal oxides, such as iron (III), nickel (II) and zirconium (IV) oxides, were examined in detail for the specific enrichment and the purification of phosphopeptides from a digested peptide mixture solution. Phosphopeptide enrichment was performed on the metal oxide particles using a peptide mixture obtained bytryptic digestion of beta-casein. The mixture of protein digests containing bovine serum albumin (BSA): beta-casein digests (100:1 mole ratio) was also used for the phosphopeptide enrichment. Furthermore, non-fat milk digest was examined as a complex biological sample. In each phosphopeptide enrichment process, phosphopeptides were specifically enriched and separated from the non-phosphopeptides. The phosphopeptides were adsorbed onto the metal oxide surface at acidic pH values between 1.0 and 2.0 and, for desorption of phosphopeptides from metal oxide particles, pH values were examined and optimized in the enrichment studies. The analysis of phosphopeptides were carried out by matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) using 2,5-dihydroxybenzoic acid matrix containing 1.0% phosphoric acid to obtain intense protonated signals and to overcome degradation of the phosphopeptides by phosphate group loss in mass spectrometric conditions. Moreover, it was demonstrated that the direct detection of phosphopeptides from the surface of the metal oxide particles was possible using MALDI-MS by mixing the phosphopeptide-adsorbed metal oxide particles with MALDI matrix solution in slurry form before the analysis. Thus, the effects of interferences arising from chemical species used in the desorption process was successfully eliminated for the fast and sensitive detection of phosphopeptides in MALDI-MS applications.
Collapse
Affiliation(s)
- Omür Celikbiçak
- Hacettepe University, Department of Chemistry, 06800 Ankara, Turkey
| | | | | | | | | | | |
Collapse
|
5
|
Santamaría E, Sánchez-Quiles V, Fernández-Irigoyen J, Corrales FJ. A combination of affinity chromatography, 2D DIGE, and mass spectrometry to analyze the phosphoproteome of liver progenitor cells. Methods Mol Biol 2012; 909:165-80. [PMID: 22903716 DOI: 10.1007/978-1-61779-959-4_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Reversible protein phosphorylation is a ubiquitous posttranslational modification that regulates cellular signaling pathways in multiple biological processes. A comprehensive analysis of protein phosphorylation patterns can only be achieved by employing different complementary experimental strategies all aiming at selective enrichment of phosphorylated proteins/peptides. In this chapter, we describe a method that utilizes a phosphoprotein affinity chromatography (Qiagen) to isolate intact phosphoproteins. These are subsequently detected by difference in two-dimensional gel electrophoresis and identified by mass spectrometry techniques. Additional experiments using a specific stain for phosphoproteins demonstrated that phosphoprotein affinity column was an effective method for enriching phosphate-containing proteins. Further validating the method, this workflow was applied to probe changes in the activation patterns of intermediates involved in different signaling pathways, such as NDRG1 and stathmin, in liver progenitor cells (MLP-29) upon proteasome inhibition.
Collapse
Affiliation(s)
- Enrique Santamaría
- Proteomics Unit, Biomedical Research Center, Navarra Health Service, Pamplona, Spain.
| | | | | | | |
Collapse
|
6
|
Aare S, Radell P, Eriksson LI, Chen YW, Hoffman EP, Larsson L. Role of sepsis in the development of limb muscle weakness in a porcine intensive care unit model. Physiol Genomics 2012; 44:865-77. [DOI: 10.1152/physiolgenomics.00031.2012] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Severe muscle wasting and loss of muscle function in critically ill mechanically ventilated intensive care unit (ICU) patients have significant negative consequences on their recovery and rehabilitation that persist long after their hospital discharge; moreover, the underlying mechanisms are unclear. Mechanical ventilation (MV) and immobilization-induced modifications play an important role in these consequences, including endotoxin-induced sepsis. The present study aims to investigate how sepsis aggravates ventilator and immobilization-related limb muscle dysfunction. Hence, biceps femoris muscle gene expression was investigated in pigs exposed to ICU intervention, i.e., immobilization, sedation, and MV, alone or in combination with sepsis, for 5 days. In previous studies, we have shown that ICU intervention alone or in combination with sepsis did not affect muscle fiber size on day 5, but a significant decrease was observed in single fiber maximal force normalized to cross-sectional area (specific force) when sepsis was added to the ICU intervention. According to microarray data, the addition of sepsis to the ICU intervention induced a deregulation of >500 genes, such as an increased expression of genes involved in chemokine activity, kinase activity, and transcriptional regulation. Genes involved in the regulation of the oxidative stress response and cytoskeletal/sarcomeric and heat shock proteins were on the other hand downregulated when sepsis was added to the ICU intervention. Thus, sepsis has a significant negative effect on muscle function in critically ill ICU patients, and chemokine activity and heat shock protein genes are forwarded to play an instrumental role in this specific muscle wasting condition.
