1
|
Greco PS, Hesson AM, Mozurkewich E, Berman DR. Urinary metabolites as a predictive marker for perinatal depression: A secondary analysis of the mothers, Omega-3 & Mental Health Study. PSYCHIATRY RESEARCH COMMUNICATIONS 2022; 2. [PMID: 35958051 PMCID: PMC9364841 DOI: 10.1016/j.psycom.2022.100046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Background: Perinatal depression has been associated with unfavorable pregnancy and childhood development outcomes; however, no objective markers exist to identify perinatal mood disorders. We investigated whether metabolites in maternal urine during pregnancy can predict increased depressive symptoms in late pregnancy and postpartum among pregnant women at risk for perinatal depression. Methods: We evaluated metabolomic markers in urine collected at 12–20 and 34–36 weeks’ gestation. We analyzed 49 urinary metabolites using ion pairing reversed-phase liquid chromatography-mass spectrometry. Depressive symptom severity was identified using Beck Depression Inventory (BDI) scores from 105 participants at 12–20 and 34–36 weeks’ gestation, and 6–8 weeks’ postpartum. Mixed model repeated measures analysis evaluated associations between changes in maternal urinary metabolites and BDI scores across pregnancy. Results: Increases in urinary xanthine and hypoxanthine were positively associated with increases in maternal depressive symptoms throughout pregnancy (p = 0.03 and 0.02, respectively). This finding did not persist after false discovery rate correction. None of the urinary metabolites examined were significantly associated with development of postpartum depressive symptoms. Limitations: This study is an exploratory secondary biologic sample analysis from a trial whose sample size was determined by a different primary outcome and expected effect size, which may have limited statistical power to detect associations between urinary metabolites, depressive symptoms, and mood trajectory over time. Conclusions: Increasing concentrations of xanthine and hypoxanthine were associated with increasing depressive symptoms throughout pregnancy. Further research is needed to evaluate the utility of these metabolic markers in identifying women at risk for perinatal depressive symptoms.
Collapse
Affiliation(s)
- Patricia S. Greco
- University of Michigan, Department of Obstetrics and Gynecology, United States
- Corresponding author. 1500 E. Medical Center Dr. Ann Arbor, MI 48109 260, United States. , (P.S. Greco)
| | - Ashley M. Hesson
- University of Michigan, Department of Obstetrics and Gynecology, United States
| | - Ellen Mozurkewich
- University of New Mexico, Department of Obstetrics and Gynecology, United States
| | - Deborah R. Berman
- University of Michigan, Department of Obstetrics and Gynecology, United States
| |
Collapse
|
2
|
Xia YR, Wei XC, Li WS, Yan QJ, Wu XL, Yao W, Li XH, Zhu F. CPEB1, a novel risk gene in recent-onset schizophrenia, contributes to mitochondrial complex I defect caused by a defective provirus ERVWE1. World J Psychiatry 2021; 11:1075-1094. [PMID: 34888175 PMCID: PMC8613759 DOI: 10.5498/wjp.v11.i11.1075] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 07/26/2021] [Accepted: 08/25/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Schizophrenia afflicts 1% of the world population. Clinical studies suggest that schizophrenia patients may have an imbalance of mitochondrial energy metabolism via inhibition of mitochondrial complex I activity. Moreover, recent studies have shown that ERVWE1 is also a risk factor for schizophrenia. Nevertheless, there is no available literature concerning the relationship between complex I deficits and ERVWE1 in schizophrenia. Identifying risk factors and blood-based biomarkers for schizophrenia may provide new guidelines for early interventions and prevention programs. AIM To address novel potential risk factors and the underlying mechanisms of mitochondrial complex I deficiency caused by ERVWE1 in schizophrenia. METHODS Quantitative polymerase chain reaction (qPCR) and enzyme-linked immunosorbent assay were used to detect differentially expressed risk factors in blood samples. Clinical statistical analyses were performed by median analyses and Mann-Whitney U analyses. Spearman's rank correlation was applied to examine the correlation between different risk factors in blood samples. qPCR, western blot analysis, and luciferase assay were performed to confirm the relationship among ERVWE1, cytoplasmic polyadenylation element-binding protein 1 (CPEB1), NADH dehydrogenase ubiquinone flavoprotein 2 (NDUFV2), and NDUFV2 pseudogene (NDUFV2P1). The complex I enzyme activity microplate assay was carried out to evaluate the complex I activity induced by ERVWE1. RESULTS Herein, we reported decreasing levels of CPEB1 and NDUFV2 in schizophrenia patients. Further studies showed that ERVWE1 was negatively correlated with CPEB1 and NDUFV2 in schizophrenia. Moreover, NDUFV2P1 was increased and demonstrated a significant positive correlation with ERVWE1 and a negative correlation with NDUFV2 in schizophrenia. In vitro experiments disclosed that ERVWE1 suppressed NDUFV2 expression and promoter activity by increasing NDUFV2P1 level. The luciferase assay revealed that ERVWE1 could enhance the promoter activity of NDUFV2P1. Additionally, ERVWE1 downregulated the expression of CPEB1 by suppressing the promoter activity, and the 400 base pair sequence at the 3' terminus of the promoter was the minimum sequence required. Advanced studies showed that CPEB1 participated in regulating the NDUFV2P1/NDUFV2 axis mediated by ERVWE1. Finally, we found that ERVWE1 inhibited complex I activity in SH-SY5Y cells via the CPEB1/NDUFV2P1/NDUFV2 signaling pathway. CONCLUSION In conclusion, CPEB1 and NDUFV2 might be novel potential blood-based biomarkers and pathogenic factors in schizophrenia. Our findings also reveal a novel mechanism of ERVWE1 in the etiology of schizophrenia.
