1
|
Klykov O, Kopylov M, Carragher B, Heck AJR, Noble AJ, Scheltema RA. Label-free visual proteomics: Coupling MS- and EM-based approaches in structural biology. Mol Cell 2022; 82:285-303. [PMID: 35063097 PMCID: PMC8842845 DOI: 10.1016/j.molcel.2021.12.027] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 12/14/2021] [Accepted: 12/20/2021] [Indexed: 01/22/2023]
Abstract
Combining diverse experimental structural and interactomic methods allows for the construction of comprehensible molecular encyclopedias of biological systems. Typically, this involves merging several independent approaches that provide complementary structural and functional information from multiple perspectives and at different resolution ranges. A particularly potent combination lies in coupling structural information from cryoelectron microscopy or tomography (cryo-EM or cryo-ET) with interactomic and structural information from mass spectrometry (MS)-based structural proteomics. Cryo-EM/ET allows for sub-nanometer visualization of biological specimens in purified and near-native states, while MS provides bioanalytical information for proteins and protein complexes without introducing additional labels. Here we highlight recent achievements in protein structure and interactome determination using cryo-EM/ET that benefit from additional MS analysis. We also give our perspective on how combining cryo-EM/ET and MS will continue bridging gaps between molecular and cellular studies by capturing and describing 3D snapshots of proteomes and interactomes.
Collapse
Affiliation(s)
- Oleg Klykov
- National Center for In-situ Tomographic Ultramicroscopy, Simons Electron Microscopy Center, New York Structural Biology Center, New York, NY, USA; Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA
| | - Mykhailo Kopylov
- National Center for In-situ Tomographic Ultramicroscopy, Simons Electron Microscopy Center, New York Structural Biology Center, New York, NY, USA
| | - Bridget Carragher
- National Center for In-situ Tomographic Ultramicroscopy, Simons Electron Microscopy Center, New York Structural Biology Center, New York, NY, USA; Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA
| | - Albert J R Heck
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, 3584 CH Utrecht, the Netherlands; Netherlands Proteomics Center, 3584 CH Utrecht, the Netherlands
| | - Alex J Noble
- National Center for In-situ Tomographic Ultramicroscopy, Simons Electron Microscopy Center, New York Structural Biology Center, New York, NY, USA.
| | - Richard A Scheltema
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, 3584 CH Utrecht, the Netherlands; Netherlands Proteomics Center, 3584 CH Utrecht, the Netherlands.
| |
Collapse
|
2
|
Nagy I, Sun N, Varga S, Boicu M, Zinzula L, Kukolya J. Proteomics Analysis of Thermoplasma Quinone Droplets. Proteomics 2018; 19:e1800317. [PMID: 30520262 DOI: 10.1002/pmic.201800317] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 10/30/2018] [Indexed: 11/11/2022]
Abstract
A novel type of lipid droplet/lipoprotein (LD/LP) particle from Thermoplasma acidophilum has been identified recently, and based on biochemical evidences, it was named Thermoplasma Quinone Droplet (TaQD). The major components of TaQDs are menaquinones, and to some extent polar lipids, and the 153 amino acid long Ta0547 vitellogenin-N domain protein. In this paper, the aim is to identify TaQD proteome components with 1D-SDS-PAGE/LC-MS/MS and cross reference them with Edman degradation. TaQD samples isolated with three different purification methods-column chromatography, immunoprecipitation, and LD ultracentrifugation-are analyzed. Proteins Ta0093, Ta0182, Ta0337, Ta0437, Ta0438, Ta0547, and Ta1223a are identified as constituents of the TaQD proteome. The majority of these proteins is uncharacterized and has low molecular weight, and none of them is predicted to take part in lipid metabolism. Bioinformatics analyses does not predict any interaction between these proteins, however, there are indications of interactions with proteins taking part in lipid metabolism. Whether if TaQDs provide platform for lipid metabolism and the interactions between TaQD proteins and lipid metabolism proteins occur in the reality remain for further studies.
