1
|
Cardoso JMS, Manadas B, Abrantes I, Robertson L, Arcos SC, Troya MT, Navas A, Fonseca L. Pine wilt disease: what do we know from proteomics? BMC PLANT BIOLOGY 2024; 24:98. [PMID: 38331735 PMCID: PMC10854151 DOI: 10.1186/s12870-024-04771-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 01/26/2024] [Indexed: 02/10/2024]
Abstract
Pine wilt disease (PWD) is a devastating forest disease caused by the pinewood nematode (PWN), Bursaphelenchus xylophilus, a migratory endoparasite that infects several coniferous species. During the last 20 years, advances have been made for understanding the molecular bases of PWN-host trees interactions. Major advances emerged from transcriptomic and genomic studies, which revealed some unique features related to PWN pathogenicity and constituted fundamental data that allowed the development of postgenomic studies. Here we review the proteomic approaches that were applied to study PWD and integrated the current knowledge on the molecular basis of the PWN pathogenicity. Proteomics has been useful for understanding cellular activities and protein functions involved in PWN-host trees interactions, shedding light into the mechanisms associated with PWN pathogenicity and being promising tools to better clarify host trees PWN resistance/susceptibility.
Collapse
Affiliation(s)
- Joana M S Cardoso
- Centre for Functional Ecology, Associate Laboratory TERRA, Department of Life Sciences, University of Coimbra, Calçada Martins de Freitas, Coimbra, 3000-456, Portugal.
| | - Bruno Manadas
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Rua Larga, Polo I, Coimbra, 3004-504, Portugal
- CIBB - Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, Rua Larga - Faculdade de Medicina, 1ºandar - POLO I, Coimbra, 3004-504, Portugal
| | - Isabel Abrantes
- Centre for Functional Ecology, Associate Laboratory TERRA, Department of Life Sciences, University of Coimbra, Calçada Martins de Freitas, Coimbra, 3000-456, Portugal
| | - Lee Robertson
- Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, CSIC. Instituto de Ciencias Forestales (ICIFOR), Ctra. de La Coruña Km 7.5, Madrid, 28040, Spain
| | - Susana C Arcos
- Museo Nacional de Ciencias Naturales, CSIC. Dpto Biodiversidad y Biología Evolutiva, C/ José Gutiérrez Abascal 2, Madrid, 28006, Spain
| | - Maria Teresa Troya
- Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, CSIC. Instituto de Ciencias Forestales (ICIFOR), Ctra. de La Coruña Km 7.5, Madrid, 28040, Spain
| | - Alfonso Navas
- Museo Nacional de Ciencias Naturales, CSIC. Dpto Biodiversidad y Biología Evolutiva, C/ José Gutiérrez Abascal 2, Madrid, 28006, Spain
| | - Luís Fonseca
- Centre for Functional Ecology, Associate Laboratory TERRA, Department of Life Sciences, University of Coimbra, Calçada Martins de Freitas, Coimbra, 3000-456, Portugal
| |
Collapse
|
2
|
Generation of a novel antibody against BxPrx, a diagnostic marker of pine wilt disease. Mol Biol Rep 2023; 50:4715-4721. [PMID: 36899277 DOI: 10.1007/s11033-023-08342-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 02/15/2023] [Indexed: 03/12/2023]
Abstract
BACKGROUND Bursaphelenchus xylophilus is a pathogenic nematode that causes pine wilt disease (PWD). To prevent the rapid spread of this pathogen, developing a method for rapid and accurate detection of B. xylophilus is required. METHODS AND RESULTS In this study, we produced a B. xylophilus peroxiredoxin (BxPrx), which is a protein that is overexpressed in B. xylophilus. Using recombinant BxPrx as an antigen, we generated and selected a novel antibody that binds to BxPrx via phage display and biopanning. We subcloned the anti-BxPrx single-chain variable fragment-encoding phagemid DNA to mammalian expression vector. We transfected the plasmid into mammalian cells and produced a highly sensitive recombinant antibody that enabled nanogram order detection of BxPrx. CONCLUSION The sequence of anti-BxPrx antibody as well as the rapid immunoassay system described here can be applied for rapid and accurate diagnosis of PWD.