Collapse
Affiliation(s)
- Ya-Ru Xia
- State Key Laboratory of Virology and Hubei Province Key Laboratory of Allergy & Immunology, Department of Medical Microbiology, School of Medicine, Wuhan University, Wuhan 430071, Hubei Province, China
| | - Xiao-Cui Wei
- State Key Laboratory of Virology and Hubei Province Key Laboratory of Allergy & Immunology, Department of Medical Microbiology, School of Medicine, Wuhan University, Wuhan 430071, Hubei Province, China
| | - Wen-Shi Li
- State Key Laboratory of Virology and Hubei Province Key Laboratory of Allergy & Immunology, Department of Medical Microbiology, School of Medicine, Wuhan University, Wuhan 430071, Hubei Province, China
| | - Qiu-Jin Yan
- State Key Laboratory of Virology and Hubei Province Key Laboratory of Allergy & Immunology, Department of Medical Microbiology, School of Medicine, Wuhan University, Wuhan 430071, Hubei Province, China
| | - Xiu-Lin Wu
- State Key Laboratory of Virology and Hubei Province Key Laboratory of Allergy & Immunology, Department of Medical Microbiology, School of Medicine, Wuhan University, Wuhan 430071, Hubei Province, China
| | - Wei Yao
- State Key Laboratory of Virology and Hubei Province Key Laboratory of Allergy & Immunology, Department of Medical Microbiology, School of Medicine, Wuhan University, Wuhan 430071, Hubei Province, China
| | - Xu-Hang Li
- State Key Laboratory of Virology and Hubei Province Key Laboratory of Allergy & Immunology, Department of Medical Microbiology, School of Medicine, Wuhan University, Wuhan 430071, Hubei Province, China
| | - Fan Zhu
- State Key Laboratory of Virology and Hubei Province Key Laboratory of Allergy & Immunology, Department of Medical Microbiology, School of Medicine, Wuhan University, Wuhan 430071, Hubei Province, China
| |
Collapse
|
3
|
Rodrigues-Amorim D, Rivera-Baltanás T, Vallejo-Curto MDC, Rodriguez-Jamardo C, de las Heras E, Barreiro-Villar C, Blanco-Formoso M, Fernández-Palleiro P, Álvarez-Ariza M, López M, García-Caballero A, Olivares JM, Spuch C. Proteomics in Schizophrenia: A Gateway to Discover Potential Biomarkers of Psychoneuroimmune Pathways. Front Psychiatry 2019; 10:885. [PMID: 31849731 PMCID: PMC6897280 DOI: 10.3389/fpsyt.2019.00885] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2019] [Accepted: 11/11/2019] [Indexed: 12/17/2022] Open
Abstract
Schizophrenia is a severe and disabling psychiatric disorder with a complex and multifactorial etiology. The lack of consensus regarding the multifaceted dysfunction of this ailment has increased the need to explore new research lines. This research makes use of proteomics data to discover possible analytes associated with psychoneuroimmune signaling pathways in schizophrenia. Thus, we analyze plasma of 45 patients [10 patients with first-episode schizophrenia (FES) and 35 patients with chronic schizophrenia] and 43 healthy subjects by label-free liquid chromatography-tandem mass spectrometry. The analysis revealed a significant reduction in the levels of glia maturation factor beta (GMF-β), the brain-derived neurotrophic factor (BDNF), and the 115-kDa isoform of the Rab3 GTPase-activating protein catalytic subunit (RAB3GAP1) in patients with schizophrenia as compared to healthy volunteers. In conclusion, GMF-β, BDNF, and 115-kDa isoform of RAB3GAP1 showed significantly reduced levels in plasma of patients with schizophrenia, thus making them potential biomarkers in schizophrenia.
Collapse
Affiliation(s)
- Daniela Rodrigues-Amorim
- Translational Neuroscience Research Group, Galicia Sur Health Research Institute, University of Vigo, CIBERSAM, Vigo, Spain
| | - Tania Rivera-Baltanás
- Translational Neuroscience Research Group, Galicia Sur Health Research Institute, University of Vigo, CIBERSAM, Vigo, Spain
| | - María del Carmen Vallejo-Curto
- Translational Neuroscience Research Group, Galicia Sur Health Research Institute, University of Vigo, CIBERSAM, Vigo, Spain
| | - Cynthia Rodriguez-Jamardo
- Translational Neuroscience Research Group, Galicia Sur Health Research Institute, University of Vigo, CIBERSAM, Vigo, Spain
| | - Elena de las Heras
- Translational Neuroscience Research Group, Galicia Sur Health Research Institute, University of Vigo, CIBERSAM, Vigo, Spain
| | - Carolina Barreiro-Villar
- Translational Neuroscience Research Group, Galicia Sur Health Research Institute, University of Vigo, CIBERSAM, Vigo, Spain
| | - María Blanco-Formoso
- Translational Neuroscience Research Group, Galicia Sur Health Research Institute, University of Vigo, CIBERSAM, Vigo, Spain
| | - Patricia Fernández-Palleiro
- Translational Neuroscience Research Group, Galicia Sur Health Research Institute, University of Vigo, CIBERSAM, Vigo, Spain
| | - María Álvarez-Ariza
- Translational Neuroscience Research Group, Galicia Sur Health Research Institute, University of Vigo, CIBERSAM, Vigo, Spain
| | - Marta López
- Translational Neuroscience Research Group, Galicia Sur Health Research Institute, University of Vigo, CIBERSAM, Vigo, Spain
| | - Alejandro García-Caballero
- Translational Neuroscience Research Group, Galicia Sur Health Research Institute, University of Vigo, CIBERSAM, Vigo, Spain
- Department of Psychiatry, University of Santiago de Compostela, Santiago de Compostela, Spain
| | - José Manuel Olivares
- Translational Neuroscience Research Group, Galicia Sur Health Research Institute, University of Vigo, CIBERSAM, Vigo, Spain
| | - Carlos Spuch
- Translational Neuroscience Research Group, Galicia Sur Health Research Institute, University of Vigo, CIBERSAM, Vigo, Spain
| |
Collapse
|
4
|
Comes AL, Papiol S, Mueller T, Geyer PE, Mann M, Schulze TG. Proteomics for blood biomarker exploration of severe mental illness: pitfalls of the past and potential for the future. Transl Psychiatry 2018; 8:160. [PMID: 30115926 PMCID: PMC6095863 DOI: 10.1038/s41398-018-0219-2] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Accepted: 07/16/2018] [Indexed: 12/18/2022] Open
Abstract
