1
|
Lopes-Pacheco M, Winters AG, Jackson JJ, Olson Rd JA, Kim M, Ledwitch KV, Tedman A, Jhangiani AR, Schlebach JP, Meiler J, Plate L, Oliver KE. Recent developments in cystic fibrosis drug discovery: where are we today? Expert Opin Drug Discov 2025; 20:659-682. [PMID: 40202089 DOI: 10.1080/17460441.2025.2490250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2024] [Revised: 03/17/2025] [Accepted: 04/03/2025] [Indexed: 04/10/2025]
Abstract
INTRODUCTION The advent of variant-specific disease-modifying drugs into clinical practice has provided remarkable benefits for people with cystic fibrosis (PwCF), a multi-organ life-limiting inherited disease. However, further efforts are needed to maximize therapeutic benefits as well as to increase the number of PwCF taking CFTR modulators. AREA COVERED The authors discuss some of the key limitations of the currently available CFTR modulator therapies (e.g. adverse reactions) and strategies in development to increase the number of available therapeutics for CF. These include novel methods to accelerate theratyping and identification of novel small molecules and cellular targets representing alternative or complementary therapies for CF. EXPERT OPINION While the CF therapy development pipeline continues to grow, there is a critical need to optimize strategies that will accelerate testing and approval of effective therapies for (ultra)rare CFTR variants as traditional assays and trials are not suitable to address such issues. Another major barrier that needs to be solved is the restricted access to currently available modulator therapies, which remains a significant burden for PwCF who are from racial and ethnic minorities and/or living in underprivileged regions.
Collapse
Affiliation(s)
- Miquéias Lopes-Pacheco
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
- Center for Cystic Fibrosis & Airways Disease Research, Emory University & Children's Healthcare of Atlanta, Atlanta, GA, USA
| | - Ashlyn G Winters
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
- Center for Cystic Fibrosis & Airways Disease Research, Emory University & Children's Healthcare of Atlanta, Atlanta, GA, USA
| | - JaNise J Jackson
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
- Center for Cystic Fibrosis & Airways Disease Research, Emory University & Children's Healthcare of Atlanta, Atlanta, GA, USA
| | - John A Olson Rd
- Department of Chemistry, Vanderbilt University, Nashville, TN, USA
- Program in Chemical and Physical Biology, Vanderbilt University, Nashville, TN, USA
| | - Minsoo Kim
- Department of Chemistry, Vanderbilt University, Nashville, TN, USA
- Program in Chemical and Physical Biology, Vanderbilt University, Nashville, TN, USA
| | - Kaitlyn V Ledwitch
- Department of Chemistry, Vanderbilt University, Nashville, TN, USA
- Center for Structural Biology, Vanderbilt University, Nashville, TN, USA
| | - Austin Tedman
- The James Tarpo Junior & Margaret Tarpo Department of Chemistry, Purdue University, West Lafayette, IN, USA
| | - Ashish R Jhangiani
- The James Tarpo Junior & Margaret Tarpo Department of Chemistry, Purdue University, West Lafayette, IN, USA
| | - Jonathan P Schlebach
- The James Tarpo Junior & Margaret Tarpo Department of Chemistry, Purdue University, West Lafayette, IN, USA
| | - Jens Meiler
- Department of Chemistry, Vanderbilt University, Nashville, TN, USA
- Center for Structural Biology, Vanderbilt University, Nashville, TN, USA
| | - Lars Plate
- Department of Chemistry, Vanderbilt University, Nashville, TN, USA
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA
| | - Kathryn E Oliver
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
- Center for Cystic Fibrosis & Airways Disease Research, Emory University & Children's Healthcare of Atlanta, Atlanta, GA, USA
| |
Collapse
|
2
|
Hofmeister RJ, Ribeiro DM, Rubinacci S, Delaneau O. Accurate rare variant phasing of whole-genome and whole-exome sequencing data in the UK Biobank. Nat Genet 2023:10.1038/s41588-023-01415-w. [PMID: 37386248 DOI: 10.1038/s41588-023-01415-w] [Citation(s) in RCA: 69] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 05/04/2023] [Indexed: 07/01/2023]
Abstract
Phasing involves distinguishing the two parentally inherited copies of each chromosome into haplotypes. Here, we introduce SHAPEIT5, a new phasing method that quickly and accurately processes large sequencing datasets and applied it to UK Biobank (UKB) whole-genome and whole-exome sequencing data. We demonstrate that SHAPEIT5 phases rare variants with low switch error rates of below 5% for variants present in just 1 sample out of 100,000. Furthermore, we outline a method for phasing singletons, which, although less precise, constitutes an important step towards future developments. We then demonstrate that the use of UKB as a reference panel improves the accuracy of genotype imputation, which is even more pronounced when phased with SHAPEIT5 compared with other methods. Finally, we screen the UKB data for loss-of-function compound heterozygous events and identify 549 genes where both gene copies are knocked out. These genes complement current knowledge of gene essentiality in the human genome.
Collapse
Affiliation(s)
- Robin J Hofmeister
- Department of Computational Biology, University of Lausanne, Lausanne, Switzerland
| | - Diogo M Ribeiro
- Department of Computational Biology, University of Lausanne, Lausanne, Switzerland
| | - Simone Rubinacci
- Department of Computational Biology, University of Lausanne, Lausanne, Switzerland
| | - Olivier Delaneau
- Department of Computational Biology, University of Lausanne, Lausanne, Switzerland.
| |
Collapse
|
3
|
Amaral MD. Using the genome to correct the ion transport defect in cystic fibrosis. J Physiol 2022; 601:1573-1582. [PMID: 36068724 DOI: 10.1113/jp282308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 08/31/2022] [Indexed: 11/08/2022] Open
Abstract
KEY POINTS Human genome information can help finding drugs for human diseases. 'Omics' allow unbiased identification of novel drug targets. High-throughput (HT) approaches provide a global view on disease mechanisms. As a monogenic disease CF has led the way in multiple 'Omic' studies. 'Multi-omics' integration will generate maximal biological significance. ABSTRACT Today Biomedicine faces one of its greatest challenges, i.e. treating diseases through their causative dysfunctional processes and not just their symptoms. However, we still miss a global view of mechanisms and pathways involved in pathophysiology of most diseases. In fact, disease mechanisms and pathways can be achieved by holistic studies provided by 'Omic' approaches. Cystic Fibrosis (CF), caused by mutations in the CF transmembrane conductance regulator (CFTR) gene which encodes an anion channel, is paradigmatic for monogenic disorders, namely channelopathies. A high number of 'omics studies' have focussed on CF, namely several cell-based high-throughput (HT) approaches were developed and applied towards a global mechanistic characterization of CF pathophysiology and the identification of novel and 'unbiased' drug targets. Notwithstanding, it is likely that, through the integration of all these 'layers' of large datasets into comprehensive disease maps that biological significance can be extracted so that the enormous potential of these approaches to identifying dysfunctional mechanisms and novel drugs may become a reality. Abstract figure legend Schematic overview of the 3 main approaches to discovery of new drugs/drug targets. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Margarida D Amaral
- BioISI - Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisboa, Campo Grande-C8 bdg, Lisboa, 1749-016, Portugal
| |
Collapse
|
4
|
Shin J, Nile A, Oh JW. Role of adaptin protein complexes in intracellular trafficking and their impact on diseases. Bioengineered 2021; 12:8259-8278. [PMID: 34565296 PMCID: PMC8806629 DOI: 10.1080/21655979.2021.1982846] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Revised: 09/15/2021] [Accepted: 09/15/2021] [Indexed: 02/07/2023] Open
Abstract
Adaptin proteins (APs) play a crucial role in intracellular cell trafficking. The 'classical' role of APs is carried out by AP1‒3, which bind to clathrin, cargo, and accessory proteins. Accordingly, AP1-3 are crucial for both vesicle formation and sorting. All APs consist of four subunits that are indispensable for their functions. In fact, based on studies using cells, model organism knockdown/knock-out, and human variants, each subunit plays crucial roles and contributes to the specificity of each AP. These studies also revealed that the sorting and intracellular trafficking function of AP can exert varying effects on pathology by controlling features such as cell development, signal transduction related to the apoptosis and proliferation pathways in cancer cells, organelle integrity, receptor presentation, and viral infection. Although the roles and functions of AP1‒3 are relatively well studied, the functions of the less abundant and more recently identified APs, AP4 and AP5, are still to be investigated. Further studies on these APs may enable a better understanding and targeting of specific diseases.APs known or suggested locations and functions.
Collapse
Affiliation(s)
- Juhyun Shin
- Department of Stem Cell and Regenerative Biotechnology and Animal Resources Research Center, Konkuk University, Seoul, Republic of Korea
| | - Arti Nile
- Department of Stem Cell and Regenerative Biotechnology and Animal Resources Research Center, Konkuk University, Seoul, Republic of Korea
| | - Jae-Wook Oh
- Department of Stem Cell and Regenerative Biotechnology and Animal Resources Research Center, Konkuk University, Seoul, Republic of Korea
| |
Collapse
|
5
|
Strub MD, Gao L, Tan K, McCray PB. Analysis of multiple gene co-expression networks to discover interactions favoring CFTR biogenesis and ΔF508-CFTR rescue. BMC Med Genomics 2021; 14:258. [PMID: 34717611 PMCID: PMC8557508 DOI: 10.1186/s12920-021-01106-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 10/20/2021] [Indexed: 02/02/2023] Open
Abstract
BACKGROUND We previously reported that expression of a miR-138 mimic or knockdown of SIN3A in primary cultures of cystic fibrosis (CF) airway epithelia increased ΔF508-CFTR mRNA and protein levels, and partially restored CFTR-dependent chloride transport. Global mRNA transcript profiling in ΔF508-CFBE cells treated with miR-138 mimic or SIN3A siRNA identified two genes, SYVN1 and NEDD8, whose inhibition significantly increased ΔF508-CFTR trafficking, maturation, and function. Little is known regarding the dynamic changes in the CFTR gene network during such rescue events. We hypothesized that analysis of condition-specific gene networks from transcriptomic data characterizing ΔF508-CFTR rescue could help identify dynamic gene modules associated with CFTR biogenesis. METHODS We applied a computational method, termed M-module, to analyze multiple gene networks, each of which exhibited differential activity compared to a baseline condition. In doing so, we identified both unique and shared gene pathways across multiple differential networks. To construct differential networks, gene expression data from CFBE cells were divided into three groups: (1) siRNA inhibition of NEDD8 and SYVN1; (2) miR-138 mimic and SIN3A siRNA; and (3) temperature (27 °C for 24 h, 40 °C for 24 h, and 27 °C for 24 h followed by 40 °C for 24 h). RESULTS Interrogation of individual networks (e.g., NEDD8/SYVN1 network), combinations of two networks (e.g., NEDD8/SYVN1 + temperature networks), and all three networks yielded sets of 1-modules, 2-modules, and 3-modules, respectively. Gene ontology analysis revealed significant enrichment of dynamic modules in pathways including translation, protein metabolic/catabolic processes, protein complex assembly, and endocytosis. Candidate CFTR effectors identified in the analysis included CHURC1, GZF1, and RPL15, and siRNA-mediated knockdown of these genes partially restored CFTR-dependent transepithelial chloride current to ΔF508-CFBE cells. CONCLUSIONS The ability of the M-module to identify dynamic modules involved in ΔF508 rescue provides a novel approach for studying CFTR biogenesis and identifying candidate suppressors of ΔF508.