Collapse
Affiliation(s)
- István Nagy
- Department of Molecular Structural Biology, Max Planck Institute of Biochemistry, D-82152, Martinsried (Planegg), Germany
| | - Na Sun
- Department of Molecular Structural Biology, Max Planck Institute of Biochemistry, D-82152, Martinsried (Planegg), Germany
| | - Sándor Varga
- Department of Applied and Environmental Microbiology, National Agricultural Research and Innovation Centre, H-1022, Budapest, Hungary
| | - Marius Boicu
- Department of Molecular Structural Biology, Max Planck Institute of Biochemistry, D-82152, Martinsried (Planegg), Germany
| | - Luca Zinzula
- Department of Molecular Structural Biology, Max Planck Institute of Biochemistry, D-82152, Martinsried (Planegg), Germany
| | - József Kukolya
- Department of Applied and Environmental Microbiology, National Agricultural Research and Innovation Centre, H-1022, Budapest, Hungary
| |
Collapse
|
3
|
Kwon YS, Jeon CW, Bae DW, Seo JS, Thomashow LS, Weller DM, Kwak YS. Construction of a proteome reference map and response of Gaeumannomyces graminis var. tritici to 2,4-diacetylphloroglucinol. Fungal Biol 2018; 122:1098-1108. [PMID: 30342625 DOI: 10.1016/j.funbio.2018.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 08/31/2018] [Accepted: 09/07/2018] [Indexed: 10/28/2022]
Abstract
Take-all disease, caused by Gaeumannomyces graminis var. tritici (Ggt), is one of the most serious root diseases in wheat production. In this study, a proteomic platform based on 2-dimensional gel electrophoresis (2-DE) and Matrix-Assisted Laser Desorption/Ionization Time of Flight Tandem Mass Spectrometry (MALDI-TOF/TOF MS) was used to construct the first proteome database reference map of G. graminis var. tritici and to identify the response of the pathogen to 2,4-diacetylphloroglucinol (DAPG), which is a natural antibiotic produced by antagonistic Pseudomonas spp. in take-all suppressive soils. For mapping, a total of 240 spots was identified that represented 209 different proteins. The most abundant biological function categories in the Ggt proteome were related to carbohydrate metabolism (21%), amino acid metabolism (15%), protein folding and degradation (12%), translation (11%), and stress response (10%). In total, 51 Ggt proteins were affected by DAPG treatment. Based on gene ontology, carbohydrate metabolism, amino acid metabolism, stress response, and protein folding and degradation proteins were the ones most modulated by DAPG treatment. This study provides the first extensive proteomic reference map constructed for Ggt and represents the first time that the response of Ggt to DAPG has been characterized at the proteomic level.
Collapse
Affiliation(s)
- Young Sang Kwon
- Environmental Toxicology Research Center, Korea Institute of Toxicology (KIT), Jinju 52834, Republic of Korea
| | - Chang-Wook Jeon
- Division of Applied Life Science (BK21Plus) and Institute of Agriculture & Life Sciences, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Dong-Won Bae
- Center for Research Facilities, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Jong-Su Seo
- Environmental Toxicology Research Center, Korea Institute of Toxicology (KIT), Jinju 52834, Republic of Korea
| | - Linda S Thomashow
- United States Department of Agriculture-Agriculture Research Service, Wheat Health, Genetics and Quality Research Unit, Pullman, WA 99164, USA
| | - David M Weller
- United States Department of Agriculture-Agriculture Research Service, Wheat Health, Genetics and Quality Research Unit, Pullman, WA 99164, USA
| | - Youn-Sig Kwak
- Division of Applied Life Science (BK21Plus) and Institute of Agriculture & Life Sciences, Gyeongsang National University, Jinju 52828, Republic of Korea.