Collapse
Affiliation(s)
- Sudhakar Aare
- Department of Neuroscience, Clinical Neurophysiology, Uppsala University, Uppsala, Sweden
| | - Peter Radell
- Department of Anesthesiology, Karolinska Institute, Stockholm, Sweden
| | - Lars I. Eriksson
- Department of Anesthesiology, Karolinska Institute, Stockholm, Sweden
| | - Yi-Wen Chen
- Research Center for Genetic Medicine, Children's National Medical Center, Washington, District of Columbia
- Department of Pediatrics, The George Washington University Medical Center, Washington, District of Columbia; and
| | - Eric P. Hoffman
- Research Center for Genetic Medicine, Children's National Medical Center, Washington, District of Columbia
- Department of Pediatrics, The George Washington University Medical Center, Washington, District of Columbia; and
| | - Lars Larsson
- Department of Neuroscience, Clinical Neurophysiology, Uppsala University, Uppsala, Sweden
- Department of Biobehavioral Health, The Pennsylvania State University, University Park, Pennsylvania
| |
Collapse
|
7
|
Salova AV, Leontieva EA, Mozhenok TP, Kornilova ES, Krolenko SA, Belyaeva TN. Changes in localization of cellular vesicular apparatus during differentiation of myoblasts into myotubules in cell culture. ACTA ACUST UNITED AC 2011. [DOI: 10.1134/s1990519x11030096] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
8
|
Guevel L, Lavoie JR, Perez-Iratxeta C, Rouger K, Dubreil L, Feron M, Talon S, Brand M, Megeney LA. Quantitative proteomic analysis of dystrophic dog muscle. J Proteome Res 2011; 10:2465-78. [PMID: 21410286 DOI: 10.1021/pr2001385] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Duchenne muscular dystrophy (DMD) is caused by null mutations in the dystrophin gene, leading to progressive and unrelenting muscle loss. Although the genetic basis of DMD is well resolved, the cellular mechanisms associated with the physiopathology remain largely unknown. Increasing evidence suggests that secondary mechanisms, as the alteration of key signaling pathways, may play an important role. In order to identify reliable biomarkers and potential therapeutic targets, and taking advantage of the clinically relevant Golden Retriever Muscular Dystrophy (GRMD) dog model, a proteomic study was performed. Isotope-coded affinity tag (ICAT) profiling was used to compile quantitative changes in protein expression profiles of the vastus lateralis muscles of 4-month old GRMD vs healthy dogs. Interestingly, the set of under-expressed proteins detected appeared primarily composed of metabolic proteins, many of which have been shown to be regulated by the transcriptional peroxisome proliferator-activated receptor-gamma co-activator 1 alpha (PGC-1α). Subsequently, we were able to showed that PGC1-α expression is dramatically reduced in GRMD compared to healthy muscle. Collectively, these results provide novel insights into the molecular pathology of the clinically relevant animal model of DMD, and indicate that defective energy metabolism is a central hallmark of the disease in the canine model.
Collapse
Affiliation(s)
- Laetitia Guevel
- CNRS UMR6204, Faculté des Sciences et des Techniques, F-44322 Nantes Cedex 3, France.