Collapse
Affiliation(s)
- Matthew D Strub
- Department of Pediatrics, University of Iowa, 6320 PBDB, 169 Newton Road, Iowa City, IA, 52242, USA.,Interdisciplinary Graduate Program in Genetics, University of Iowa, Iowa City, IA, 52245, USA
| | - Long Gao
- Department of Genetics, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Kai Tan
- Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA.,Department of Pediatrics, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Paul B McCray
- Department of Pediatrics, University of Iowa, 6320 PBDB, 169 Newton Road, Iowa City, IA, 52242, USA. .,Interdisciplinary Graduate Program in Genetics, University of Iowa, Iowa City, IA, 52245, USA.
| |
Collapse
|
6
|
Hodos RA, Strub MD, Ramachandran S, Li L, McCray PB, Dudley JT. Integrative genomic meta-analysis reveals novel molecular insights into cystic fibrosis and ΔF508-CFTR rescue. Sci Rep 2020; 10:20553. [PMID: 33239626 PMCID: PMC7689470 DOI: 10.1038/s41598-020-76347-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Accepted: 10/26/2020] [Indexed: 12/12/2022] Open
Abstract
Cystic fibrosis (CF), caused by mutations to CFTR, leads to severe and progressive lung disease. The most common mutant, ΔF508-CFTR, undergoes proteasomal degradation, extinguishing its anion channel function. Numerous in vitro interventions have been identified to partially rescue ΔF508-CFTR function yet remain poorly understood. Improved understanding of both the altered state of CF cells and the mechanisms of existing rescue strategies could reveal novel therapeutic strategies. Toward this aim, we measured transcriptional profiles of established temperature, genetic, and chemical interventions that rescue ΔF508-CFTR and also re-analyzed public datasets characterizing transcription in human CF vs. non-CF samples from airway and whole blood. Meta-analysis yielded a core disease signature and two core rescue signatures. To interpret these through the lens of prior knowledge, we compiled a "CFTR Gene Set Library" from literature. The core disease signature revealed remarkably strong connections to genes with established effects on CFTR trafficking and function and suggested novel roles of EGR1 and SGK1 in the disease state. Our data also revealed an unexpected mechanistic link between several genetic rescue interventions and the unfolded protein response. Finally, we found that C18, an analog of the CFTR corrector compound Lumacaftor, induces almost no transcriptional perturbation despite its rescue activity.
Collapse
Affiliation(s)
- Rachel A Hodos
- Mount Sinai School of Medicine, Institute for Next Generation Healthcare, New York, NY, USA
- Courant Institute for Mathematical Sciences, New York University, New York, NY, USA
- BenevolentAI, Brooklyn, NY, USA
| | - Matthew D Strub
- Department of Pediatrics, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
- Interdisciplinary Graduate Program in Genetics, University of Iowa, Iowa City, IA, USA
| | - Shyam Ramachandran
- Department of Pediatrics, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
- Editas Medicine, Cambridge, MA, USA
| | - Li Li
- Mount Sinai School of Medicine, Institute for Next Generation Healthcare, New York, NY, USA
- Sema4, Stamford, CT, USA
| | - Paul B McCray
- Department of Pediatrics, Carver College of Medicine, University of Iowa, Iowa City, IA, USA.
- Interdisciplinary Graduate Program in Genetics, University of Iowa, Iowa City, IA, USA.
| | - Joel T Dudley
- Mount Sinai School of Medicine, Institute for Next Generation Healthcare, New York, NY, USA.
| |
Collapse
|
7
|
Amaral MD. How to determine the mechanism of action of CFTR modulator compounds: A gateway to theranostics. Eur J Med Chem 2020; 210:112989. [PMID: 33190956 DOI: 10.1016/j.ejmech.2020.112989] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 11/02/2020] [Accepted: 11/02/2020] [Indexed: 12/12/2022]
Abstract
The greatest challenge of 21st century biology is to fully understand mechanisms of disease to drive new approaches and medical innovation. Parallel to this is the huge biomedical endeavour of treating people through personalized medicine. Until now all CFTR modulator drugs that have entered clinical trials have been genotype-dependent. An emerging alternative is personalized/precision medicine in CF, i.e., to determine whether rare CFTR mutations respond to existing (or novel) CFTR modulator drugs by pre-assessing them directly on patient's tissues ex vivo, an approach also now termed theranostics. To administer the right drug to the right person it is essential to understand how drugs work, i.e., to know their mechanism of action (MoA), so as to predict their applicability, not just in certain mutations but also possibly in other diseases that share the same defect/defective pathway. Moreover, an understanding the MoA of a drug before it is tested in clinical trials is the logical path to drug discovery and can increase its chance for success and hence also approval. In conclusion, the most powerful approach to determine the MoA of a compound is to understand the underlying biology. Novel large datasets of intervenients in most biological processes, namely those emerging from the post-genomic era tools, are available and should be used to help in this task.
Collapse
Affiliation(s)
- Margarida D Amaral
- BioISI - Biosystems & Integrative Sciences Institute, Lisboa, Faculty of Sciences, University of Lisboa, Portugal.
| |
Collapse
|
8
|
Coghlan M, Richards E, Shaik S, Rossi P, Vanama RB, Ahmadi S, Petroz C, Crawford M, Maynes JT. Inhalational Anesthetics Induce Neuronal Protein Aggregation and Affect ER Trafficking. Sci Rep 2018; 8:5275. [PMID: 29588456 PMCID: PMC5869676 DOI: 10.1038/s41598-018-23335-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Accepted: 03/07/2018] [Indexed: 12/27/2022] Open
Abstract
Anesthetic agents have been implicated in the causation of neurological and cognitive deficits after surgery, the exacerbation of chronic neurodegenerative disease, and were recently reported to promote the onset of the neurologic respiratory disease Congenital Central Hypoventilation Syndrome (CCHS), related to misfolding of the transcription factor Phox2B. To study how anesthetic agents could affect neuronal function through alterations to protein folding, we created neuronal cell models emulating the graded disease severity of CCHS. We found that the gas anesthetic isoflurane and the opiate morphine potentiated aggregation and mislocalization of Phox2B variants, similar to that seen in CCHS, and observed transcript and protein level changes consistent with activation of the endoplasmic reticulum (ER) unfolded protein response. Attenuation of ER stress pathways did not result in a correction of Phox2B misfolding, indicating a primary effect of isoflurane on protein structure. We also observed that isoflurane hindered the folding and activity of proteins that rely heavily on ER function, like the CFTR channel. Our results show how anesthetic drugs can alter protein folding and induce ER stress, indicating a mechanism by which these agents may affect neuronal function after surgery.
Collapse
Affiliation(s)
- Matthew Coghlan
- Department of Anesthesia and Pain Medicine, Hospital for Sick Children, Toronto, Canada
| | - Elizabeth Richards
- Department of Anesthesia and Pain Medicine, Hospital for Sick Children, Toronto, Canada
| | - Sadiq Shaik
- Department of Anesthesia and Pain Medicine, Hospital for Sick Children, Toronto, Canada
| | - Pablo Rossi
- Department of Anesthesia and Pain Medicine, Hospital for Sick Children, Toronto, Canada
| | - Ramesh Babu Vanama
- Department of Anesthesia and Pain Medicine, Hospital for Sick Children, Toronto, Canada
| | - Saumel Ahmadi
- Program in Molecular Medicine, SickKids Research Institute, Toronto, Canada.,Department of Physiology, University of Toronto, Toronto, Canada
| | - Christelle Petroz
- Department of Anesthesia and Pain Medicine, Hospital for Sick Children, Toronto, Canada
| | - Mark Crawford
- Department of Anesthesia and Pain Medicine, Hospital for Sick Children, Toronto, Canada.,Department of Anesthesia, University of Toronto, Toronto, Canada
| | - Jason T Maynes
- Department of Anesthesia and Pain Medicine, Hospital for Sick Children, Toronto, Canada. .,Department of Anesthesia, University of Toronto, Toronto, Canada. .,Program in Molecular Medicine, SickKids Research Institute, Toronto, Canada.
| |
Collapse
|
9
|
Perkins LA, Fisher GW, Naganbabu M, Schmidt BF, Mun F, Bruchez MP. High-Content Surface and Total Expression siRNA Kinase Library Screen with VX-809 Treatment Reveals Kinase Targets that Enhance F508del-CFTR Rescue. Mol Pharm 2018; 15:759-767. [PMID: 29384380 PMCID: PMC5844356 DOI: 10.1021/acs.molpharmaceut.7b00928] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
![]()
The most promising
F508del-CFTR corrector, VX-809, has been unsuccessful
as an effective, stand-alone treatment for CF patients, but the rescue
effect in combination with other drugs may confer an acceptable level
of therapeutic benefit. Targeting cellular factors that modify trafficking
may act to enhance the cell surface density of F508-CFTR with VX-809
correction. Our goal is to identify druggable kinases that enhance
F508del-CFTR rescue and stabilization at the cell surface beyond that
achievable with the VX-809 corrector alone. To achieve this goal,
we implemented a new high-throughput screening paradigm that quickly
and quantitatively measures surface density and total protein in the
same cells. This allowed for rapid screening for increased surface
targeting and proteostatic regulation. The assay utilizes fluorogen-activating-protein
(FAP) technology with cell excluded and cell permeant fluorogenic
dyes in a quick, wash-free fluorescent plate reader format on live
cells to first measure F508del-CFTR expressed on the surface and then
the total amount of F508del-CFTR protein present. To screen for kinase
targets, we used Dharmacon’s ON-TARGETplus SMARTpool siRNA Kinase library (715 target kinases) with and without
10 μM VX-809 treatment in triplicate at 37 °C. We identified
several targets that had a significant interaction with VX-809 treatment
in enhancing surface density with siRNA knockdown. Select small-molecule
inhibitors of the kinase targets demonstrated augmented surface expression
with VX-809 treatment.