Recent improvements in high-throughput proteomic approaches are likely to constitute an essential advance in biomarker discovery, holding promise for improved personalized care and drug development. These methodologies have been applied to study multivariate protein patterns and provide valuable data of peripheral tissues. To highlight findings of the last decade for three of the most common psychiatric disorders, namely schizophrenia (SZ), bipolar disorder (BD), and major depressive disorder (MDD), we queried PubMed. Here we delve into the findings from thirty studies, which used proteomics and multiplex immunoassay approaches for peripheral blood biomarker exploration. In an explorative approach, we ran enrichment analyses in peripheral blood according to these results and ascertained the overlap between proteomic findings and genetic loci identified in genome-wide association studies (GWAS). The studies we appraised demonstrate that proteomics for psychiatric research has been heterogeneous in aims and methods and limited by insufficient sample sizes, poorly defined case definitions, methodological inhomogeneity, and confounding results constraining the conclusions that can be extracted from them. Here, we discuss possibilities for overcoming methodological challenges for the implementation of proteomic signatures in psychiatric diagnosis and offer an outlook for future investigations. To fulfill the promise of proteomics in mental disease diagnostics, future research will need large, well-defined cohorts in combination with state-of-the-art technologies.
Collapse
Affiliation(s)
- Ashley L. Comes
- Institute of Psychiatric Phenomics and Genomics (IPPG), University Hospital Munich, LMU, 80336 Munich, Germany ,International Max Planck Research School for Translational Psychiatry (IMPRS-TP), 80804 Munich, Germany
| | - Sergi Papiol
- Institute of Psychiatric Phenomics and Genomics (IPPG), University Hospital Munich, LMU, 80336 Munich, Germany ,Department of Psychiatry and Psychotherapy, University Hospital, Ludwig Maximilian University, 80336 Munich, Germany
| | - Thorsten Mueller
- Institute of Psychiatric Phenomics and Genomics (IPPG), University Hospital Munich, LMU, 80336 Munich, Germany
| | - Philipp E. Geyer
- 0000 0004 0491 845Xgrid.418615.fDepartment of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried, Germany ,0000 0001 0674 042Xgrid.5254.6NNF Center for Protein Research, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Matthias Mann
- 0000 0004 0491 845Xgrid.418615.fDepartment of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried, Germany ,0000 0001 0674 042Xgrid.5254.6NNF Center for Protein Research, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Thomas G. Schulze
- Institute of Psychiatric Phenomics and Genomics (IPPG), University Hospital Munich, LMU, 80336 Munich, Germany
| |
Collapse
|
5
|
Schizophrenia: A review of potential biomarkers. J Psychiatr Res 2017; 93:37-49. [PMID: 28578207 DOI: 10.1016/j.jpsychires.2017.05.009] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Revised: 05/10/2017] [Accepted: 05/22/2017] [Indexed: 01/07/2023]
Abstract
OBJECTIVES Understanding the biological process and progression of schizophrenia is the first step to developing novel approaches and new interventions. Research on new biomarkers is extremely important when the goal is an early diagnosis (prediction) and precise theranostics. The objective of this review is to understand the research on biomarkers and their effects in schizophrenia to synthesize the role of these new advances. METHODS In this review, we search and review publications in databases in accordance with established limits and specific objectives. We look at particular endpoints such as the category of biomarkers, laboratory techniques and the results/conclusions of the selected publications. RESULTS The investigation of biomarkers and their potential as a predictor, diagnosis instrument and therapeutic orientation, requires an appropriate methodological strategy. In this review, we found different laboratory techniques to identify biomarkers and their function in schizophrenia. CONCLUSION The consolidation of this information will provide a large-scale application network of schizophrenia biomarkers.
Collapse
|
6
|
Sabherwal S, English JA, Föcking M, Cagney G, Cotter DR. Blood biomarker discovery in drug-free schizophrenia: the contribution of proteomics and multiplex immunoassays. Expert Rev Proteomics 2016; 13:1141-1155. [DOI: 10.1080/14789450.2016.1252262] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- Sophie Sabherwal
- Department of Psychiatry, Royal College of Surgeons in Ireland, ERC Beaumont Hospital, Dublin, Ireland
| | - Jane A. English
- Department of Psychiatry, Royal College of Surgeons in Ireland, ERC Beaumont Hospital, Dublin, Ireland
| | - Melanie Föcking
- Department of Psychiatry, Royal College of Surgeons in Ireland, ERC Beaumont Hospital, Dublin, Ireland
| | - Gerard Cagney
- Proteome Research Centre, UCD Conway Institute of Biomolecular and Biomedical Research, School of Medicine, and Medical Sciences, University College Dublin, Dublin, Ireland
| | - David R. Cotter
- Department of Psychiatry, Royal College of Surgeons in Ireland, ERC Beaumont Hospital, Dublin, Ireland
| |
Collapse
|
7
|
Cortisol and BDNF levels in depression within schizophrenia structure: approach to treating. ACTA ACUST UNITED AC 2016. [DOI: 10.17816/rcf14312-17] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
To evaluate the effect of depression on the level of cortisol and BDNF in patients with schizophrenia 25 inpatients, who met the diagnostic criteria for ICD-10 schizophrenia (F20), were examined. The examination included clinical, psychopathological, laboratory and psychometric methods. Patients were examined twice: at admission and after 6 weeks of treatment. It was found that the level of BDNF in schizophrenic patients with depressive symptoms was significantly lower than that of non-depressed patients, and the level of cortisol in patients with depression was significantly higher.