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Magli A, Angelelli C, Ganassi M, Baruffaldi F, Matafora V, Battini R, Bachi A, Messina G, Rustighi A, Del Sal G, Ferrari S, Molinari S. Proline isomerase Pin1 represses terminal differentiation and myocyte enhancer factor 2C function in skeletal muscle cells. J Biol Chem 2010; 285:34518-27. [PMID: 20801874 PMCID: PMC2966067 DOI: 10.1074/jbc.m110.104133] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Reversible proline-directed phosphorylation at Ser/Thr-Pro motifs has an essential role in myogenesis, a multistep process strictly regulated by several signaling pathways that impinge on two families of myogenic effectors, the basic helix-loop-helix myogenic transcription factors and the MEF2 (myocyte enhancer factor 2) proteins. The question of how these signals are deciphered by the myogenic effectors remains largely unaddressed. In this study, we show that the peptidyl-prolyl isomerase Pin1, which catalyzes the isomerization of phosphorylated Ser/Thr-Pro peptide bonds to induce conformational changes of its target proteins, acts as an inhibitor of muscle differentiation because its knockdown in myoblasts promotes myotube formation. With the aim of clarifying the mechanism of Pin1 function in skeletal myogenesis, we investigated whether MEF2C, a critical regulator of the myogenic program that is the end point of several signaling pathways, might serve as a/the target for the inhibitory effects of Pin1 on muscle differentiation. We show that Pin1 interacts selectively with phosphorylated MEF2C in skeletal muscle cells, both in vitro and in vivo. The interaction with Pin1 requires two novel critical phospho-Ser/Thr-Pro motifs in MEF2C, Ser98 and Ser110, which are phosphorylated in vivo. Overexpression of Pin1 decreases MEF2C stability and activity and its ability to cooperate with MyoD to activate myogenic conversion. Collectively, these findings reveal a novel role for Pin1 as a regulator of muscle terminal differentiation and suggest that Pin1-mediated repression of MEF2C function could contribute to this function.
Collapse
Affiliation(s)
- Alessandro Magli
- Department of Biomedical Sciences, University of Modena and Reggio Emilia, 41100 Modena, Italy
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Hamilton DL, Philp A, MacKenzie MG, Baar K. Prolonged activation of S6K1 does not suppress IRS or PI-3 kinase signaling during muscle cell differentiation. BMC Cell Biol 2010; 11:37. [PMID: 20507574 PMCID: PMC2890513 DOI: 10.1186/1471-2121-11-37] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2009] [Accepted: 05/27/2010] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Myogenesis in C2C12 cells requires the activation of the PI3K/mTOR signaling pathways. Since mTOR signaling can feedback through S6K1 to inhibit the activation of PI3K, the aim of this work was to assess whether feedback from S6K1 played a role in myogenesis and determine whether siRNA mediated knockdown of S6K1 would lead to an increased rate of myotube formation. RESULTS S6K1 activity increased in a linear fashion following plating and was more than 3-fold higher after Day 3 of differentiation (subconfluent = 11.09 +/- 3.05, Day 3 = 29.34 +/- 3.58). IRS-1 levels tended to increase upon serum withdrawal but decreased approximately 2-fold (subconfluent = 0.88 +/- 0.10, Day 3 = 0.42 +/- 0.06) 3 days following differentiation whereas IRS-2 protein remained stable. IRS-1 associated p85 was significantly reduced upon serum withdrawal (subconfluent = 0.86 +/- 0.07, Day 0 = 0.31 +/- 0.05), remaining low through day 1. IRS-2 associated p85 decreased following serum withdrawal (subconfluent = 0.96 +/- 0.05, Day 1 = 0.56 +/- 0.08) and remained suppressed up to Day 3 following differentiation (0.56 +/- 0.05). Phospho-tyrosine associated p85 increased significantly from subconfluent to Day 0 and remained elevated throughout differentiation. siRNA directed against S6K1 and S6K2 did not result in changes in IRS-1 levels after either 48 or 96 hrs. Furthermore, neither 48 nor 96 hrs of S6K1 knockdown caused a change in myotube formation. CONCLUSIONS Even though S6K1 activity increases throughout muscle cell differentiation and IRS-1 levels decrease over this period, siRNA suggests that S6K1 is not mediating the decrease in IRS-1. The decrease in IRS-1/2 associated p85 together with the increase in phospho-tyrosine associated p85 suggests that PI3K associates primarily with scaffolds other than IRS-1/2 during muscle cell differentiation.
Collapse
Affiliation(s)
- D Lee Hamilton
- Division of Molecular Physiology, James Black Centre, University of Dundee, Dundee, UK
| | | | | | | |
Collapse
|
11
|
Picard B, Berri C, Lefaucheur L, Molette C, Sayd T, Terlouw C. Skeletal muscle proteomics in livestock production. Brief Funct Genomics 2010; 9:259-78. [PMID: 20308039 DOI: 10.1093/bfgp/elq005] [Citation(s) in RCA: 119] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Proteomics allows studying large numbers of proteins, including their post-translational modifications. Proteomics has been, and still are, used in numerous studies on skeletal muscle. In this article, we focus on its use in the study of livestock muscle development and meat quality. Changes in protein profiles during myogenesis are described in cattle, pigs and fowl using comparative analyses across different ontogenetic stages. This approach allows a better understanding of the key stages of myogenesis and helps identifying processes that are similar or divergent between species. Genetic variability of muscle properties analysed by the study of hypertrophied cattle and sheep are discussed. Biological markers of meat quality, particularly tenderness in cattle, pigs and fowl are presented, including protein modifications during meat ageing in cattle, protein markers of PSE meat in turkeys and of post-mortem muscle metabolism in pigs. Finally, we discuss the interest of proteomics as a tool to understand better biochemical mechanisms underlying the effects of stress during the pre-slaughter period on meat quality traits. In conclusion, the study of proteomics in skeletal muscles allows generating large amounts of scientific knowledge that helps to improve our understanding of myogenesis and muscle growth and to control better meat quality.
