1
|
Meza Gutierrez F, Simsek D, Mizrak A, Deutschbauer A, Braberg H, Johnson J, Xu J, Shales M, Nguyen M, Tamse-Kuehn R, Palm C, Steinmetz LM, Krogan NJ, Toczyski DP. Genetic analysis reveals functions of atypical polyubiquitin chains. eLife 2018; 7:42955. [PMID: 30547882 PMCID: PMC6305200 DOI: 10.7554/elife.42955] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Accepted: 11/30/2018] [Indexed: 12/27/2022] Open
Abstract
Although polyubiquitin chains linked through all lysines of ubiquitin exist, specific functions are well-established only for lysine-48 and lysine-63 linkages in Saccharomyces cerevisiae. To uncover pathways regulated by distinct linkages, genetic interactions between a gene deletion library and a panel of lysine-to-arginine ubiquitin mutants were systematically identified. The K11R mutant had strong genetic interactions with threonine biosynthetic genes. Consistently, we found that K11R mutants import threonine poorly. The K11R mutant also exhibited a strong genetic interaction with a subunit of the anaphase-promoting complex (APC), suggesting a role in cell cycle regulation. K11-linkages are important for vertebrate APC function, but this was not previously described in yeast. We show that the yeast APC also modifies substrates with K11-linkages in vitro, and that those chains contribute to normal APC-substrate turnover in vivo. This study reveals comprehensive genetic interactomes of polyubiquitin chains and characterizes the role of K11-chains in two biological pathways.
Collapse
Affiliation(s)
- Fernando Meza Gutierrez
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, United States
| | | | - Arda Mizrak
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, United States
| | | | - Hannes Braberg
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, United States
| | - Jeffrey Johnson
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, United States
| | - Jiewei Xu
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, United States
| | - Michael Shales
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, United States
| | - Michelle Nguyen
- Stanford Genome Technology Center, Stanford University, Stanford, United States
| | - Raquel Tamse-Kuehn
- Stanford Genome Technology Center, Stanford University, Stanford, United States
| | - Curt Palm
- Stanford Genome Technology Center, Stanford University, Stanford, United States
| | - Lars M Steinmetz
- Stanford Genome Technology Center, Stanford University, Stanford, United States
| | - Nevan J Krogan
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, United States
| | - David P Toczyski
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, United States
| |
Collapse
|
2
|
Lee CM, Feke A, Li MW, Adamchek C, Webb K, Pruneda-Paz J, Bennett EJ, Kay SA, Gendron JM. Decoys Untangle Complicated Redundancy and Reveal Targets of Circadian Clock F-Box Proteins. PLANT PHYSIOLOGY 2018; 177:1170-1186. [PMID: 29794020 PMCID: PMC6052990 DOI: 10.1104/pp.18.00331] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 05/07/2018] [Indexed: 05/11/2023]
Abstract
Eukaryotic circadian clocks utilize the ubiquitin proteasome system to precisely degrade clock proteins. In plants, the F-box-type E3 ubiquitin ligases ZEITLUPE (ZTL), FLAVIN-BINDING, KELCH REPEAT, F-BOX1 (FKF1), and LOV KELCH PROTEIN2 (LKP2) regulate clock period and couple the clock to photoperiodic flowering in response to end-of-day light conditions. To better understand their functions, we expressed decoy ZTL, FKF1, and LKP2 proteins that associate with target proteins but are unable to ubiquitylate their targets in Arabidopsis (Arabidopsis thaliana). These dominant-negative forms of the proteins inhibit the ubiquitylation of target proteins and allow for the study of ubiquitylation-independent and -dependent functions of ZTL, FKF1, and LKP2. We demonstrate the effects of expressing ZTL, FKF1, and LKP2 decoys on the circadian clock and flowering time. Furthermore, the decoy E3 ligases trap substrate interactions, and using immunoprecipitation-mass spectrometry, we identify interacting partners. We focus studies on the clock transcription factor CCA1 HIKING EXPEDITION (CHE) and show that ZTL interacts directly with CHE and can mediate CHE ubiquitylation. We also demonstrate that CHE protein is degraded in the dark and that degradation is reduced in a ztl mutant plant, showing that CHE is a bona fide ZTL target protein. This work increases our understanding of the genetic and biochemical roles for ZTL, FKF1, and LKP2 and also demonstrates an effective methodology for studying complicated genetic redundancy among E3 ubiquitin ligases.