Collapse
|
8
|
Morning cortisol levels in schizophrenia and bipolar disorder: a meta-analysis. Psychoneuroendocrinology 2014; 49:187-206. [PMID: 25108162 DOI: 10.1016/j.psyneuen.2014.07.013] [Citation(s) in RCA: 144] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Revised: 07/12/2014] [Accepted: 07/12/2014] [Indexed: 12/17/2022]
Abstract
Increased peripheral levels of morning cortisol have been reported in people with schizophrenia (SZ) and bipolar disorder (BD), but findings are inconsistent and few studies have conducted direct comparisons of these disorders. We undertook a meta-analysis of studies examining single measures of morning cortisol (before 10 a.m.) levels in SZ or BD, compared to controls, and to each other; we also sought to examine likely moderators of any observed effects by clinical and demographic variables. Included studies were obtained via systematic searches conducted using Medline, BIOSIS Previews and Embase databases, as well as hand searching. The decision to include or exclude studies, data extraction and quality assessment was completed in duplicate by LG, SM and AS. The initial search revealed 1459 records. Subsequently, 914 were excluded on reading the abstract because they did not meet one or more of the inclusion criteria; of the remaining 545 studies screened in full, included studies were 44 comparing SZ with controls, 19 comparing BD with controls, and 7 studies directly comparing schizophrenia with bipolar disorder. Meta-analysis of SZ (N=2613, g=0.387, p=0.001) and BD (N=704, g=0.269, p=0.004) revealed moderate quality evidence of increased morning cortisol levels in each group compared to controls, but no difference between the two disorders (N=392, g=0.038, p=0.738). Subgroup analyses revealed greater effect sizes for schizophrenia samples with an established diagnosis (as opposed to 'first-episode'), those that were free of medication, and those sampled in an inpatient setting (perhaps reflecting an acute illness phase). In BD, greater morning cortisol levels were found in outpatient and non-manic participants (as opposed to those in a manic state), relative to controls. Neither age nor sex affected cortisol levels in any group. However, earlier greater increases in SZ morning cortisol were evident in samples taken before 8 a.m. (relative to those taken after 8 a.m.). Multiple meta-regression showed that medication status was significantly associated with morning cortisol levels in SZ, when the effects of assay method, sampling time and illness stage were held constant. Heightened levels of morning cortisol in SZ and BD suggest long-term pathology of the hypothalamic-pituitary-adrenal (HPA) axis that may reflect a shared process of illness development in line with current stress-vulnerability models.
Collapse
|
9
|
van Beveren NJM, Schwarz E, Noll R, Guest PC, Meijer C, de Haan L, Bahn S. Evidence for disturbed insulin and growth hormone signaling as potential risk factors in the development of schizophrenia. Transl Psychiatry 2014; 4:e430. [PMID: 25158005 PMCID: PMC4150237 DOI: 10.1038/tp.2014.52] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2013] [Revised: 05/07/2014] [Accepted: 05/21/2014] [Indexed: 01/03/2023] Open
Abstract
Molecular abnormalities in metabolic, hormonal and immune pathways are present in peripheral body fluids of a significant subgroup of schizophrenia patients. The authors have tested whether such disturbances also occur in psychiatrically ill and unaffected siblings of schizophrenia patients with the aim of identifying potential contributing factors to disease vulnerability. The subjects were recruited as part of the Genetic Risk and OUtcome of Psychosis (GROUP) study. The authors used multiplexed immunoassays to measure the levels of 184 molecules in serum from 112 schizophrenia patients, 133 siblings and 87 unrelated controls. Consistent with the findings of previous studies, serum from schizophrenia patients contained higher levels of insulin, C-peptide and proinsulin, decreased levels of growth hormone and altered concentrations of molecules involved in inflammation. In addition, significant differences were found in the levels of some of these proteins in siblings diagnosed with mood disorders (n=16) and in unaffected siblings (n=117). Most significantly, the insulin/growth hormone ratio was higher across all groups compared with the controls. Taken together, these findings suggest the presence of a molecular endophenotype involving disruption of insulin and growth factor signaling pathways as an increased risk factor for schizophrenia.