| |
Collapse
|
4
|
Pathare GR, Nagy I, Hubert Á, Thomas DR, Bracher A. Crystal structure of the Thermoplasma acidophilumprotein Ta1207. Acta Crystallogr F Struct Biol Commun 2017; 73:328-335. [DOI: 10.1107/s2053230x17007087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Accepted: 05/12/2017] [Indexed: 11/10/2022] Open
Abstract
The crystal structure of the Ta1207 protein fromThermoplasma acidophilumis reported. Ta1207 was identified in a screen for high-molecular-weight protein complexes inT. acidophilum. In solution, Ta1207 forms homopentamers of 188 kDa. The crystal structure of recombinant Ta1207 solved by Se-MAD at 2.4 Å resolution revealed a complex with fivefold symmetry. In the crystal lattice, calcium ions induce the formation of a nanocage from two pentamers. The Ta1207 protomers comprise two domains with the same novel α/β topology. A deep pocket with a binding site for a negatively charged group suggests that Ta1207 functions as an intracellular receptor for an unknown ligand. Homologues of Ta1207 occur only in Thermoplasmatales and its function might be related to the extreme lifestyle of these archaea. The thermostable Ta1207 complex might provide a useful fivefold-symmetric scaffold for future nanotechnological applications.
Collapse
|
5
|
Hubert Á, Mitani Y, Tamura T, Boicu M, Nagy I. Protein complex purification from Thermoplasma acidophilum using a phage display library. J Microbiol Methods 2014; 98:15-22. [DOI: 10.1016/j.mimet.2013.12.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Revised: 12/12/2013] [Accepted: 12/12/2013] [Indexed: 11/27/2022]
|
6
|
Baka E, Varga S, Hobel C, Knispel RW, Fekete C, Ivanics M, Kriszt B, Nagy I, Kukolya J. The first transformation method for the thermo-acidophilic archaeon Thermoplasma acidophilum. J Microbiol Methods 2013; 95:145-8. [DOI: 10.1016/j.mimet.2013.08.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2013] [Revised: 08/02/2013] [Accepted: 08/11/2013] [Indexed: 10/26/2022]
|
7
|
Molecular characterization of copper and cadmium resistance determinants in the biomining thermoacidophilic archaeon Sulfolobus metallicus. ARCHAEA-AN INTERNATIONAL MICROBIOLOGICAL JOURNAL 2013; 2013:289236. [PMID: 23509422 PMCID: PMC3595675 DOI: 10.1155/2013/289236] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2012] [Accepted: 01/04/2013] [Indexed: 12/21/2022]
Abstract
Sulfolobus metallicus is a thermoacidophilic crenarchaeon used in high-temperature bioleaching processes that is able to grow under stressing conditions such as high concentrations of heavy metals. Nevertheless, the genetic and biochemical mechanisms responsible for heavy metal resistance in S. metallicus remain uncharacterized. Proteomic analysis of S. metallicus cells exposed to 100 mM Cu revealed that 18 out of 30 upregulated proteins are related to the production and conversion of energy, amino acids biosynthesis, and stress responses. Ten of these last proteins were also up-regulated in S. metallicus treated in the presence of 1 mM Cd suggesting that at least in part, a common general response to these two heavy metals. The S. metallicus genome contained two complete cop gene clusters, each encoding a metallochaperone (CopM), a Cu-exporting ATPase (CopA), and a transcriptional regulator (CopT). Transcriptional expression analysis revealed that copM and copA from each cop gene cluster were cotranscribed and their transcript levels increased when S. metallicus was grown either in the presence of Cu or using chalcopyrite (CuFeS2) as oxidizable substrate. This study shows for the first time the presence of a duplicated version of the cop gene cluster in Archaea and characterizes some of the Cu and Cd resistance determinants in a thermophilic archaeon employed for industrial biomining.