Collapse
|
3
|
Kim AY, Seo JB, Kim WT, Choi HJ, Kim SY, Morrow G, Tanguay RM, Steller H, Koh YH. The pathogenic human Torsin A in Drosophila activates the unfolded protein response and increases susceptibility to oxidative stress. BMC Genomics 2015; 16:338. [PMID: 25903460 PMCID: PMC4415242 DOI: 10.1186/s12864-015-1518-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2014] [Accepted: 04/10/2015] [Indexed: 01/11/2023] Open
Abstract
Background Dystonia1 (DYT1) dystonia is caused by a glutamic acid deletion (ΔE) mutation in the gene encoding Torsin A in humans (HTorA). To investigate the unknown molecular and cellular mechanisms underlying DYT1 dystonia, we performed an unbiased proteomic analysis. Results We found that the amount of proteins and transcripts of an Endoplasmic reticulum (ER) resident chaperone Heat shock protein cognate 3 (HSC3) and a mitochondria chaperone Heat Shock Protein 22 (HSP22) were significantly increased in the HTorAΔE– expressing brains compared to the normal HTorA (HTorAWT) expressing brains. The physiological consequences included an increased susceptibility to oxidative and ER stress compared to normal HTorAWT flies. The alteration of transcripts of Inositol-requiring enzyme-1 (IRE1)-dependent spliced X box binding protein 1(Xbp1), several ER chaperones, a nucleotide exchange factor, Autophagy related protein 8b (ATG8b) and components of the ER associated degradation (ERAD) pathway and increased expression of the Xbp1-enhanced Green Fluorescence Protein (eGFP) in HTorAΔE brains strongly indicated the activation of the unfolded protein response (UPR). In addition, perturbed expression of the UPR sensors and inducers in the HTorAΔEDrosophila brains resulted in a significantly reduced life span of the flies. Furthermore, the types and quantities of proteins present in the anti-HSC3 positive microsomes in the HTorAΔE brains were different from those of the HTorAWT brains. Conclusion Taken together, these data show that HTorAΔE in Drosophila brains may activate the UPR and increase the expression of HSP22 to compensate for the toxic effects caused by HTorAΔE in the brains. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-1518-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- A-Young Kim
- ILSONG Institute of Life Science, Hallym University, 1605-4 Gwanyangdong, Dongan-gu, Anyang, Gyeonggido, 431-060, Republic of Korea. .,Department of Biomedical Gerontology, Graduate School of Hallym University, Chuncheon, Gangwon-do, 200-702, Republic of Korea.
| | - Jong Bok Seo
- Korea Basic Science Institute, Sungbuk-gu, Seoul, 136-713, Republic of Korea.
| | - Won-Tae Kim
- National Academy of Agricultural Science, Rural Development Administration, Suwon, 441-707, Republic of Korea.
| | - Hee Jeong Choi
- ILSONG Institute of Life Science, Hallym University, 1605-4 Gwanyangdong, Dongan-gu, Anyang, Gyeonggido, 431-060, Republic of Korea. .,Department of Biomedical Gerontology, Graduate School of Hallym University, Chuncheon, Gangwon-do, 200-702, Republic of Korea.
| | - Soo-Young Kim
- Korea Basic Science Institute, Sungbuk-gu, Seoul, 136-713, Republic of Korea.
| | - Genevieve Morrow
- Department of Molecular Biology, Medical Biochemistry & Pathology, Université Laval, Québec, Qc, G1V 0A6, Canada.
| | - Robert M Tanguay
- Department of Molecular Biology, Medical Biochemistry & Pathology, Université Laval, Québec, Qc, G1V 0A6, Canada.
| | - Hermann Steller
- Howard Hughes Medical Institute, the Rockefeller University, New York, NY, 10065, USA.
| | - Young Ho Koh
- ILSONG Institute of Life Science, Hallym University, 1605-4 Gwanyangdong, Dongan-gu, Anyang, Gyeonggido, 431-060, Republic of Korea. .,Department of Biomedical Gerontology, Graduate School of Hallym University, Chuncheon, Gangwon-do, 200-702, Republic of Korea.