Collapse
Affiliation(s)
- N J M van Beveren
- Department of Neuroscience, Erasmus Medical Center, Rotterdam, The Netherlands,Department of Psychiatry, Erasmus Medical Center, Rotterdam, The Netherlands,Department 'Nieuwe Kennis', Delta Center for Mental Health Care, Rotterdam, The Netherlands,Department of Neuroscience, Erasmus University Medical Center, 3000 CA Rotterdam, The Netherlands. E-mail: or
| | - E Schwarz
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, UK
| | - R Noll
- Department of Psychology, DeSales University, Center Valley, PA, USA
| | - P C Guest
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, UK
| | - C Meijer
- Department of Psychiatry, Academic Medical Center, Amsterdam, The Netherlands
| | - L de Haan
- Department of Psychiatry, Academic Medical Center, Amsterdam, The Netherlands
| | - S Bahn
- Department of Neuroscience, Erasmus Medical Center, Rotterdam, The Netherlands,Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, UK,Department of Neuroscience, Erasmus University Medical Center, 3000 CA Rotterdam, The Netherlands. E-mail: or
| |
Collapse
|
10
|
Harris LW, Guest PC, Wayland MT, Umrania Y, Krishnamurthy D, Rahmoune H, Bahn S. Schizophrenia: metabolic aspects of aetiology, diagnosis and future treatment strategies. Psychoneuroendocrinology 2013; 38:752-66. [PMID: 23084727 DOI: 10.1016/j.psyneuen.2012.09.009] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2012] [Revised: 09/12/2012] [Accepted: 09/12/2012] [Indexed: 10/27/2022]
Abstract
Despite decades of research, the pathophysiology and aetiology of schizophrenia remains incompletely understood. The disorder is frequently accompanied by metabolic symptoms including dyslipidaemia, hyperinsulinaemia, type 2 diabetes and obesity. These symptoms are a common side effect of currently available antipsychotic medications. However, reports of metabolic dysfunction in schizophrenia predate the antipsychotic era and have also been observed in first onset patients prior to antipsychotic treatment. Here, we review the evidence for abnormalities in metabolism in schizophrenia patients, both in the central nervous system and periphery. Molecular analysis of post mortem brain tissue has pointed towards alterations in glucose metabolism and insulin signalling pathways, and blood-based molecular profiling analyses have demonstrated hyperinsulinaemia and abnormalities in secretion of insulin and co-released factors at first presentation of symptoms. Nonetheless, such features are not observed for all subjects with the disorder and not all individuals with such abnormalities suffer the symptoms of schizophrenia. One interpretation of these data is the presence of an underlying metabolic vulnerability in a subset of individuals which interacts with environmental or genetic factors to produce the overt symptoms of the disorder. Further investigation of metabolic aspects of schizophrenia may prove critical for diagnosis, improvement of existing treatment based on patient stratification/personalised medicine strategies and development of novel antipsychotic agents.
Collapse
Affiliation(s)
- Laura W Harris
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Tennis Court Road, Cambridge, United Kingdom.
| | | | | | | | | | | | | |
Collapse
|
11
|
Guest FL, Martins-de-Souza D, Rahmoune H, Bahn S, Guest PC. Os efeitos do estresse na função do eixo hipotalâmico-pituitário-adrenal em indivíduos com esquizofrenia. ARCH CLIN PSYCHIAT 2012. [DOI: 10.1590/s0101-60832012005000002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Nas últimas décadas, têm surgido evidências sugerindo que a patogênese de desordens psiquiátricas, tais como a esquizofrenia, pode envolver perturbações no eixo hipotalâmico-pituitário-adrenal (HPA). Variações na manifestação desses efeitos poderiam estar relacionadas a diferenças em sintomas clínicos entre os indivíduos afetados, assim como a diferenças na resposta ao tratamento. Tais efeitos podem também ser originados de complexas interações entre genes e fatores ambientais. Aqui, revisamos os efeitos do estresse maternal em anormalidades na regulação do eixo HPA e desenvolvimento de desordens psiquiátricas, incluindo a esquizofrenia. Estudos nessa área podem gerar o aumento do nosso entendimento da natureza multidimensional da esquizofrenia. Posterior pesquisa nesse campo poderia, em última instância, levar ao desenvolvimento de melhores diagnósticos e novas abordagens terapêuticas para essa debilitante condição psiquiátrica.
Collapse
Affiliation(s)
| | - Daniel Martins-de-Souza
- Universidade de Cambridge, Reino Unido; Universidade Ludwig Maximilians de Munique, Alemanha; Universidade de São Paulo, Brasil
| | | | - Sabine Bahn
- Universidade de Cambridge, Reino Unido; Centro Médico Erasmus
| | | |
Collapse
|
12
|
Jaros JA, Martins-de-Souza D, Rahmoune H, Rothermundt M, Leweke FM, Guest PC, Bahn S. Protein phosphorylation patterns in serum from schizophrenia patients and healthy controls. J Proteomics 2012; 76 Spec No.:43-55. [DOI: 10.1016/j.jprot.2012.05.027] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2012] [Revised: 05/11/2012] [Accepted: 05/16/2012] [Indexed: 01/10/2023]
|
13
|
Guest PC, Urday S, Ma D, Stelzhammer V, Harris LW, Amess B, Pietsch S, Oheim C, Ozanne SE, Bahn S. Proteomic analysis of the maternal protein restriction rat model for schizophrenia: identification of translational changes in hormonal signaling pathways and glutamate neurotransmission. Proteomics 2012; 12:3580-9. [PMID: 23071080 DOI: 10.1002/pmic.201200376] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2012] [Revised: 10/01/2012] [Accepted: 10/01/2012] [Indexed: 11/07/2022]
Abstract
Previous studies have found that some first onset schizophrenia patients show signs of impaired insulin signaling. Also, epidemiological studies have shown that periods of suboptimal nutrition including protein deficiencies during pregnancy can lead to increased incidence of metabolic conditions and psychiatric disorders in the offspring. For these reasons, we have carried out a molecular profiling analysis of blood serum and brain tissues from adult offspring produced by the maternal low protein (LP) rat model. The results showed similar changes to those seen in schizophrenia. Multiplex immunoassay profiling identified changes in the levels of insulin, adiponectin, and leptin along with alterations in inflammatory and vascular system-related proteins such as osteopontin, macrophage colony-stimulating factor 1, and vascular cell adhesion molecule 1. LC-MS(E) proteomic profiling showed that glutamatergic pathways were altered in frontal cortex, while signaling pathways and cytoskeletal proteins involved in hormonal secretion and synaptic remodeling were altered in the hypothalamus. Taken together, these studies indicate that the LP rat model recapitulates several pathophysiological attributes seen in schizophrenia patients. We propose that the LP model may have utility for drug discovery efforts, especially to identify compounds that modulate the metabolic and glutamatergic systems.