Collapse
|
8
|
Kim K, Okanishi H, Masui R, Harada A, Ueyama N, Kuramitsu S. Whole-cell proteome reference maps of an extreme thermophile, Thermus thermophilus HB8. Proteomics 2012; 12:3063-8. [PMID: 22887638 DOI: 10.1002/pmic.201100375] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2011] [Revised: 06/29/2012] [Accepted: 07/25/2012] [Indexed: 11/08/2022]
Abstract
Thermus thermophilus HB8 is a model microorganism for industrial applications because of its thermophilic enzymes, and for basic bacteriology to understand the coordination of the biological functions of the genome-encoded enzymes at the cellular level. Here, we present 2DE reference maps of T. thermophilus HB8 in the pH ranges 4-7 and 6-11 obtained with whole-cell lysates. PMF analysis using MALDI-TOF-MS and MS/MS analysis using nano-scale LC and quadrupole TOF-MS identified 258 different proteins among the 306 protein spots on 2DE gels. Functional classification indicated that 56%, 16%, and 14% of the identified proteins were related to metabolism, genetic information process, and cellular process, respectively. Detailed classification of the metabolism-related proteins suggested that during the exponential phase, amino acid and carbohydrate metabolism are major metabolic processes, whereas nucleotide and lipid metabolism are minor ones. On the other hand, volume quantification analysis revealed that proteins involved in the translational process, nucleotide metabolism, and central carbon metabolism were most abundantly expressed in the exponential phase.
Collapse
Affiliation(s)
- Kwang Kim
- Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka, Osaka, Japan
| | | | | | | | | | | |
Collapse
|
9
|
Maupin-Furlow JA, Humbard MA, Kirkland PA. Extreme challenges and advances in archaeal proteomics. Curr Opin Microbiol 2012; 15:351-6. [PMID: 22386447 DOI: 10.1016/j.mib.2012.02.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2011] [Revised: 01/06/2012] [Accepted: 02/10/2012] [Indexed: 12/14/2022]
Abstract
Archaea display amazing physiological properties that are of interest to understand at the molecular level including the ability to thrive at extreme environmental conditions, the presence of novel metabolic pathways (e.g. methanogenesis, methylaspartate cycle) and the use of eukaryotic-like protein machineries for basic cellular functions. Coupling traditional genetic and biochemical approaches with advanced technologies, such as genomics and proteomics, provides an avenue for scientists to discover new aspects related to the molecular physiology of archaea. This review emphasizes the unusual properties of archaeal proteomes and how high-throughput and specialized mass spectrometry-based proteomic studies have provided insight into the molecular properties of archaeal cells.
Collapse
Affiliation(s)
- Julie A Maupin-Furlow
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL 32611-0700, USA.
| | | | | |
Collapse
|
10
|
The nonphosphorylative Entner-Doudoroff pathway in the thermoacidophilic euryarchaeon Picrophilus torridus involves a novel 2-keto-3-deoxygluconate- specific aldolase. J Bacteriol 2009; 192:964-74. [PMID: 20023024 DOI: 10.1128/jb.01281-09] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The pathway of glucose degradation in the thermoacidophilic euryarchaeon Picrophilus torridus has been studied by in vivo labeling experiments and enzyme analyses. After growth of P. torridus in the presence of [1-(13)C]- and [3-(13)C]glucose, the label was found only in the C-1 and C-3 positions, respectively, of the proteinogenic amino acid alanine, indicating the exclusive operation of an Entner-Doudoroff (ED)-type pathway in vivo. Cell extracts of P. torridus contained all enzyme activities of a nonphosphorylative ED pathway, which were not induced by glucose. Two key enzymes, gluconate dehydratase (GAD) and a novel 2-keto-3-deoxygluconate (KDG)-specific aldolase (KDGA), were characterized. GAD is a homooctamer of 44-kDa subunits, encoded by Pto0485. KDG aldolase, KDGA, is a homotetramer of 32-kDa subunits. This enzyme was highly specific for KDG with up to 2,000-fold-higher catalytic efficiency compared to 2-keto-3-deoxy-6-phosphogluconate (KDPG) and thus differs from the bifunctional KDG/KDPG aldolase, KD(P)GA of crenarchaea catalyzing the conversion of both KDG and KDPG with a preference for KDPG. The KDGA-encoding gene, kdgA, was identified by matrix-assisted laser desorption ionization-time of flight (MALDI-TOF) mass spectrometry (MS) as Pto1279, and the correct translation start codon, an ATG 24 bp upstream of the annotated start codon of Pto1279, was determined by N-terminal amino acid analysis. The kdgA gene was functionally overexpressed in Escherichia coli. Phylogenetic analysis revealed that KDGA is only distantly related to KD(P)GA, both enzymes forming separate families within the dihydrodipicolinate synthase superfamily. From the data we conclude that P. torridus degrades glucose via a strictly nonphosphorylative ED pathway with a novel KDG-specific aldolase, thus excluding the operation of the branched ED pathway involving a bifunctional KD(P)GA as a key enzyme.