| |
Collapse
|
4
|
Chung JH, Choi HJ, Kim SY, Hong KS, Min SK, Nam MH, Kim CW, Koh YH, Seo JB. Proteomic and biochemical analyses reveal the activation of unfolded protein response, ERK-1/2 and ribosomal protein S6 signaling in experimental autoimmune myocarditis rat model. BMC Genomics 2011; 12:520. [PMID: 22014063 PMCID: PMC3209477 DOI: 10.1186/1471-2164-12-520] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2011] [Accepted: 10/20/2011] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND To investigate the molecular and cellular pathogenesis underlying myocarditis, we used an experimental autoimmune myocarditis (EAM)-induced heart failure rat model that represents T cell mediated postinflammatory heart disorders. RESULTS By performing unbiased 2-dimensional electrophoresis of protein extracts from control rat heart tissues and EAM rat heart tissues, followed by nano-HPLC-ESI-QIT-MS, 67 proteins were identified from 71 spots that exhibited significantly altered expression levels. The majority of up-regulated proteins were confidently associated with unfolded protein responses (UPR), while the majority of down-regulated proteins were involved with the generation of precursor metabolites and energy metabolism in mitochondria. Although there was no difference in AKT signaling between EAM rat heart tissues and control rat heart tissues, the amounts and activities of extracellular signal-regulated kinase (ERK)-1/2 and ribosomal protein S6 (rpS6) were significantly increased. By comparing our data with the previously reported myocardial proteome of the Coxsackie viruses of group B (CVB)-mediated myocarditis model, we found that UPR-related proteins were commonly up-regulated in two murine myocarditis models. Even though only two out of 29 down-regulated proteins in EAM rat heart tissues were also dysregulated in CVB-infected rat heart tissues, other proteins known to be involved with the generation of precursor metabolites and energy metabolism in mitochondria were also dysregulated in CVB-mediated myocarditis rat heart tissues, suggesting that impairment of mitochondrial functions may be a common underlying mechanism of the two murine myocarditis models. CONCLUSIONS UPR, ERK-1/2 and S6RP signaling were activated in both EAM- and CVB-induced myocarditis murine models. Thus, the conserved components of signaling pathways in two murine models of acute myocarditis could be targets for developing new therapeutic drugs or methods aimed at treating enigmatic myocarditis.
Collapse
Affiliation(s)
- Joo Hee Chung
- Seoul Center, Korea Basic Science Institute, Sungbuk-gu, Seoul 136-713, Republic of Korea
- BK21 School of Life Sciences & Biotechnology, Korea University, Sungbuk-gu, Seoul 136-701, Republic of Korea
| | - Hee Jung Choi
- ILSONG Institute of Life Science, Hallym University, 1605-4 Gwanyangdong, Anyang, Gyeonggi-do 431-060, Republic of Korea
| | - Soo Young Kim
- Seoul Center, Korea Basic Science Institute, Sungbuk-gu, Seoul 136-713, Republic of Korea
| | - Kwan Soo Hong
- Division of MR Research, Korea Basic Science Institute, Cheongwon 363-883, Republic of Korea
| | - Soo Kee Min
- Department of Pathology, Hallym Sacred Heart Hospital, Hallym University Medical School, 1605-4 Gwanyangdong, Anyang, Gyeonggi-do 431-060, Republic of Korea
| | - Myung Hee Nam
- Seoul Center, Korea Basic Science Institute, Sungbuk-gu, Seoul 136-713, Republic of Korea
| | - Chan Wha Kim
- BK21 School of Life Sciences & Biotechnology, Korea University, Sungbuk-gu, Seoul 136-701, Republic of Korea
| | - Young Ho Koh
- ILSONG Institute of Life Science, Hallym University, 1605-4 Gwanyangdong, Anyang, Gyeonggi-do 431-060, Republic of Korea
| | - Jong Bok Seo
- Seoul Center, Korea Basic Science Institute, Sungbuk-gu, Seoul 136-713, Republic of Korea
| |
Collapse
|