Collapse
Affiliation(s)
- Paul C Guest
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, UK.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Schwarz E, Guest PC, Rahmoune H, Martins-de-Souza D, Niebuhr DW, Weber NS, Cowan DN, Yolken RH, Spain M, Barnes A, Bahn S. Identification of a blood-based biological signature in subjects with psychiatric disorders prior to clinical manifestation. World J Biol Psychiatry 2012; 13:627-32. [PMID: 21936765 DOI: 10.3109/15622975.2011.599861] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
OBJECTIVES To determine whether a molecular signature is present in blood of patients with psychiatric disorders before manifestation of symptoms. METHODS Multiplex immunoassay analyses were carried out using serum obtained from two case-control studies of schizophrenia (n = 75) and bipolar disorder (n = 110) patients and their matched controls. The samples were drawn within 1 month before estimated onset of illness. RESULTS This led to identification of 20 molecules which were altered in pre-schizophrenia and 14 molecules in pre-bipolar disorder subjects compared to controls. Only two of these molecular changes were identical in both data sets and predictive testing confirmed that the biomarker signatures for pre-schizophrenia and pre-bipolar disorder were dissimilar. CONCLUSION The present results suggest that there are distinct serum alterations that occur before clinical manifestation of schizophrenia and bipolar disorder. These findings could lead to development of diagnostic tests to help clinical psychiatrists identify and classify vulnerable patients early in the disease process, allowing for earlier and more effective therapeutic intervention.
Collapse
Affiliation(s)
- Emanuel Schwarz
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, UK
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Zheng P, Wang Y, Chen L, Yang D, Meng H, Zhou D, Zhong J, Lei Y, Melgiri ND, Xie P. Identification and validation of urinary metabolite biomarkers for major depressive disorder. Mol Cell Proteomics 2012; 12:207-14. [PMID: 23111923 DOI: 10.1074/mcp.m112.021816] [Citation(s) in RCA: 165] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Major depressive disorder (MDD) is a widespread and debilitating mental disorder. However, there are no biomarkers available to aid in the diagnosis of this disorder. In this study, a nuclear magnetic resonance spectroscopy-based metabonomic approach was employed to profile urine samples from 82 first-episode drug-naïve depressed subjects and 82 healthy controls (the training set) in order to identify urinary metabolite biomarkers for MDD. Then, 44 unselected depressed subjects and 52 healthy controls (the test set) were used to independently validate the diagnostic generalizability of these biomarkers. A panel of five urinary metabolite biomarkers-malonate, formate, N-methylnicotinamide, m-hydroxyphenylacetate, and alanine-was identified. This panel was capable of distinguishing depressed subjects from healthy controls with an area under the receiver operating characteristic curve (AUC) of 0.81 in the training set. Moreover, this panel could classify blinded samples from the test set with an AUC of 0.89. These findings demonstrate that this urinary metabolite biomarker panel can aid in the future development of a urine-based diagnostic test for MDD.
Collapse
Affiliation(s)
- Peng Zheng
- Department of Neurology, The First Affiliated Hospital, Chongqing Medical University, Chongqing, China 400016
| | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Ernst A, Ma D, Garcia-Perez I, Tsang TM, Kluge W, Schwarz E, Guest PC, Holmes E, Sarnyai Z, Bahn S. Molecular validation of the acute phencyclidine rat model for schizophrenia: identification of translational changes in energy metabolism and neurotransmission. J Proteome Res 2012; 11:3704-14. [PMID: 22613019 DOI: 10.1021/pr300197d] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Administration of the noncompetitive N-methyl-D-aspartate (NMDA) receptor antagonist phencyclidine (PCP) to rodents is widely used as preclinical model for schizophrenia. Most studies on this model employ methods investigating behavior and brain abnormalities. However, little is known about the corresponding peripheral effects. In this study, we analyzed changes in brain and serum molecular profiles, together with alterations in behavior after acute PCP treatment of rats. Furthermore, abnormalities in peripheral protein expression of first and recent onset antipsychotic free schizophrenia patients were assessed for comparison with the preclinical model. PCP treatment induced hyperlocomotion and stereotypic behavior, which have been related to positive symptoms of schizophrenia. Multiplex immunoassay profiling of serum revealed molecular abnormalities similar to those seen in first and recent onset, antipsychotic free schizophrenia patients. Also, increased insulin levels were detected after administration of a glucose tolerance test (GTT), consistent with previous studies showing changes in insulin signaling in patients with schizophrenia. Finally, schizophrenia-relevant alterations in brain molecules were found in the hippocampus and to a lesser extent in the frontal cortex using liquid-chromatography mass spectrometry and (1)H nuclear magnetic resonance spectroscopy. In conclusion, this study identified behavioral and molecular alterations in the acute PCP rat model, which are also observed in human schizophrenia. We propose that the corresponding changes in serum in both animals and patients may have utility as surrogate markers in this model to facilitate discovery and development of novel drugs for treatment of certain pathological features of schizophrenia.