Collapse
Affiliation(s)
- Chin-Mei Lee
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, Connecticut 06511
| | - Ann Feke
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, Connecticut 06511
| | - Man-Wah Li
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, Connecticut 06511
| | - Christopher Adamchek
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, Connecticut 06511
| | - Kristofor Webb
- Section of Cell and Developmental Biology, Division of Biological Sciences, University of California, San Diego, La Jolla, California 92093
| | - José Pruneda-Paz
- Section of Cell and Developmental Biology, Division of Biological Sciences, University of California, San Diego, La Jolla, California 92093
| | - Eric J Bennett
- Section of Cell and Developmental Biology, Division of Biological Sciences, University of California, San Diego, La Jolla, California 92093
| | - Steve A Kay
- Department of Neurology, Keck School of Medicine, University of Southern California, Los Angeles, California 90089
| | - Joshua M Gendron
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, Connecticut 06511
| |
Collapse
|
3
|
Fulzele A, Bennett EJ. Ubiquitin diGLY Proteomics as an Approach to Identify and Quantify the Ubiquitin-Modified Proteome. Methods Mol Biol 2018; 1844:363-384. [PMID: 30242721 PMCID: PMC6791129 DOI: 10.1007/978-1-4939-8706-1_23] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Protein ubiquitylation is one of the most prevalent posttranslational modifications (PTM) within cells. Ubiquitin modification of target lysine residues typically marks substrates for proteasome-dependent degradation. However, ubiquitylation can also alter protein function through modulation of protein complexes, localization, or activity, without impacting protein turnover. Taken together, ubiquitylation imparts critical regulatory control over nearly every cellular, physiological, and pathophysiological process. Affinity purification techniques coupled with quantitative mass spectrometry have been robust tools to identify PTMs on endogenous proteins. A peptide antibody-based affinity approach has been successfully utilized to enrich for and identify endogenously ubiquitylated proteins. These antibodies recognize the Lys-ϵ-Gly-Gly (diGLY) remnant that is generated following trypsin digestion of ubiquitylated proteins, and these peptides can then be identified by standard mass spectrometry approaches. This technique has led to the identification of >50,000 ubiquitylation sites in human cells and quantitative information about how many of these sites are altered upon exposure to diverse proteotoxic stressors. In addition, the diGLY proteomics approach has led to the identification of specific ubiquitin ligase targets. Here we provide a detailed method to interrogate the ubiquitin-modified proteome from any eukaryotic organism or tissue.
Collapse
Affiliation(s)
- Amit Fulzele
- Section of Cell and Developmental Biology, Division of Biological Sciences, University of California, San Diego, La Jolla, CA, USA
| | - Eric J Bennett
- Section of Cell and Developmental Biology, Division of Biological Sciences, University of California, San Diego, La Jolla, CA, USA.