Collapse
Affiliation(s)
| | | | - Matharishwan Naganbabu
- Department of Chemistry , University of California , Berkeley , California 94720 , United States
| | | | | | | |
Collapse
|
10
|
Lim SH, Legere EA, Snider J, Stagljar I. Recent Progress in CFTR Interactome Mapping and Its Importance for Cystic Fibrosis. Front Pharmacol 2018; 8:997. [PMID: 29403380 PMCID: PMC5785726 DOI: 10.3389/fphar.2017.00997] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Accepted: 12/26/2017] [Indexed: 12/25/2022] Open
Abstract
Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) is a chloride channel found in secretory epithelia with a plethora of known interacting proteins. Mutations in the CFTR gene cause cystic fibrosis (CF), a disease that leads to progressive respiratory illness and other complications of phenotypic variance resulting from perturbations of this protein interaction network. Studying the collection of CFTR interacting proteins and the differences between the interactomes of mutant and wild type CFTR provides insight into the molecular machinery of the disease and highlights possible therapeutic targets. This mini review focuses on functional genomics and proteomics approaches used for systematic, high-throughput identification of CFTR-interacting proteins to provide comprehensive insight into CFTR regulation and function.
Collapse
Affiliation(s)
- Sang Hyun Lim
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada
| | | | - Jamie Snider
- Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON, Canada
| | - Igor Stagljar
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada.,Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
11
|
Abstract
Pulmonary disease is the major cause of morbidity and mortality in patients with cystic fibrosis, a disease caused by mutations in the Cystic Fibrosis Transmembrane conductance Regulator (CFTR) gene. Heterogeneity in CFTR genotype–phenotype relationships in affected individuals plus the escalation of drug discovery targeting specific mutations highlights the need to develop robust in vitro platforms with which to stratify therapeutic options using relevant tissue. Toward this goal, we adapted a fluorescence plate reader assay of apical CFTR-mediated chloride conductance to enable profiling of a panel of modulators on primary nasal epithelial cultures derived from patients bearing different CFTR mutations. This platform faithfully recapitulated patient-specific responses previously observed in the “gold-standard” but relatively low-throughput Ussing chamber. Moreover, using this approach, we identified a novel strategy with which to augment the response to an approved drug in specific patients. In proof of concept studies, we also validated the use of this platform in measuring drug responses in lung cultures differentiated from cystic fibrosis iPS cells. Taken together, we show that this medium throughput assay of CFTR activity has the potential to stratify cystic fibrosis patient-specific responses to approved drugs and investigational compounds in vitro in primary and iPS cell-derived airway cultures. A new method for evaluating drug responses in patient-derived respiratory tissue promises to help determine the best treatment for each patient with cystic fibrosis (CF). CF patients are highly susceptible to lung infections due to the build-up of thick mucus in the airways. Over 2000 mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene have been identified in patients with CF, which partly explains their varied response to treatment. Saumel Ahmadi, Christine E. Bear, and colleagues at the Hospital for Sick Children in Toronto developed a fluorescence-based method for measuring improvements in mutant CFTR function in patient-derived nasal and induced pluripotent stem cell-derived lung tissue. This method enables comparison of approved and investigational drugs on airway cells from each individual patient and in the longer term will accelerate the development of personalized therapeutic strategies.
Collapse
|
12
|
In silico search for modifier genes associated with pancreatic and liver disease in Cystic Fibrosis. PLoS One 2017; 12:e0173822. [PMID: 28339466 PMCID: PMC5365109 DOI: 10.1371/journal.pone.0173822] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Accepted: 02/27/2017] [Indexed: 12/15/2022] Open
Abstract
Cystic Fibrosis is the most common lethal autosomal recessive disorder in the white population, affecting among other organs, the lung, the pancreas and the liver. Whereas Cystic Fibrosis is a monogenic disease, many studies reveal a very complex relationship between genotype and clinical phenotype. Indeed, the broad phenotypic spectrum observed in Cystic Fibrosis is far from being explained by obvious genotype-phenotype correlations and it is admitted that Cystic Fibrosis disease is the result of multiple factors, including effects of the environment as well as modifier genes. Our objective was to highlight new modifier genes with potential implications in the lung, pancreatic and liver outcomes of the disease. For this purpose we performed a system biology approach which combined, database mining, literature mining, gene expression study and network analysis as well as pathway enrichment analysis and protein-protein interactions. We found that IFI16, CCNE2 and IGFBP2 are potential modifiers in the altered lung function in Cystic Fibrosis. We also found that EPHX1, HLA-DQA1, HLA-DQB1, DSP and SLC33A1, GPNMB, NCF2, RASGRP1, LGALS3 and PTPN13, are potential modifiers in pancreas and liver, respectively. Associated pathways indicate that immune system is likely involved and that Ubiquitin C is probably a central node, linking Cystic Fibrosis to liver and pancreatic disease. We highlight here new modifier genes with potential implications in Cystic Fibrosis. Nevertheless, our in silico analysis requires functional analysis to give our results a physiological relevance.
Collapse
|
13
|
Adnan H, Zhang Z, Park HJ, Tailor C, Che C, Kamani M, Spitalny G, Binnington B, Lingwood C. Endoplasmic Reticulum-Targeted Subunit Toxins Provide a New Approach to Rescue Misfolded Mutant Proteins and Revert Cell Models of Genetic Diseases. PLoS One 2016; 11:e0166948. [PMID: 27935997 PMCID: PMC5147855 DOI: 10.1371/journal.pone.0166948] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2016] [Accepted: 11/06/2016] [Indexed: 01/08/2023] Open
Abstract
Many germ line diseases stem from a relatively minor disturbance in mutant protein endoplasmic reticulum (ER) 3D assembly. Chaperones are recruited which, on failure to correct folding, sort the mutant for retrotranslocation and cytosolic proteasomal degradation (ER-associated degradation-ERAD), to initiate/exacerbate deficiency-disease symptoms. Several bacterial (and plant) subunit toxins, retrograde transport to the ER after initial cell surface receptor binding/internalization. The A subunit has evolved to mimic a misfolded protein and hijack the ERAD membrane translocon (dislocon), to effect cytosolic access and cytopathology. We show such toxins compete for ERAD to rescue endogenous misfolded proteins. Cholera toxin or verotoxin (Shiga toxin) containing genetically inactivated (± an N-terminal polyleucine tail) A subunit can, within 2–4 hrs, temporarily increase F508delCFTR protein, the major cystic fibrosis (CF) mutant (5-10x), F508delCFTR Golgi maturation (<10x), cell surface expression (20x) and chloride transport (2x) in F508del CFTR transfected cells and patient-derived F508delCFTR bronchiolar epithelia, without apparent cytopathology. These toxoids also increase glucocerobrosidase (GCC) in N370SGCC Gaucher Disease fibroblasts (3x), another ERAD–exacerbated misfiling disease. We identify a new, potentially benign approach to the treatment of certain genetic protein misfolding diseases.
Collapse
Affiliation(s)
- Humaira Adnan
- Division of Molecular Structure and Function, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Zhenbo Zhang
- Division of Molecular Structure and Function, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Hyun-Joo Park
- Division of Molecular Structure and Function, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Chetankumar Tailor
- Division of Cell Biology, Research Institute, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Clare Che
- Division of Molecular Structure and Function, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Mustafa Kamani
- Division of Molecular Structure and Function, The Hospital for Sick Children, Toronto, Ontario, Canada
| | | | - Beth Binnington
- Division of Molecular Structure and Function, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Clifford Lingwood
- Division of Molecular Structure and Function, The Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Biochemistry, University of Toronto, Ontario, Canada
- Department of Laboratory Medicine & Pathobiology, University of Toronto, Ontario, Canada
- * E-mail:
| |
Collapse
|
14
|
Amaral MD, Balch WE. Hallmarks of therapeutic management of the cystic fibrosis functional landscape. J Cyst Fibros 2015; 14:687-99. [PMID: 26526359 PMCID: PMC4644672 DOI: 10.1016/j.jcf.2015.09.006] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Revised: 09/16/2015] [Accepted: 09/16/2015] [Indexed: 01/29/2023]
Abstract
The cystic fibrosis (CF) transmembrane conductance regulator (CFTR) protein does not operate in isolation, rather in a dynamic network of interacting components that impact its synthesis, folding, stability, intracellular location and function, referred to herein as the 'CFTR Functional Landscape (CFFL)'. For the prominent F508del mutation, many of these interactors are deeply connected to a protein fold management system, the proteostasis network (PN). However, CF encompasses an additional 2000 CFTR variants distributed along its entire coding sequence (referred to as CFTR2), and each variant contributes a differential liability to PN management of CFTR and to a protein 'social network' (SN) that directs the probability of the (patho)physiologic events that impact ion transport in each cell, tissue and patient in health and disease. Recognition of the importance of the PN and SN in driving the unique patient CFFL leading to disease highlights the importance of precision medicine in therapeutic management of disease progression. We take the view herein that it is not CFTR, rather the PN/SN, and their impact on the CFFL, that are the key physiologic forces driving onset and clinical progression of CF. We posit that a deep understanding of each patients PN/SN gained by merging genomic, proteomic (mass spectrometry (MS)), and high-content microscopy (HCM) technologies in the context of novel network learning algorithms will lead to a paradigm shift in CF clinical management. This should allow for generation of new classes of patient specific PN/SN directed therapeutics for personalized management of the CFFL in the clinic.