Collapse
Affiliation(s)
- Agnes Ernst
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge CB2 1QT, UK
| | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Hradetzky E, Sanderson TM, Tsang TM, Sherwood JL, Fitzjohn SM, Lakics V, Malik N, Schoeffmann S, O'Neill MJ, Cheng TMK, Harris LW, Rahmoune H, Guest PC, Sher E, Collingridge GL, Holmes E, Tricklebank MD, Bahn S. The methylazoxymethanol acetate (MAM-E17) rat model: molecular and functional effects in the hippocampus. Neuropsychopharmacology 2012; 37:364-77. [PMID: 21956444 PMCID: PMC3242314 DOI: 10.1038/npp.2011.219] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Administration of the DNA-alkylating agent methylazoxymethanol acetate (MAM) on embryonic day 17 (E17) produces behavioral and anatomical brain abnormalities, which model some aspects of schizophrenia. This has lead to the premise that MAM rats are a neurodevelopmental model for schizophrenia. However, the underlying molecular pathways affected in this model have not been elucidated. In this study, we investigated the molecular phenotype of adult MAM rats by focusing on the frontal cortex and hippocampal areas, as these are known to be affected in schizophrenia. Proteomic and metabonomic analyses showed that the MAM treatment on E17 resulted primarily in deficits in hippocampal glutamatergic neurotransmission, as seen in some schizophrenia patients. Most importantly, these results were consistent with our finding of functional deficits in glutamatergic neurotransmission, as identified using electrophysiological recordings. Thus, this study provides the first molecular evidence, combined with functional validation, that the MAM-E17 rat model reproduces hippocampal deficits relevant to the pathology of schizophrenia.
Collapse
Affiliation(s)
- Eva Hradetzky
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, UK,Lilly Centre for Cognitive Neuroscience, Eli Lilly & Co. Ltd, Windlesham, Surrey, UK
| | - Thomas M Sanderson
- Lilly Centre for Cognitive Neuroscience, Eli Lilly & Co. Ltd, Windlesham, Surrey, UK
| | - Tsz M Tsang
- Faculty of Medicine, Division of Surgery, Oncology, Reproductive Biology and Anesthetics, Department of Biomolecular Medicine, Imperial College, London, UK
| | - John L Sherwood
- Lilly Centre for Cognitive Neuroscience, Eli Lilly & Co. Ltd, Windlesham, Surrey, UK
| | - Stephen M Fitzjohn
- Lilly Centre for Cognitive Neuroscience, Eli Lilly & Co. Ltd, Windlesham, Surrey, UK
| | - Viktor Lakics
- Lilly Centre for Cognitive Neuroscience, Eli Lilly & Co. Ltd, Windlesham, Surrey, UK
| | - Nadia Malik
- Lilly Centre for Cognitive Neuroscience, Eli Lilly & Co. Ltd, Windlesham, Surrey, UK
| | - Stephanie Schoeffmann
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, UK
| | - Michael J O'Neill
- Lilly Centre for Cognitive Neuroscience, Eli Lilly & Co. Ltd, Windlesham, Surrey, UK
| | - Tammy MK Cheng
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, UK
| | - Laura W Harris
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, UK
| | - Hassan Rahmoune
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, UK
| | - Paul C Guest
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, UK
| | - Emanuele Sher
- Lilly Centre for Cognitive Neuroscience, Eli Lilly & Co. Ltd, Windlesham, Surrey, UK
| | - Graham L Collingridge
- MRC Centre for Synaptic Plasticity, Department of Anatomy, School of Medical Sciences, University of Bristol, Bristol, UK
| | - Elaine Holmes
- Faculty of Medicine, Division of Surgery, Oncology, Reproductive Biology and Anesthetics, Department of Biomolecular Medicine, Imperial College, London, UK
| | - Mark D Tricklebank
- Lilly Centre for Cognitive Neuroscience, Eli Lilly & Co. Ltd, Windlesham, Surrey, UK,Lilly Centre for Cognitive Neuroscience, Eli Lilly & Co. Ltd, Erl Wood Manor, Windlesham, Surrey, UK, Tel: +44 (0) 1276-483000, Fax: +44 (0) 1276-484921, E-mail:
| | - Sabine Bahn
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, UK,Department of Neuroscience, Erasmus University Medical Centre, Rotterdam, The Netherlands,Department of Chemical Engineering and Biotechnology, University of Cambridge, Tennis Court Road, Cambridge, Cambridgeshire CB2 1QT, UK, Tel: +44 (0)1223 334151, Fax: +44 (0)1223 334162, E-mail:
| |
Collapse
|
18
|
Vawter MP, Mamdani F, Macciardi F. An integrative functional genomics approach for discovering biomarkers in schizophrenia. Brief Funct Genomics 2011; 10:387-99. [PMID: 22155586 DOI: 10.1093/bfgp/elr036] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Schizophrenia (SZ) is a complex disorder resulting from both genetic and environmental causes with a lifetime prevalence world-wide of 1%; however, there are no specific, sensitive and validated biomarkers for SZ. A general unifying hypothesis has been put forward that disease-associated single nucleotide polymorphisms (SNPs) from genome-wide association study (GWAS) are more likely to be associated with gene expression quantitative trait loci (eQTL). We will describe this hypothesis and review primary methodology with refinements for testing this paradigmatic approach in SZ. We will describe biomarker studies of SZ and testing enrichment of SNPs that are associated both with eQTLs and existing GWAS of SZ. SZ-associated SNPs that overlap with eQTLs can be placed into gene-gene expression, protein-protein and protein-DNA interaction networks. Further, those networks can be tested by reducing/silencing the gene expression levels of critical nodes. We present pilot data to support these methods of investigation such as the use of eQTLs to annotate GWASs of SZ, which could be applied to the field of biomarker discovery. Those networks that have association with SNP markers, especially cis-regulated expression, might lead to a more clear understanding of important candidate genes that predispose to disease and alter expression. This method has general application to many complex disorders.