| |
Collapse
|
4
|
Site-specific identification and quantitation of endogenous SUMO modifications under native conditions. Nat Commun 2017; 8:1171. [PMID: 29079793 PMCID: PMC5660086 DOI: 10.1038/s41467-017-01271-3] [Citation(s) in RCA: 110] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2016] [Accepted: 09/01/2017] [Indexed: 11/25/2022] Open
Abstract
Small ubiquitin-like modifier (SUMO) modification regulates numerous cellular processes. Unlike ubiquitin, detection of endogenous SUMOylated proteins is limited by the lack of naturally occurring protease sites in the C-terminal tail of SUMO proteins. Proteome-wide detection of SUMOylation sites on target proteins typically requires ectopic expression of mutant SUMOs with introduced tryptic sites. Here, we report a method for proteome-wide, site-level detection of endogenous SUMOylation that uses α-lytic protease, WaLP. WaLP digestion of SUMOylated proteins generates peptides containing SUMO-remnant diglycyl-lysine (KGG) at the site of SUMO modification. Using previously developed immuno-affinity isolation of KGG-containing peptides followed by mass spectrometry, we identified 1209 unique endogenous SUMO modification sites. We also demonstrate the impact of proteasome inhibition on ubiquitin and SUMO-modified proteomes using parallel quantitation of ubiquitylated and SUMOylated peptides. This methodological advancement enables determination of endogenous SUMOylated proteins under completely native conditions. SUMOylation is post-translational modification implicated in several biological pathways. Here the authors describe an approach for the global profiling of SUMO attachment sites under native conditions that also allows the parallel determination of SUMO and Ub attachments.
Collapse
|
5
|
Cao T, Zhang L, Zhang Y, Yan G, Fang C, Bao H, Lu H. Site-Specific Quantification of Protein Ubiquitination on MS2 Fragment Ion Level via Isobaric Peptide Labeling. Anal Chem 2017; 89:11468-11475. [DOI: 10.1021/acs.analchem.7b02654] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Ting Cao
- Shanghai
Cancer Center and Department of Chemistry, Fudan University, Shanghai 200032, P. R. China
| | - Lei Zhang
- Institutes
of Biomedical Sciences and Key Laboratory of Glycoconjugates Research,
Ministry of Public Health, Fudan University, Shanghai 200032, P. R. China
| | - Ying Zhang
- Institutes
of Biomedical Sciences and Key Laboratory of Glycoconjugates Research,
Ministry of Public Health, Fudan University, Shanghai 200032, P. R. China
| | - Guoquan Yan
- Shanghai
Cancer Center and Department of Chemistry, Fudan University, Shanghai 200032, P. R. China
- Institutes
of Biomedical Sciences and Key Laboratory of Glycoconjugates Research,
Ministry of Public Health, Fudan University, Shanghai 200032, P. R. China
| | - Caiyun Fang
- Shanghai
Cancer Center and Department of Chemistry, Fudan University, Shanghai 200032, P. R. China
| | - Huimin Bao
- Shanghai
Cancer Center and Department of Chemistry, Fudan University, Shanghai 200032, P. R. China
| | - Haojie Lu
- Shanghai
Cancer Center and Department of Chemistry, Fudan University, Shanghai 200032, P. R. China
- Institutes
of Biomedical Sciences and Key Laboratory of Glycoconjugates Research,
Ministry of Public Health, Fudan University, Shanghai 200032, P. R. China
| |
Collapse
|
6
|
Deshar R, Moon S, Yoo W, Cho EB, Yoon SK, Yoon JB. RNF167 targets Arl8B for degradation to regulate lysosome positioning and endocytic trafficking. FEBS J 2016; 283:4583-4599. [PMID: 27808481 DOI: 10.1111/febs.13947] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Revised: 10/03/2016] [Accepted: 10/31/2016] [Indexed: 12/18/2022]
Abstract
The protease-associated (PA) domain-containing E3 ubiquitin ligases are transmembrane proteins located in intracellular organelles such as the endoplasmic reticulum, endosomes, or lysosomes. The functional roles of these ubiquitin ligases are not well defined. To understand the function of E3 ubiquitin ligases, identification of their substrates is of critical importance. In this study, we describe a newly devised method based on proximity-dependent biotin labeling to identify substrates of ubiquitin ligases. Application of this method to RING finger protein 167 (RNF167), a member of the PA domain-containing E3 family, led to identification of Arl8B as its substrate. We demonstrated that RNF167 ubiquitinates Arl8B at the lysine residue K141 and reduces the level of the Arl8B protein. Overexpression and knockdown of RNF167 revealed its regulatory role in Arl8B-dependent lysosome positioning and endocytic trafficking to lysosomes. Furthermore, we found that the ubiquitination-defective Arl8B K141R mutant counteracts RNF167 in these cellular events. These results indicate that RNF167 plays a crucial role as an E3 ubiquitin ligase targeting Arl8B to regulate lysosome positioning and endocytic trafficking.