Collapse
Affiliation(s)
- Brigitte Picard
- INRA, UR 1213, Herbivores, Theix, F-63122 St-Genès Champanelle, France.
| | | | | | | | | | | |
Collapse
|
12
|
Lee S, Wishart MJ, Williams JA. Identification of calcineurin regulated phosphorylation sites on CRHSP-24. Biochem Biophys Res Commun 2009; 385:413-7. [PMID: 19477163 DOI: 10.1016/j.bbrc.2009.05.096] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2009] [Accepted: 05/20/2009] [Indexed: 10/20/2022]
Abstract
CRHSP-24 is a prominently regulated phosphoprotein in pancreatic acinar cells where it is the major substrate for the serine/threonine protein phosphatase, calcineurin, in response to secretagogues. We now identify the four regulated sites of CRHSP-24 phosphorylation as serines 30, 32, 41, and 52 and show that Ser(30) and Ser(32) are directly dephosphorylated by calcineurin. Coordinate phosphorylation/dephosphorylation of these four serines explains the multiple phosphorylated isoforms of CRHSP-24 present in acinar cells and provides a molecular framework to study CRHSP-24 regulation by secretagogues and growth factor-induced kinases and phosphatases in vivo.
Collapse
Affiliation(s)
- SaeHong Lee
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | | | | |
Collapse
|
13
|
Barop J, Sauer H, Steger K, Wimmer M. Differentiation-dependent PTPIP51 expression in human skeletal muscle cell culture. J Histochem Cytochem 2009; 57:425-35. [PMID: 19124842 DOI: 10.1369/jhc.2008.952846] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Protein tyrosine phosphatase-interacting protein 51 (PTPIP51) expression was analyzed in proliferating and differentiating human myogenic cells cultured in vitro. Satellite cell cultures derived from four different individuals were used in this study. To analyze the expression of PTPIP51, myoblasts were cultured under conditions promoting either proliferation or differentiation. In addition, further differentiation of already-differentiated myobtubes was inhibited by resubmitting the cells to conditions promoting proliferation. PTPIP51 protein and mRNA were investigated in samples taken at defined time intervals by immunostaining, immunoblotting, in situ hybridization, and PCR. Image analyses of fluorescence immunostainings were used to quantify PTPIP51 in cultured myoblasts and myotubes. Myoblasts grown in the presence of epidermal and fibroblast growth factors (EGF and FGF), both promoting proliferation, expressed PTPIP51 on a basic level. Differentiation to multinuclear myotubes displayed a linear increase in PTPIP51 expression. The rise in PTPIP51 protein was paralleled by an augmented expression of muscle-specific proteins, namely, sarcoplasmic reticulum Ca(2+) ATPase and myosin heavy-chain protein, both linked to a progressive state of myotubal differentiation. This differentiation-induced increase in PTPIP51 was partly reversible by resubmission of differentiated myotubes to conditions boosting proliferation. The results clearly point toward a strong association between PTPIP51 expression and differentiation in human muscle cells.
Collapse
Affiliation(s)
- Justus Barop
- Institute of Anatomy and Cell Biology, Justus-Liebig University, 35385 Giessen, Germany.
| | | | | | | |
Collapse
|
14
|
Puente LG, Lee REC, Megeney LA. Reconstructing regulatory kinase pathways from phosphopeptide data: a bioinformatics approach. Methods Mol Biol 2009; 527:311-x. [PMID: 19241023 DOI: 10.1007/978-1-60327-834-8_23] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Protein phosphorylation is a widespread cellular process, and simplistic linear pathway models of kinase signaling likely under-represent the complexity of in vivo pathways. The recent massive increase in information available through protein interaction databases now allows construction of in silico models of protein networks that are underpinned by evidence from real biological systems. By combining protein phosphorylation data with current databases of protein-protein and kinase-substrate interactions, sophisticated models of intracellular protein phosphorylation signaling can be constructed for a system of interest. The kinase interaction network can be visualized, analyzed by graph theory, and investigated for hypotheses that are not otherwise obvious.