Collapse
Affiliation(s)
- Margarida D Amaral
- University of Lisboa, Faculty of Sciences, BioISI - Biosystems & Integrative Sciences Institute, Lisboa, Portugal.
| | - William E Balch
- Department of Chemical Physiology, Department of Cell and Molecular Biology, The Skaggs Institute of Chemical Biology, The Scripps Research Institute, La Jolla, CA, USA.
| |
Collapse
|
15
|
Molinski SV, Ahmadi S, Hung M, Bear CE. Facilitating Structure-Function Studies of CFTR Modulator Sites with Efficiencies in Mutagenesis and Functional Screening. ACTA ACUST UNITED AC 2015; 20:1204-17. [PMID: 26385858 DOI: 10.1177/1087057115605834] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Accepted: 08/23/2015] [Indexed: 12/20/2022]
Abstract
There are nearly 2000 mutations in the CFTR gene associated with cystic fibrosis disease, and to date, the only approved drug, Kalydeco, has been effective in rescuing the functional expression of a small subset of these mutant proteins with defects in channel activation. However, there is currently an urgent need to assess other mutations for possible rescue by Kalydeco, and further, definition of the binding site of such modulators on CFTR would enhance our understanding of the mechanism of action of such therapeutics. Here, we describe a simple and rapid one-step PCR-based site-directed mutagenesis method to generate mutations in the CFTR gene. This method was used to generate CFTR mutants bearing deletions (p.Gln2_Trp846del, p.Ser700_Asp835del, p.Ile1234_Arg1239del) and truncation with polyhistidine tag insertion (p.Glu1172-3Gly-6-His*), which either recapitulate a disease phenotype or render tools for modulator binding site identification, with subsequent evaluation of drug responses using a high-throughput (384-well) membrane potential-sensitive fluorescence assay of CFTR channel activity within a 1 wk time frame. This proof-of-concept study shows that these methods enable rapid and quantitative comparison of multiple CFTR mutants to emerging drugs, facilitating future large-scale efforts to stratify mutants according to their "theratype" or most promising targeted therapy.
Collapse
Affiliation(s)
- Steven V Molinski
- Molecular Structure and Function, Research Institute, Hospital for Sick Children, Toronto, Ontario, Canada Department of Biochemistry, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Saumel Ahmadi
- Molecular Structure and Function, Research Institute, Hospital for Sick Children, Toronto, Ontario, Canada Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Maurita Hung
- Molecular Structure and Function, Research Institute, Hospital for Sick Children, Toronto, Ontario, Canada Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Christine E Bear
- Molecular Structure and Function, Research Institute, Hospital for Sick Children, Toronto, Ontario, Canada Department of Biochemistry, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
16
|
Clarke LA, Botelho HM, Sousa L, Falcao AO, Amaral MD. Transcriptome meta-analysis reveals common differential and global gene expression profiles in cystic fibrosis and other respiratory disorders and identifies CFTR regulators. Genomics 2015. [PMID: 26225835 DOI: 10.1016/j.ygeno.2015.07.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
A meta-analysis of 13 independent microarray data sets was performed and gene expression profiles from cystic fibrosis (CF), similar disorders (COPD: chronic obstructive pulmonary disease, IPF: idiopathic pulmonary fibrosis, asthma), environmental conditions (smoking, epithelial injury), related cellular processes (epithelial differentiation/regeneration), and non-respiratory "control" conditions (schizophrenia, dieting), were compared. Similarity among differentially expressed (DE) gene lists was assessed using a permutation test, and a clustergram was constructed, identifying common gene markers. Global gene expression values were standardized using a novel approach, revealing that similarities between independent data sets run deeper than shared DE genes. Correlation of gene expression values identified putative gene regulators of the CF transmembrane conductance regulator (CFTR) gene, of potential therapeutic significance. Our study provides a novel perspective on CF epithelial gene expression in the context of other lung disorders and conditions, and highlights the contribution of differentiation/EMT and injury to gene signatures of respiratory disease.
Collapse
Affiliation(s)
- Luka A Clarke
- University of Lisboa, Faculty of Sciences, BioISI- Biosystems & Integrative Sciences Institute, Campo Grande, Lisboa, Portugal
| | - Hugo M Botelho
- University of Lisboa, Faculty of Sciences, BioISI- Biosystems & Integrative Sciences Institute, Campo Grande, Lisboa, Portugal
| | - Lisete Sousa
- University of Lisboa, Faculty of Sciences, DEIO and CEAUL, Portugal
| | - Andre O Falcao
- University of Lisboa, Faculty of Sciences, Department of Informatics, Portugal
| | - Margarida D Amaral
- University of Lisboa, Faculty of Sciences, BioISI- Biosystems & Integrative Sciences Institute, Campo Grande, Lisboa, Portugal
| |
Collapse
|
17
|
Exome Sequencing of Phenotypic Extremes Identifies CAV2 and TMC6 as Interacting Modifiers of Chronic Pseudomonas aeruginosa Infection in Cystic Fibrosis. PLoS Genet 2015; 11:e1005273. [PMID: 26047157 PMCID: PMC4457883 DOI: 10.1371/journal.pgen.1005273] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Accepted: 05/12/2015] [Indexed: 12/22/2022] Open
Abstract
Discovery of rare or low frequency variants in exome or genome data that are associated with complex traits often will require use of very large sample sizes to achieve adequate statistical power. For a fixed sample size, sequencing of individuals sampled from the tails of a phenotype distribution (i.e., extreme phenotypes design) maximizes power and this approach was recently validated empirically with the discovery of variants in DCTN4 that influence the natural history of P. aeruginosa airway infection in persons with cystic fibrosis (CF; MIM219700). The increasing availability of large exome/genome sequence datasets that serve as proxies for population-based controls affords the opportunity to test an alternative, potentially more powerful and generalizable strategy, in which the frequency of rare variants in a single extreme phenotypic group is compared to a control group (i.e., extreme phenotype vs. control population design). As proof-of-principle, we applied this approach to search for variants associated with risk for age-of-onset of chronic P. aeruginosa airway infection among individuals with CF and identified variants in CAV2 and TMC6 that were significantly associated with group status. These results were validated using a large, prospective, longitudinal CF cohort and confirmed a significant association of a variant in CAV2 with increased age-of-onset of P. aeruginosa airway infection (hazard ratio = 0.48, 95% CI=[0.32, 0.88]) and variants in TMC6 with diminished age-of-onset of P. aeruginosa airway infection (HR = 5.4, 95% CI=[2.2, 13.5]) A strong interaction between CAV2 and TMC6 variants was observed (HR=12.1, 95% CI=[3.8, 39]) for children with the deleterious TMC6 variant and without the CAV2 protective variant. Neither gene showed a significant association using an extreme phenotypes design, and conditions for which the power of an extreme phenotype vs. control population design was greater than that for the extreme phenotypes design were explored. Whole exome and whole genome sequencing provide the opportunity to test for associations between expressed traits and genetic variants that cannot be tested with chip technology, particularly variants that are too rare to be included on chips designed for genome-wide association analysis. We used exome sequencing to identify variants in CAV2 and TMC6 that modify the age-of-onset of chronic Pseudomonas aeruginosa infection among children with cystic fibrosis, and validated our findings in a large cohort of children with cystic fibrosis. For a fixed number of study participants, it is known that the extreme phenotypes design provides greater statistical power than a random sampling design. In the extreme phenotypes design, one compares the frequency of a given set of genetic variants in one extreme of age-of-onset (early onset) to that in the other extreme (late onset). Here, we employed an alternative design that compares genetic frequencies in exomes sampled from one extreme to that among exomes from a large set of controls. We show that this design confers substantially greater statistical power for discovery of CAV2 and TMC6 and provide general conditions under which this single extreme versus control design is more powerful than the extreme phenotypes design.
Collapse
|
18
|
Liu Y, Batchuluun B, Ho L, Zhu D, Prentice KJ, Bhattacharjee A, Zhang M, Pourasgari F, Hardy AB, Taylor KM, Gaisano H, Dai FF, Wheeler MB. Characterization of Zinc Influx Transporters (ZIPs) in Pancreatic β Cells: ROLES IN REGULATING CYTOSOLIC ZINC HOMEOSTASIS AND INSULIN SECRETION. J Biol Chem 2015; 290:18757-69. [PMID: 25969539 PMCID: PMC4513131 DOI: 10.1074/jbc.m115.640524] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Indexed: 12/12/2022] Open
Abstract
Zinc plays an essential role in the regulation of pancreatic β cell function, affecting important processes including insulin biosynthesis, glucose-stimulated insulin secretion, and cell viability. Mutations in the zinc efflux transport protein ZnT8 have been linked with both type 1 and type 2 diabetes, further supporting an important role for zinc in glucose homeostasis. However, very little is known about how cytosolic zinc is controlled by zinc influx transporters (ZIPs). In this study, we examined the β cell and islet ZIP transcriptome and show consistent high expression of ZIP6 (Slc39a6) and ZIP7 (Slc39a7) genes across human and mouse islets and MIN6 β cells. Modulation of ZIP6 and ZIP7 expression significantly altered cytosolic zinc influx in pancreatic β cells, indicating an important role for ZIP6 and ZIP7 in regulating cellular zinc homeostasis. Functionally, this dysregulated cytosolic zinc homeostasis led to impaired insulin secretion. In parallel studies, we identified both ZIP6 and ZIP7 as potential interacting proteins with GLP-1R by a membrane yeast two-hybrid assay. Knock-down of ZIP6 but not ZIP7 in MIN6 β cells impaired the protective effects of GLP-1 on fatty acid-induced cell apoptosis, possibly via reduced activation of the p-ERK pathway. Therefore, our data suggest that ZIP6 and ZIP7 function as two important zinc influx transporters to regulate cytosolic zinc concentrations and insulin secretion in β cells. In particular, ZIP6 is also capable of directly interacting with GLP-1R to facilitate the protective effect of GLP-1 on β cell survival.