Collapse
|
11
|
Sun N, Tamura N, Tamura T, Knispel RW, Hrabe T, Kofler C, Nickell S, Nagy I. Size distribution of native cytosolic proteins of Thermoplasma acidophilum. Proteomics 2009; 9:3783-6. [DOI: 10.1002/pmic.200800892] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
12
|
Posner MG, Upadhyay A, Bagby S, Hough DW, Danson MJ. A unique lipoylation system in the Archaea. Lipoylation in Thermoplasma acidophilum requires two proteins. FEBS J 2009; 276:4012-22. [PMID: 19594830 DOI: 10.1111/j.1742-4658.2009.07110.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Members of the 2-oxoacid dehydrogenase multienzyme complex family play a key role in the pathways of central metabolism. Post-translational lipoylation of the dihydrolipoyl acyltransferase component of these complexes is essential for their activity, the lipoyllysine moiety performing the transfer of substrates and intermediates between the different active sites within these multienzyme systems. We have previously shown that the thermophilic archaeon, Thermoplasma acidophilum, has a four-gene cluster encoding the components of such a complex, which, when recombinantly expressed in Escherichia coli, can be assembled into an active multienzyme in vitro. Crucially, the E. coli host carries out the required lipoylation of the archaeal dihydrolipoyl acyltransferase component. Because active 2-oxoacid dehydrogenase multienzyme complexes have never been detected in any archaeon, the question arises as to whether Archaea possess a functional lipoylation system. In this study, we report the cloning and heterologous expression of two genes from Tp. acidophilum whose protein products together show significant sequence identity with the single lipoate protein ligase enzyme of bacteria. We demonstrate that both recombinantly expressed Tp. acidophilum proteins are required for lipoylation of the acyltransferase, and that the two proteins associate together to carry out this post-translational modification. From the published DNA sequences, we suggest the presence of functional transcriptional and translational regulatory elements, and furthermore we present preliminary evidence that lipoylation occurs in vivo in Tp. acidophilum. This is the first report of the lipoylation machinery in the Archaea, which is unique in that the catalytic activity is dependent on two separate gene products.
Collapse
|
13
|
Insight into the proteome of the hyperthermophilic Crenarchaeon Ignicoccus hospitalis: the major cytosolic and membrane proteins. Arch Microbiol 2008; 190:379-94. [PMID: 18584152 PMCID: PMC2755778 DOI: 10.1007/s00203-008-0399-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2008] [Revised: 05/21/2008] [Accepted: 06/09/2008] [Indexed: 12/25/2022]
Abstract
Ignicoccus hospitalis, a hyperthermophilic, chemolithoautotrophic Crenarchaeon, is the host of Nanoarchaeum equitans. Together, they form an intimate association, the first among Archaea. Membranes are of fundamental importance for the interaction of I. hospitalis and N. equitans, as they harbour the proteins necessary for the transport of macromolecules like lipids, amino acids, and cofactors between these organisms. Here, we investigated the protein inventory of I. hospitalis cells, and were able to identify 20 proteins in total. Experimental evidence and predictions let us conclude that 11 are soluble cytosolic proteins, eight membrane or membrane-associated proteins, and a single one extracellular. The quantitatively dominating proteins in the cytoplasm (peroxiredoxin; thermosome) antagonize oxidative and temperature stress which I. hospitalis cells are exposed to at optimal growth conditions. Three abundant membrane protein complexes are found: the major protein of the outer membrane, which might protect the cell against the hostile environment, forms oligomeric complexes with pores of unknown selectivity; two other complexes of the cytoplasmic membrane, the hydrogenase and the ATP synthase, play a key role in energy production and conversion.
Collapse
|
14
|
Josic D, Kovač S. Application of proteomics in biotechnology – Microbial proteomics. Biotechnol J 2008; 3:496-509. [DOI: 10.1002/biot.200700234] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|