Collapse
Affiliation(s)
- Marquis P Vawter
- Functional Genomics Laboratory, Department of Psychiatry, University of California, Irvine, USA.
| | | | | |
Collapse
|
19
|
Yao JK, Reddy R. Oxidative stress in schizophrenia: pathogenetic and therapeutic implications. Antioxid Redox Signal 2011; 15:1999-2002. [PMID: 21194354 PMCID: PMC3159103 DOI: 10.1089/ars.2010.3646] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Over a century, a wide-ranging variety of pathophysiological models and causal hypotheses have been conceptualized for schizophrenia. One among these is the role for free radical-mediated pathology in schizophrenia, indicating impaired antioxidant defense system (AODS) and presence of oxidative stress in patients with schizophrenia. For the past two decades, the whole investigative domain of AODS and oxidative stress has broadened to include the wider AODS components, direct central nervous system assays of AODS, chemical imaging studies, proteomics, genetics of AODS, and, of importance to sufferers of schizophrenia, antioxidant therapeutics. These are some of the perspectives that are reviewed by several articles in this Forum. Overall, there has been growing recognition of the importance of oxidative stress in the pathophysiology of schizophrenia and in treatment-related side effects. The totality of the evidence from biochemistry, metabolomics, proteomics, genetics, and in vivo brain imaging points to the presence of multifarious abnormalities in the AODS and redox signaling in schizophrenia.
Collapse
Affiliation(s)
- Jeffrey K Yao
- Medical Research Service, VA Pittsburgh Healthcare System,7180 Highland Drive, Pittsburgh, PA 15206, USA.
| | | |
Collapse
|
20
|
Herberth M, Koethe D, Cheng TMK, Krzyszton ND, Schoeffmann S, Guest PC, Rahmoune H, Harris LW, Kranaster L, Leweke FM, Bahn S. Impaired glycolytic response in peripheral blood mononuclear cells of first-onset antipsychotic-naive schizophrenia patients. Mol Psychiatry 2011; 16:848-59. [PMID: 20585325 DOI: 10.1038/mp.2010.71] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Little is known about the biological mechanisms underpinning the pathology of schizophrenia. We have analysed the proteome of stimulated and unstimulated peripheral blood mononuclear cells (PBMCs) from schizophrenia patients and controls as a potential model of altered cellular signaling using liquid-chromatography mass spectrometry proteomic profiling. PBMCs from patients and controls were stimulated for 72 h in vitro using staphylococcal enterotoxin B. In total, 18 differentially expressed proteins between first-onset, antipsychotic-naive patients and controls in the unstimulated and stimulated conditions were identified. Remarkably, eight of these proteins were associated with the glycolytic pathway and patient-control differences were more prominent in stimulated compared with unstimulated PBMCs. None of these proteins were altered in chronically ill antipsychotic-treated patients. Non-linear multivariate statistical analysis showed that small subsets of these proteins could be used as a signal for distinguishing first-onset patients from controls with high precision. Functional analysis of PBMCs did not reveal any difference in the glycolytic rate between patients and controls despite increased levels of lactate and the glucose transporter-1, and decreased levels of the insulin receptor in patients. In addition, subjects showed increased serum levels of insulin, consistent with the idea that some schizophrenia patients are insulin resistant. These results show that schizophrenia patients respond differently to PBMC activation and this is manifested at disease onset and may be modulated by antipsychotic treatment. The glycolytic protein signature associated with this effect could therefore be of diagnostic and prognostic value. Moreover, these results highlight the importance of using cells for functional discovery and show that it may not be sufficient to measure protein expression levels in static states.
Collapse
Affiliation(s)
- M Herberth
- Institute of Biotechnology, University of Cambridge, Cambridge, UK
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Altered levels of circulating insulin and other neuroendocrine hormones associated with the onset of schizophrenia. Psychoneuroendocrinology 2011; 36:1092-6. [PMID: 21251762 DOI: 10.1016/j.psyneuen.2010.12.018] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2010] [Revised: 12/21/2010] [Accepted: 12/23/2010] [Indexed: 02/07/2023]
Abstract
Recently, we showed that the circulating levels of insulin-related peptides and the secretory granule protein chromogranin A were increased in small cohorts of first onset schizophrenia patients. Assuming that this effect was associated with impaired insulin signalling, we investigated the possibility that secretion of other hormones is also affected in schizophrenia. Multiplex immunoassay analysis of 21 hormones and hormone-related molecules was carried out using sera from 236 first and recent onset schizophrenia patients and 230 matched controls. Serum concentrations of insulin and chromogranin A were increased in schizophrenia subjects, consistent with our previous study. In addition, we found elevated concentrations of pancreatic polypeptide, prolactin, progesterone and cortisol, and decreased levels of growth hormone. We also found that growth hormone levels were decreased in post-mortem pituitaries obtained from chronic schizophrenia patients. It will be important to determine whether any of these molecules are involved in the pathosphysiology of schizophrenia or if they reflect the associated insulin resistance. We conclude that function of multiple components of the hypothalamic-pituitary-adrenal-gonadal axis may be affected in schizophrenia. This could have important implications for future biomarker discovery efforts and personalized medicine strategies based on patient stratification for the treatment of this debilitating disorder.
Collapse
|
22
|
Guest PC, Martins-de-Souza D, Vanattou-Saifoudine N, Harris LW, Bahn S. Abnormalities in Metabolism and Hypothalamic–Pituitary–Adrenal Axis Function in Schizophrenia. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2011; 101:145-68. [DOI: 10.1016/b978-0-12-387718-5.00006-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|