Collapse
Affiliation(s)
- Ying Liu
- From the Department of Physiology, University of Toronto, Toronto, Ontario M5S 1A8, Canada and
| | - Battsetseg Batchuluun
- From the Department of Physiology, University of Toronto, Toronto, Ontario M5S 1A8, Canada and
| | - Louisa Ho
- From the Department of Physiology, University of Toronto, Toronto, Ontario M5S 1A8, Canada and
| | - Dan Zhu
- From the Department of Physiology, University of Toronto, Toronto, Ontario M5S 1A8, Canada and
| | - Kacey J Prentice
- From the Department of Physiology, University of Toronto, Toronto, Ontario M5S 1A8, Canada and
| | - Alpana Bhattacharjee
- From the Department of Physiology, University of Toronto, Toronto, Ontario M5S 1A8, Canada and
| | - Ming Zhang
- From the Department of Physiology, University of Toronto, Toronto, Ontario M5S 1A8, Canada and
| | - Farzaneh Pourasgari
- From the Department of Physiology, University of Toronto, Toronto, Ontario M5S 1A8, Canada and
| | - Alexandre B Hardy
- From the Department of Physiology, University of Toronto, Toronto, Ontario M5S 1A8, Canada and
| | - Kathryn M Taylor
- the Breast Cancer Molecular Pharmacology Unit, School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Redwood Building, King Edward VIIth Avenue, Cardiff CF10 3NB United Kingdom
| | - Herbert Gaisano
- From the Department of Physiology, University of Toronto, Toronto, Ontario M5S 1A8, Canada and
| | - Feihan F Dai
- From the Department of Physiology, University of Toronto, Toronto, Ontario M5S 1A8, Canada and
| | - Michael B Wheeler
- From the Department of Physiology, University of Toronto, Toronto, Ontario M5S 1A8, Canada and
| |
Collapse
|
19
|
Trzcińska-Daneluti AM, Chen A, Nguyen L, Murchie R, Jiang C, Moffat J, Pelletier L, Rotin D. RNA Interference Screen to Identify Kinases That Suppress Rescue of ΔF508-CFTR. Mol Cell Proteomics 2015; 14:1569-83. [PMID: 25825526 DOI: 10.1074/mcp.m114.046375] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Indexed: 01/08/2023] Open
Abstract
Cystic Fibrosis (CF) is an autosomal recessive disorder caused by mutations in the gene encoding the Cystic fibrosis transmembrane conductance regulator (CFTR). ΔF508-CFTR, the most common disease-causing CF mutant, exhibits folding and trafficking defects and is retained in the endoplasmic reticulum, where it is targeted for proteasomal degradation. To identify signaling pathways involved in ΔF508-CFTR rescue, we screened a library of endoribonuclease-prepared short interfering RNAs (esiRNAs) that target ∼750 different kinases and associated signaling proteins. We identified 20 novel suppressors of ΔF508-CFTR maturation, including the FGFR1. These were subsequently validated by measuring channel activity by the YFP halide-sensitive assay following shRNA-mediated knockdown, immunoblotting for the mature (band C) ΔF508-CFTR and measuring the amount of surface ΔF508-CFTR by ELISA. The role of FGFR signaling on ΔF508-CFTR trafficking was further elucidated by knocking down FGFRs and their downstream signaling proteins: Erk1/2, Akt, PLCγ-1, and FRS2. Interestingly, inhibition of FGFR1 with SU5402 administered to intestinal organoids (mini-guts) generated from the ileum of ΔF508-CFTR homozygous mice resulted in a robust ΔF508-CFTR rescue. Moreover, combination of SU5402 and VX-809 treatments in cells led to an additive enhancement of ΔF508-CFTR rescue, suggesting these compounds operate by different mechanisms. Chaperone array analysis on human bronchial epithelial cells harvested from ΔF508/ΔF508-CFTR transplant patients treated with SU5402 identified altered expression of several chaperones, an effect validated by their overexpression or knockdown experiments. We propose that FGFR signaling regulates specific chaperones that control ΔF508-CFTR maturation, and suggest that FGFRs may serve as important targets for therapeutic intervention for the treatment of CF.
Collapse
Affiliation(s)
- Agata M Trzcińska-Daneluti
- From the ‡Program in Cell Biology, The Hospital for Sick Children, Toronto, and Biochemistry Department, University of Toronto; PGCRL, 19-9715, 686 Bay St., Toronto, Ont., Canada, M5G 0A4
| | - Anthony Chen
- From the ‡Program in Cell Biology, The Hospital for Sick Children, Toronto, and Biochemistry Department, University of Toronto; PGCRL, 19-9715, 686 Bay St., Toronto, Ont., Canada, M5G 0A4
| | - Leo Nguyen
- From the ‡Program in Cell Biology, The Hospital for Sick Children, Toronto, and Biochemistry Department, University of Toronto; PGCRL, 19-9715, 686 Bay St., Toronto, Ont., Canada, M5G 0A4
| | - Ryan Murchie
- From the ‡Program in Cell Biology, The Hospital for Sick Children, Toronto, and Biochemistry Department, University of Toronto; PGCRL, 19-9715, 686 Bay St., Toronto, Ont., Canada, M5G 0A4
| | - Chong Jiang
- From the ‡Program in Cell Biology, The Hospital for Sick Children, Toronto, and Biochemistry Department, University of Toronto; PGCRL, 19-9715, 686 Bay St., Toronto, Ont., Canada, M5G 0A4
| | | | | | - Daniela Rotin
- From the ‡Program in Cell Biology, The Hospital for Sick Children, Toronto, and Biochemistry Department, University of Toronto; PGCRL, 19-9715, 686 Bay St., Toronto, Ont., Canada, M5G 0A4
| |
Collapse
|
20
|
Tildy BE, Rogers DF. Therapeutic options for hydrating airway mucus in cystic fibrosis. Pharmacology 2015; 95:117-32. [PMID: 25823699 DOI: 10.1159/000377638] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Accepted: 02/01/2015] [Indexed: 11/19/2022]
Abstract
BACKGROUND In cystic fibrosis (CF), genetic mutations in the CF transmembrane conductance regulator (CFTR) gene cause reduced chloride efflux from ciliated airway epithelial cells. This results in a reduction in periciliary liquid (PCL) depth of the airway surface liquid due to associated reduced water efflux. PCL layer dehydration reduces mucociliary clearance (MCC), leading to airway obstruction (reduced airflow and inflammation due to pathogen invasion) with mucus plug formation. SUMMARY Rehydrating mucus increases MCC. Mucus hydration can be achieved by direct hydration (administering osmotic agents to set up an osmotic gradient), using CFTR modulators to correct dysfunctional CFTR, or it can be achieved pharmacologically (targeting other ion channels on airway epithelial cells). Key Messages: The molecular mechanisms of several therapies are discussed in the context of pre-clinical and clinical trial studies. Currently, only the osmotic agent 7% hypertonic saline and the CFTR 'potentiator' VX-770 (ivacaftor) are used clinically to hydrate mucus. Emerging therapies include the osmotic agent mannitol (Bronchitol), the intracellular Ca(2+)-raising agent Moli1901/lancovutide, the CFTR potentiator sildenafil [phosphodiesterase type 5 (PDE5) inhibitor] and the CFTR 'corrector' VX-809 (lumacaftor). Other CFTR correctors (e.g. 'chemical chaperones') are also showing pre-clinical promise.
Collapse
|
21
|
Eckford P, Ramjeesingh M, Molinski S, Pasyk S, Dekkers JF, Li C, Ahmadi S, Ip W, Chung T, Du K, Yeger H, Beekman J, Gonska T, Bear C. VX-809 and Related Corrector Compounds Exhibit Secondary Activity Stabilizing Active F508del-CFTR after Its Partial Rescue to the Cell Surface. ACTA ACUST UNITED AC 2014; 21:666-78. [DOI: 10.1016/j.chembiol.2014.02.021] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2013] [Revised: 02/22/2014] [Accepted: 02/25/2014] [Indexed: 12/11/2022]
|
22
|
Abstract
Cystic Fibrosis Transmembrane conductance Regulator, CFTR, is a membrane protein expressed in epithelia. A protein kinase A (PKA)-regulated Cl(-) channel, it is a rate-limiting factor in fluid transport. Mutations in CFTR are responsible for cystic fibrosis, CF, an autosomal recessive disease. The most frequent mutation is deletion of phenylalanine at position 508, ΔF508. The regulation of trafficking and degradation of CFTR/ΔF508CFTR as well as its function(s) is a complex process which involves a number of proteins including chaperones and adaptors. It is now known that cytoskeletal proteins, previously considered only as structural proteins, are also important factors in the regulation of cellular processes and functions. The aim of the present review is to focus on how microfilaments, microtubules and intermediary filaments form a dynamic interactome with CFTR to participate in the regulation of CFTR-dependent transepithelial ion transport, CFTR trafficking and degradation.