Collapse
Affiliation(s)
- Lawrence G Puente
- Ottawa Health Research Institute, The Ottawa Hospital, Ottawa, ON, Canada
| | | | | |
Collapse
|
15
|
Reintsch WE, Mandato CA. Deciphering animal development through proteomics: requirements and prospects. Proteome Sci 2008; 6:21. [PMID: 18652672 PMCID: PMC2516511 DOI: 10.1186/1477-5956-6-21] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2008] [Accepted: 07/24/2008] [Indexed: 12/28/2022] Open
Abstract
In recent years proteomic techniques have started to become very useful tools in a variety of model systems of developmental biology. Applications cover many different aspects of development, including the characterization of changes in the proteome during early embryonic stages. During early animal development the embryo becomes patterned through the temporally and spatially controlled activation of distinct sets of genes. Patterning information is then translated, from gastrulation onwards, into regional specific morphogenetic cell and tissue movements that give the embryo its characteristic shape. On the molecular level, patterning is the outcome of intercellular communication via signaling molecules and the local activation or repression of transcription factors. Genetic approaches have been used very successfully to elucidate the processes behind these events. Morphogenetic movements, on the other hand, have to be orchestrated through regional changes in the mechanical properties of cells. The molecular mechanisms that govern these changes have remained much more elusive, at least in part due to the fact that they are more under translational/posttranslational control than patterning events. However, recent studies indicate that proteomic approaches can provide the means to finally unravel the mechanisms that link patterning to the generation of embryonic form. To intensify research in this direction will require close collaboration between proteome scientists and developmental researchers. It is with this aim in mind that we first give an outline of the classical questions of patterning and morphogenesis. We then summarize the proteomic approaches that have been applied in developmental model systems and describe the pioneering studies that have been done to study morphogenesis. Finally we discuss current and future strategies that will allow characterizing the changes in the embryonic proteome and ultimately lead to a deeper understanding of the cellular mechanisms that govern the generation of embryonic form.
Collapse
Affiliation(s)
- Wolfgang E Reintsch
- Department of Anatomy and Cell Biology, McGill University, 3640 University Street, Montreal, Quebec, H3A 2B2, Canada
| | - Craig A Mandato
- Department of Anatomy and Cell Biology, McGill University, 3640 University Street, Montreal, Quebec, H3A 2B2, Canada
| |
Collapse
|
16
|
Fournier ML, Gilmore JM, Martin-Brown SA, Washburn MP. Multidimensional Separations-Based Shotgun Proteomics. Chem Rev 2007; 107:3654-86. [PMID: 17649983 DOI: 10.1021/cr068279a] [Citation(s) in RCA: 171] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
17
|
Abstract
Ubiquitin-dependent proteolysis plays an important role in regulating fundamental biological functions, including cell division and cellular differentiation. Previous studies implicate the ubiquitin-proteasome system (UPS) in myogenic differentiation through regulating cell cycle progression and modulating myogenic factors such as MyoD and Myf5. Certain ubiquitin protein ligases, including the SCF complex and APC, have been suggested to govern terminal muscle differentiation. However, the underlying mechanism of regulation of both the cell cycle and myogenic factors by the UPS during this process remains unclear. We have dissected the role of the UPS in myogenic differentiation using an in vitro muscle differentiation system based on C2C12 cells. We demonstrate that Cdh1-APC regulates two critical proteins, Skp2 and Myf5, for proteolysis during muscle differentiation. The targeting of Skp2 by Cdh1-APC for destruction results in elevation of p21 and p27, which are crucial for coordinating cellular division and differentiation. Degradation of Myf5 by Cdh1-APC facilitates myogenic fusion. Knockdown of Cdh1 by siRNA significantly attenuates muscle differentiation. Taken together, Cdh1-APC is an important ubiquitin E3 ligase that modulates muscle differentiation through coordinating cell cycle progression and initiating the myogenic differentiation program.
Collapse
Affiliation(s)
- Wenqi Li
- Department of Cell Biology and Physiology, University of Pittsburgh School of Medicine and University of Pittsburgh Cancer Institute, Pittsburgh, Pennsylvania 15213, USA
| | | | | |
Collapse
|