Collapse
|
23
|
Kolb AR, Needham PG, Rothenberg C, Guerriero CJ, Welling PA, Brodsky JL. ESCRT regulates surface expression of the Kir2.1 potassium channel. Mol Biol Cell 2013; 25:276-89. [PMID: 24227888 PMCID: PMC3890348 DOI: 10.1091/mbc.e13-07-0394] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The Kir2.1 potassium channel is targeted by endoplasmic reticulum–associated degradation in yeast. To identify other Kir2.1 quality control factors, a novel yeast screen was performed. ESCRT components were among the strongest hits from the screen. Consistent with these data, ESCRT also regulates Kir2.1 stability in human cells. Protein quality control (PQC) is required to ensure cellular health. PQC is recognized for targeting the destruction of defective polypeptides, whereas regulated protein degradation mechanisms modulate the concentration of specific proteins in concert with physiological demands. For example, ion channel levels are physiologically regulated within tight limits, but a system-wide approach to define which degradative systems are involved is lacking. We focus on the Kir2.1 potassium channel because altered Kir2.1 levels lead to human disease and Kir2.1 restores growth on low-potassium medium in yeast mutated for endogenous potassium channels. Using this system, first we find that Kir2.1 is targeted for endoplasmic reticulum–associated degradation (ERAD). Next a synthetic gene array identifies nonessential genes that negatively regulate Kir2.1. The most prominent gene family that emerges from this effort encodes members of endosomal sorting complex required for transport (ESCRT). ERAD and ESCRT also mediate Kir2.1 degradation in human cells, with ESCRT playing a more prominent role. Thus multiple proteolytic pathways control Kir2.1 levels at the plasma membrane.
Collapse
Affiliation(s)
- Alexander R Kolb
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15261 Department of Physiology, University of Maryland School of Medicine, Baltimore, MD 21201
| | | | | | | | | | | |
Collapse
|
24
|
Schuldiner M, Weissman JS. The contribution of systematic approaches to characterizing the proteins and functions of the endoplasmic reticulum. Cold Spring Harb Perspect Biol 2013; 5:a013284. [PMID: 23359093 DOI: 10.1101/cshperspect.a013284] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The endoplasmic reticulum (ER) is a complex organelle responsible for a range of functions including protein folding and secretion, lipid biosynthesis, and ion homeostasis. Despite its central and essential roles in eukaryotic cells during development, growth, and disease, many ER proteins are poorly characterized. Moreover, the range of biochemical reactions that occur within the ER membranes, let alone how these different activities are coordinated, is not yet defined. In recent years, focused studies on specific ER functions have been complemented by systematic approaches and innovative technologies for high-throughput analysis of the location, levels, and biological impact of given components. This article focuses on the recent progress of these efforts, largely pioneered in the budding yeast Saccharomyces cerevisiae, and also addresses how future systematic studies can be geared to uncover the "dark matter" of uncharted ER functions.
Collapse
Affiliation(s)
- Maya Schuldiner
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel 76100.
| | | |
Collapse
|
25
|
Trzcinska-Daneluti AM, Nguyen L, Jiang C, Fladd C, Uehling D, Prakesch M, Al-awar R, Rotin D. Use of kinase inhibitors to correct ΔF508-CFTR function. Mol Cell Proteomics 2012; 11:745-57. [PMID: 22700489 DOI: 10.1074/mcp.m111.016626] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The most common mutation in cystic fibrosis (CF) is a deletion of Phe at position 508 (ΔF508-CFTR). ΔF508-CFTR is a trafficking mutant that is retained in the ER, unable to reach the plasma membrane. To identify compounds and drugs that rescue this trafficking defect, we screened a kinase inhibitor library enriched for small molecules already in the clinic or in clinical trials for the treatment of cancer and inflammation, using our recently developed high-content screen technology (Trzcinska-Daneluti et al. Mol. Cell. Proteomics 8:780, 2009). The top hits of the screen were further validated by (1) biochemical analysis to demonstrate the presence of mature (Band C) ΔF508-CFTR, (2) flow cytometry to reveal the presence of ΔF508-CFTR at the cell surface, (3) short-circuit current (Isc) analysis in Ussing chambers to show restoration of function of the rescued ΔF508-CFTR in epithelial MDCK cells stably expressing this mutant (including EC(50) determinations), and importantly (4) Isc analysis of Human Bronchial Epithelial (HBE) cells harvested from homozygote ΔF508-CFTR transplant patients. Interestingly, several inhibitors of receptor Tyr kinases (RTKs), such as SU5402 and SU6668 (which target FGFRs, VEGFR, and PDGFR) exhibited strong rescue of ΔF508-CFTR, as did several inhibitors of the Ras/Raf/MEK/ERK or p38 pathways (e.g. (5Z)-7-oxozeaenol). Prominent rescue was also observed by inhibitors of GSK-3β (e.g. GSK-3β Inhibitor II and Kenpaullone). These results identify several kinase inhibitors that can rescue ΔF508-CFTR to various degrees, and suggest that use of compounds or drugs already in the clinic or in clinical trials for other diseases can expedite delivery of treatment for CF patients.
Collapse
|
26
|
Rimon N, Schuldiner M. Getting the whole picture: combining throughput with content in microscopy. J Cell Sci 2012; 124:3743-51. [PMID: 22124141 DOI: 10.1242/jcs.087486] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The increasing availability and performance of automated scientific equipment in the past decades have brought about a revolution in the biological sciences. The ease with which data can now be generated has led to a new culture of high-throughput science, in which new types of biological questions can be asked and tackled in a systematic and unbiased manner. High-throughput microscopy, also often referred to as high-content screening (HCS), allows acquisition of systematic data at the single-cell level. Moreover, it allows the visualization of an enormous array of cellular features and provides tools to quantify a large number of parameters for each cell. These features make HCS a powerful method to create data that is rich and biologically meaningful without compromising systematic capabilities. In this Commentary, we will discuss recent work, which has used HCS, to demonstrate the diversity of applications and technological solutions that are evolving in this field. Such advances are placing HCS methodologies at the frontier of high-throughput science and enable scientists to combine throughput with content to address a variety of cell biological questions.
Collapse
Affiliation(s)
- Nitzan Rimon
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel 76100
| | | |
Collapse
|
27
|
Kwon YJ, Lee W, Genovesio A, Emans N. A high-content subtractive screen for selecting small molecules affecting internalization of GPCRs. ACTA ACUST UNITED AC 2011; 17:379-85. [PMID: 22086721 DOI: 10.1177/1087057111427347] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
G-protein-coupled receptors (GPCRs) are pivotal in cellular responses to the environment and are common drug targets. Identification of selective small molecules acting on single GPCRs is complicated by the shared machinery coupling signal transduction to physiology. Here, we demonstrate a high-content screen using a panel of GPCR assays to identify receptor selective molecules acting within the kinase/phosphatase inhibitor family. A collection of 88 kinase and phosphatase inhibitors was screened against seven agonist-induced GPCR internalization cell models as well as transferrin uptake in human embryonic kidney cells. Molecules acting on a single receptor were identified through excluding pan-specific compounds affecting housekeeping endocytosis or disrupting internalization of multiple receptors. We identified compounds acting on a sole GPCR from activities in a broad range of chemical structures that could not be easily sorted by conventional means. Selective analysis can therefore rapidly select compounds selectively affecting GPCR activity with specificity to one receptor class through high-content screening.
Collapse
|
28
|
Colas J, Faure G, Saussereau E, Trudel S, Rabeh WM, Bitam S, Guerrera IC, Fritsch J, Sermet-Gaudelus I, Davezac N, Brouillard F, Lukacs GL, Herrmann H, Ollero M, Edelman A. Disruption of cytokeratin-8 interaction with F508del-CFTR corrects its functional defect. Hum Mol Genet 2011; 21:623-34. [PMID: 22038833 DOI: 10.1093/hmg/ddr496] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
We have previously reported an increased expression of cytokeratins 8/18 (K8/K18) in cells expressing the F508del mutation of cystic fibrosis transmembrane conductance regulator (CFTR). This is associated with increased colocalization of CFTR and K18 in the vicinity of the endoplasmic reticulum, although this is reversed by treating cells with curcumin, resulting in the rescue of F508del-CFTR. In the present work, we hypothesized that (i) the K8/K18 network may interact physically with CFTR, and that (ii) this interaction may modify CFTR function. CFTR was immunoprecipitated from HeLa cells transfected with either wild-type (WT) CFTR or F508del-CFTR. Precipitates were subjected to 2D-gel electrophoresis and differential spots identified by mass spectrometry. K8 and K18 were found significantly increased in F508del-CFTR precipitates. Using surface plasmon resonance, we demonstrate that K8, but not K18, binds directly and preferentially to the F508del over the WT human NBD1 (nucleotide-binding domain-1). In vivo K8 interaction with F508del-CFTR was confirmed by proximity ligation assay in HeLa cells and in primary cultures of human respiratory epithelial cells. Ablation of K8 expression by siRNA in F508del-expressing HeLa cells led to the recovery of CFTR-dependent iodide efflux. Moreover, F508del-expressing mice topically treated with K8-siRNA showed restored nasal potential difference, equivalent to that of WT mice. These results show that disruption of F508del-CFTR and K8 interaction leads to the correction of the F508del-CFTR processing defect, suggesting a novel potential therapeutic target in CF.
Collapse
Affiliation(s)
- Julien Colas
- Faculté de Médecine Paris-Descartes, INSERM, U845, Paris, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Rogan MP, Stoltz DA, Hornick DB. Cystic fibrosis transmembrane conductance regulator intracellular processing, trafficking, and opportunities for mutation-specific treatment. Chest 2011; 139:1480-1490. [PMID: 21652558 DOI: 10.1378/chest.10-2077] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Recent advances in basic science have greatly expanded our understanding of the cystic fibrosis (CF) transmembrane conductance regulator (CFTR), the chloride and bicarbonate channel that is encoded by the gene, which is mutated in patients with CF. We review the structure, function, biosynthetic processing, and intracellular trafficking of CFTR and discuss the five classes of mutations and their impact on the CF phenotype. The therapeutic discussion is focused on the significant progress toward CFTR mutation-specific therapies. We review the results of encouraging clinical trials examining orally administered therapeutics, including agents that promote read-through of class I mutations (premature termination codons); correctors, which overcome the CFTR misfolding that characterizes the common class II mutation F508del; and potentiators, which enhance the function of class III or IV mutated CFTR at the plasma membrane. Long-term outcomes from successful mutation-specific treatments could finally answer the question that has been lingering since and even before the CFTR gene discovery: Will therapies that specifically restore CFTR-mediated chloride secretion slow or arrest the deleterious cascade of events leading to chronic infection, bronchiectasis, and end-stage lung disease?
Collapse
Affiliation(s)
- Mark P Rogan
- Department of Respiratory Medicine, Waterford Regional Hospital, Waterford, Ireland
| | - David A Stoltz
- Department of Internal Medicine, Division of Pulmonary, Critical Care, and Occupational Medicine, University of Iowa Roy J. and Lucille A. Carver College of Medicine, Iowa City, IA
| | - Douglas B Hornick
- Department of Internal Medicine, Division of Pulmonary, Critical Care, and Occupational Medicine, University of Iowa Roy J. and Lucille A. Carver College of Medicine, Iowa City, IA.
| |
Collapse
|
30
|
Abstract
With knowledge of the molecular behaviour of the cystic fibrosis transmembrane conductance regulator (CFTR), its physiological role and dysfunction in cystic fibrosis (CF), therapeutic strategies are now being developed that target the root cause of CF rather than disease symptoms. Here, we review progress towards the development of rational new therapies for CF. We highlight the discovery of small molecules that rescue the cell surface expression and defective channel gating of CF mutants, termed CFTR correctors and CFTR potentiators, respectively. We draw attention to alternative approaches to restore epithelial ion transport to CF epithelia, including inhibitors of the epithelial Na(+) channel (ENaC) and activators of the Ca(2+)-activated Cl(-) channel TMEM16A. The expertise required to translate small molecules identified in the laboratory to drugs for CF patients depends on our ability to coordinate drug development at an international level and our ability to provide pertinent biological information using suitable disease models.
Collapse
|
31
|
Witte K, Schuh AL, Hegermann J, Sarkeshik A, Mayers JR, Schwarze K, Yates JR, Eimer S, Audhya A. TFG-1 function in protein secretion and oncogenesis. Nat Cell Biol 2011; 13:550-8. [PMID: 21478858 PMCID: PMC3311221 DOI: 10.1038/ncb2225] [Citation(s) in RCA: 149] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2010] [Accepted: 02/07/2011] [Indexed: 12/17/2022]
Abstract
Export of proteins from the endoplasmic reticulum in COPII-coated vesicles occurs at defined sites that contain the scaffolding protein Sec16. We identify TFG-1, a new conserved regulator of protein secretion that interacts directly with SEC-16 and controls the export of cargoes from the endoplasmic reticulum in Caenorhabditis elegans. Hydrodynamic studies indicate that TFG-1 forms hexamers that facilitate the co-assembly of SEC-16 with COPII subunits. Consistent with these findings, TFG-1 depletion leads to a marked decline in both SEC-16 and COPII levels at endoplasmic reticulum exit sites. The sequence encoding the amino terminus of human TFG has been previously identified in chromosome translocation events involving two protein kinases, which created a pair of oncogenes. We propose that fusion of these kinases to TFG relocalizes their activities to endoplasmic reticulum exit sites, where they prematurely phosphorylate substrates during endoplasmic reticulum export. Our findings provide a mechanism by which translocations involving TFG can result in cellular transformation and oncogenesis.
Collapse
Affiliation(s)
- Kristen Witte
- Department of Biomolecular Chemistry, University of Wisconsin-Madison Medical School, 1300 University Avenue, Madison, WI, 53706, USA
| | - Amber L. Schuh
- Department of Biomolecular Chemistry, University of Wisconsin-Madison Medical School, 1300 University Avenue, Madison, WI, 53706, USA
| | - Jan Hegermann
- European Neuroscience Institute and Center for Molecular Physiology of the Brain (CMPB), 37077 Goettingen, Germany
| | - Ali Sarkeshik
- Department of Cell Biology, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Jonathan R. Mayers
- Department of Biomolecular Chemistry, University of Wisconsin-Madison Medical School, 1300 University Avenue, Madison, WI, 53706, USA
| | - Katrin Schwarze
- European Neuroscience Institute and Center for Molecular Physiology of the Brain (CMPB), 37077 Goettingen, Germany
| | - John R. Yates
- Department of Cell Biology, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Stefan Eimer
- European Neuroscience Institute and Center for Molecular Physiology of the Brain (CMPB), 37077 Goettingen, Germany
| | - Anjon Audhya
- Department of Biomolecular Chemistry, University of Wisconsin-Madison Medical School, 1300 University Avenue, Madison, WI, 53706, USA
| |
Collapse
|
32
|
Wright JM, Joseloff E, Nikolsky Y, Serebriyskaya T, Wetmore D. Interactions between an inflammatory response to infection and protein trafficking pathways favor correction of defective protein trafficking in Cystic Fibrosis. Bioinformation 2010; 5:228-33. [PMID: 21364822 PMCID: PMC3055700 DOI: 10.6026/97320630005228] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2010] [Accepted: 10/10/2010] [Indexed: 02/06/2023] Open
Abstract
One unresolved issue in Cystic Fibrosis research is how functional loss of CFTR, a protein involved in chloride transport, results in chronic lung
inflammation. Large scale experiments investigating protein or gene expression changes due to altered trafficking of the most common disease causing
CFTR mutation (ΔF508) have produced long lists of changes with no apparent connection to inflammation. Likewise, experiments documenting the
effects of inflammation in bronchial epithelial cell lines have yielded no insights into CFTR trafficking. We used MetaMiner CF to combine and analyze
results of several CFTR trafficking and epithelial response to infection studies which were on different platforms using different methodologies and had
different objectives. The program searches a manually curated database for published experiments linking proteins or genes and displays the interactions
in a more easily understood graphic format. Numerous connections were established between genes documented to correct ΔF508 trafficking and a list of
genes differentially expressed in bronchial epithelial cells after exposure to bacteria or virus. Of 34 genes documented to correct ΔF508 trafficking, 9 were
directly linked by positive expression activation mechanisms to the immune inflammatory response. Looking at interactions among the results as a whole
and in detail, it is apparent that an inflammatory response produces numerous changes which favor correct trafficking of ΔF508. One can take a view of
the inflammatory process as potentially a corrective mechanism for dysfunctional ΔF508 trafficking. This opens up a new research direction and provides
new targets in the search for disease treatments.
Collapse
Affiliation(s)
- Jerry Mobley Wright
- Department of Physiology, Johns Hopkins Medical Institutions, 725 N.Wolfe St. Baltimore, MD 21205
- Jerry Mobley Wright: Phone: 443- 803-5416
| | | | | | | | | |
Collapse
|
33
|
Lin S, Sui J, Cotard S, Fung B, Andersen J, Zhu P, El Messadi N, Lehar J, Lee M, Staunton J. Identification of synergistic combinations of F508del cystic fibrosis transmembrane conductance regulator (CFTR) modulators. Assay Drug Dev Technol 2010; 8:669-84. [PMID: 21050065 DOI: 10.1089/adt.2010.0313] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Cystic fibrosis (CF) is an inherited, life-threatening disease caused by mutations in the gene encoding cystic fibrosis transmembrane conductance regulator (CFTR), an ABC transporter-class protein and ion channel that transports ions across epithelial cell membranes. The most common mutation leads to the deletion of a single phenylalanine, and the resulting protein, F508del-CFTR, shows reduced trafficking to the membrane and defective channel gating. The ideal therapeutic approach would address both of these defects and restore channel function at the same time. We describe here the application of a combination high-throughput screening to search for synergistic modulators of F508del-CFTR. With the adapted Fischer rat thyroid-yellow fluorescent protein halide flux assay to the combination high-throughput screening platform, we identified many interesting single agents as CFTR modulators from a library of approved drugs and mechanistic probe compounds, and combinations that synergistically modulate F508del-CFTR channel function in Fischer rat thyroid cells, demonstrating the potential for combination therapeutics to address the defects that cause CF.
Collapse
Affiliation(s)
- Stephen Lin
- Zalicus, Inc., Cambridge, Massachusetts, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Abstract
Redox biochemistry is increasingly recognized as an integral component of cellular signal processing and cell fate decision making. Unfortunately, our capabilities to observe and measure clearly defined redox processes in the natural context of living cells, tissues, or organisms are woefully limited. The most advanced and promising tools for specific, quantitative, dynamic and compartment-specific observations are genetically encoded redox probes derived from green fluorescent protein (GFP). Within only few years from their initial introduction, redox-sensitive yellow FP (rxYFP), redox-sensitive GFPs (roGFPs), and HyPer have generated enormous interest in applying these novel tools to monitor dynamic redox changes in vivo. As genetically encoded probes, these biosensors can be specifically targeted to different subcellular locations. A critical advantage of roGFPs and HyPer is their ratiometric fluorogenic behavior. Moreover, the probe scaffold of redox-sensitive fluorescent proteins (rxYFP and roGFPs) is amenable to molecular engineering, offering fascinating prospects for further developments. In particular, the engineering of redox relays between roGFPs and redox enzymes allows control of probe specificity and enhancement of sensitivity. Genetically encoded redox probes enable the functional analysis of individual proteins in cellular redox homeostasis. In addition, redox biosensor transgenic model organisms offer extended opportunities for dynamic in vivo imaging of redox processes.
Collapse
Affiliation(s)
- Andreas J Meyer
- Heidelberg Institute for Plant Science, Heidelberg University, Heidelberg, Germany
| | | |
Collapse
|
35
|
Henderson MJ, Singh OV, Zeitlin PL. Applications of proteomic technologies for understanding the premature proteolysis of CFTR. Expert Rev Proteomics 2010; 7:473-86. [PMID: 20653504 PMCID: PMC2924573 DOI: 10.1586/epr.10.42] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Cystic fibrosis (CF) is caused by mutations in the CF transmembrane conductance regulator (CFTR) gene, which encodes an ATP-dependent anion channel. Disease-causing mutations can affect channel biogenesis, trafficking or function, and result in reduced ion transport at the apical surface of many tissues. The most common CFTR mutation is a deletion of phenylalanine at position 508 (DeltaF508), which results in a misfolded protein that is prematurely targeted for degradation. This article focuses on how proteomic approaches have been utilized to explore the mechanisms of premature proteolysis in CF. Additionally, we emphasize the potential for proteomic-based technologies in expanding our understanding of CF pathophysiology and therapeutic approaches.
Collapse
Affiliation(s)
- Mark J Henderson
- Department of Pediatrics, Johns Hopkins School of Medicine, Baltimore, MD 21287, USA
| | - Om V Singh
- Division of Biological and Health Sciences, University of Pittsburgh, Bradford, PA 16701, USA
| | - Pamela L Zeitlin
- Department of Pediatrics, Johns Hopkins School of Medicine, Baltimore, MD 21287, USA
| |
Collapse
|
36
|
Collawn JF, Fu L, Bebok Z. Targets for cystic fibrosis therapy: proteomic analysis and correction of mutant cystic fibrosis transmembrane conductance regulator. Expert Rev Proteomics 2010; 7:495-506. [PMID: 20653506 PMCID: PMC2927865 DOI: 10.1586/epr.10.45] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Proteomic analysis has proved to be an important tool for understanding the complex nature of genetic disorders, such as cystic fibrosis (CF), by defining the cellular protein environment (proteome) associated with wild-type and mutant proteins. Proteomic screens identified the proteome of CF transmembrane conductance regulator (CFTR), and provided fundamental information to studies designed for understanding the crucial components of physiological CFTR function. Simultaneously, high-throughput screens for small-molecular correctors of CFTR mutants provided promising candidates for therapy. The majority of CF cases are caused by nucleotide deletions (DeltaF508 CFTR; >75%), resulting in CFTR misfolding, or insertion of premature termination codons ( approximately 10%), leading to unstable mRNA and reduced levels of truncated dysfunctional CFTR. In this article, we review recent results of proteomic screens, developments in identifying correctors for the most frequent CFTR mutants, and comment on how integration of the knowledge gained from these studies may aid in finding a cure for CF and a number of other genetic disorders.
Collapse
Affiliation(s)
- James F Collawn
- University of Alabama at Birmingham, Department of Cell Biology, Birmingham, AL, USA.
| | | | | |
Collapse
|
37
|
Robert R, Carlile GW, Liao J, Balghi H, Lesimple P, Liu N, Kus B, Rotin D, Wilke M, de Jonge HR, Scholte BJ, Thomas DY, Hanrahan JW. Correction of the Delta phe508 cystic fibrosis transmembrane conductance regulator trafficking defect by the bioavailable compound glafenine. Mol Pharmacol 2010; 77:922-30. [PMID: 20200141 DOI: 10.1124/mol.109.062679] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/14/2025] Open
Abstract
Cystic fibrosis (CF) is caused by mutations in the CF transmembrane conductance regulator (CFTR) gene, which encodes a cAMP-activated anion channel expressed in epithelial cells. The most common mutation Delta Phe508 leads to protein misfolding, retention by the endoplasmic reticulum, and degradation. One promising therapeutic approach is to identify drugs that have been developed for other indications but that also correct the CFTR trafficking defect, thereby exploiting their known safety and bioavailability in humans and reducing the time required for clinical development. We have screened approved, marketed, and off-patent drugs with known safety and bioavailability using a Delta Phe508-CFTR trafficking assay. Among the confirmed hits was glafenine, an anthranilic acid derivative with analgesic properties. Its ability to correct the misprocessing of CFTR was confirmed by in vitro and in vivo studies using a concentration that is achieved clinically in plasma (10 microM). Glafenine increased the surface expression of Delta Phe508-CFTR in baby hamster kidney (BHK) cells to approximately 40% of that observed for wild-type CFTR, comparable with the known CFTR corrector 4-cyclohexyloxy-2-{1-[4-(4-methoxybenzensulfonyl)-piperazin-1-yl]-ethyl}-quinazoline (VRT-325). Partial correction was confirmed by the appearance of mature CFTR in Western blots and by two assays of halide permeability in unpolarized BHK and human embryonic kidney cells. Incubating polarized CFBE41o(-) monolayers and intestines isolated from Delta Phe508-CFTR mice (treated ex vivo) with glafenine increased the short-circuit current (I(sc)) response to forskolin + genistein, and this effect was abolished by 10 microM CFTR(inh)172. In vivo treatment with glafenine also partially restored total salivary secretion. We conclude that the discovery of glafenine as a CFTR corrector validates the approach of investigating existing drugs for the treatment of CF, although localized delivery or further medicinal chemistry may be needed to reduce side effects.
Collapse
Affiliation(s)
- Renaud Robert
- Physiology Department, McGill University, Montreal, Quebec, H3G 1Y6, Canada
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Greco A, Miranda C, Pierotti MA. Rearrangements of NTRK1 gene in papillary thyroid carcinoma. Mol Cell Endocrinol 2010; 321:44-9. [PMID: 19883730 DOI: 10.1016/j.mce.2009.10.009] [Citation(s) in RCA: 136] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2009] [Revised: 09/18/2009] [Accepted: 10/20/2009] [Indexed: 12/27/2022]
Abstract
TRK oncogenes are observed in a consistent fraction of papillary thyroid carcinoma (PTC); they arise from the fusion of the 3' terminal sequences of the NTRK1/NGF receptor gene with 5' terminal sequences of various activating genes, such as TPM3, TPR and TFG. TRK oncoproteins display constitutive tyrosine-kinase activity, leading to in vitro and in vivo transformation. In this review studies performed during the last 20 years will be summarized. The following topics will be illustrated: (a) frequency of TRK oncogenes and correlation with radiation and tumor histopathological features; (b) molecular mechanisms underlying NTRK1 oncogenic rearrangements; (c) molecular and biochemical characterization of TRK oncoproteins, and their mechanism of action; (d) role of activating sequences in the activation of TRK oncoproteins.
Collapse
Affiliation(s)
- A Greco
- Department of Experimental Oncology and Laboratory, Operative Unit 3 Molecular Mechanisms of Cancer Growth and Progression, Fondazione IRCCS - Istituto Nazionale dei Tumori, Via G. Venezian 1, 20133 Milan, Italy.
| | | | | |
Collapse
|
39
|
Randlev B, Huang LC, Watatsu M, Marcus M, Lin A, Shih SJ. Validation of a quantitative flow cytometer assay for monitoring HER-2/neu expression level in cell-based cancer immunotherapy products. Biologicals 2010; 38:249-59. [PMID: 20080049 DOI: 10.1016/j.biologicals.2009.12.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2009] [Revised: 10/08/2009] [Accepted: 12/02/2009] [Indexed: 11/26/2022] Open
Abstract
GVAX immunotherapy for prostate cancer is comprised of two genetically modified prostate cancer cell lines, CG1940 and CG8711, engineered to secrete granulocyte macrophage-colony-stimulating factor. As part of the matrix of potency assays, CG1940 and CG8711 are tested for the expression level of cell surface HER-2/neu using a quantitative flow cytometer assay. This assay reports the antibody binding capacity value of the cells as a measure of HER-2/neu expression using cells immediately after thawing from cryogenic storage. With optimized cell handling and staining procedure and appropriate system suitability controls, the assay was validated as a quantitative assay. The validation results showed that assay accuracy, specificity, precision, linearity, and range were suitable for the intended use of ensuring lot-to-lot consistency of HER-2/neu expression. Assay robustness was demonstrated using design of experiments that evaluated critical assay parameters. Finally, the assay was successfully transferred to a current good manufacturing practice Quality Control laboratory in a separate facility. Since the overall precision of this assay is better than that of ELISA methods and it can be performed with ease and high throughput, quantitative flow cytometer-based assays may be an appropriate immunological assay platform for Quality Control laboratories for characterization and release of cell-based therapies.
Collapse
Affiliation(s)
- Britta Randlev
- Assay Development, Cell Genesys, Inc., 500 Forbes Boulevard, South San Francisco, CA 94404, USA
| | | | | | | | | | | |
Collapse
|
40
|
Simpson JC. Screening the secretion machinery: High throughput imaging approaches to elucidate the secretory pathway. Semin Cell Dev Biol 2009; 20:903-9. [DOI: 10.1016/j.semcdb.2009.07.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2009] [Revised: 07/08/2009] [Accepted: 07/28/2009] [Indexed: 10/20/2022]
|
41
|
Gasparri F. An overview of cell phenotypes in HCS: limitations and advantages. Expert Opin Drug Discov 2009; 4:643-57. [DOI: 10.1517/17460440902992870] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
42
|
Functional Rescue of DeltaF508-CFTR by Peptides Designed to Mimic Sorting Motifs. ACTA ACUST UNITED AC 2009; 16:520-30. [DOI: 10.1016/j.chembiol.2009.04.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2008] [Revised: 04/05/2009] [Accepted: 04/13/2009] [Indexed: 11/17/2022]
|
43
|
Spence J. Pathway prediction by bioinformatic analysis of the untranslated regions of the CFTR mRNA. Genomics 2009; 94:39-47. [PMID: 19306924 DOI: 10.1016/j.ygeno.2009.03.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2009] [Revised: 03/07/2009] [Accepted: 03/11/2009] [Indexed: 11/17/2022]
Abstract
Mining the information contained within the genetic code in untranslated regions has proven difficult because of the ambiguity of microRNA and protein binding sites. This manuscript describes a bioinformatic screen that identifies long sequences with partial identity to the untranslated regions of the cystic fibrosis transmembrane regulator. This screen uncovered a long, evolutionarily conserved motif common to the 3' UTRs of the CFTR and SEC24A transcripts, and shorter, statistically significant motifs unique to either 5' or 3' UTRs. In addition, of the 140 transcripts identified in the screen that encode proteins with known protein interactions, 130 are linked to CFTR through protein interactions. The screen identified genes that are known to be involved in lung fibrosis, the inflammatory response of cystic fibrosis and sensitivity to Pseudomonas aeruginosa infections. The bioinformatic analysis of untranslated regions should prove to be a powerful adjunct to other tools for predicting pathways and relevant interactions.
Collapse
Affiliation(s)
- Jean Spence
- Omnitron Biosciences, P.O. Box 601002, San Diego, CA 92160, USA.
| |
Collapse
|