Collapse
Affiliation(s)
- Rakesh Deshar
- Department of Medical Lifesciences, The Catholic University of Korea, Seoul, Korea
| | - Song Moon
- Department of Biochemistry and Translational Research Center for Protein Function Control, Yonsei University, Seoul, Korea
| | - Wonjin Yoo
- Department of Biochemistry and Translational Research Center for Protein Function Control, Yonsei University, Seoul, Korea
| | - Eun-Bee Cho
- Department of Biochemistry and Translational Research Center for Protein Function Control, Yonsei University, Seoul, Korea
| | - Sungjoo K Yoon
- Department of Medical Lifesciences, The Catholic University of Korea, Seoul, Korea
| | - Jong-Bok Yoon
- Department of Biochemistry and Translational Research Center for Protein Function Control, Yonsei University, Seoul, Korea
| |
Collapse
|
7
|
Gendron JM, Webb K, Yang B, Rising L, Zuzow N, Bennett EJ. Using the Ubiquitin-modified Proteome to Monitor Distinct and Spatially Restricted Protein Homeostasis Dysfunction. Mol Cell Proteomics 2016; 15:2576-93. [PMID: 27185884 DOI: 10.1074/mcp.m116.058420] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Indexed: 01/01/2023] Open
Abstract
Protein homeostasis dysfunction has been implicated in the development and progression of aging related human pathologies. There is a need for the establishment of quantitative methods to evaluate global protein homoeostasis function. As the ubiquitin (ub) proteasome system plays a key role in regulating protein homeostasis, we applied quantitative proteomic methods to evaluate the sensitivity of site-specific ubiquitylation events as markers for protein homeostasis dysfunction. Here, we demonstrate that the ub-modified proteome can exceed the sensitivity of engineered fluorescent reporters as a marker for proteasome dysfunction and can provide unique signatures for distinct proteome challenges which is not possible with engineered reporters. We demonstrate that combining ub-proteomics with subcellular fractionation can effectively separate degradative and regulatory ubiquitylation events on distinct protein populations. Using a recently developed potent inhibitor of the critical protein homeostasis factor p97/VCP, we demonstrate that distinct insults to protein homeostasis function can elicit robust and largely unique alterations to the ub-modified proteome. Taken together, we demonstrate that proteomic approaches to monitor the ub-modified proteome can be used to evaluate global protein homeostasis and can be used to monitor distinct functional outcomes for spatially separated protein populations.
Collapse
Affiliation(s)
- Joshua M Gendron
- From the ‡Section of Cell and Developmental Biology, Division of Biological Sciences, University of California, San Diego, La Jolla, California
| | - Kristofor Webb
- From the ‡Section of Cell and Developmental Biology, Division of Biological Sciences, University of California, San Diego, La Jolla, California
| | - Bing Yang
- From the ‡Section of Cell and Developmental Biology, Division of Biological Sciences, University of California, San Diego, La Jolla, California
| | - Lisa Rising
- From the ‡Section of Cell and Developmental Biology, Division of Biological Sciences, University of California, San Diego, La Jolla, California
| | - Nathan Zuzow
- From the ‡Section of Cell and Developmental Biology, Division of Biological Sciences, University of California, San Diego, La Jolla, California
| | - Eric J Bennett
- From the ‡Section of Cell and Developmental Biology, Division of Biological Sciences, University of California, San Diego, La Jolla, California
| |
Collapse
|
8
|
Abstract
Ubiquitin (UB)-driven signaling systems permeate biology, and are often integrated with other types of post-translational modifications (PTMs), including phosphorylation. Flux through such pathways is dictated by the fractional stoichiometry of distinct modifications and protein assemblies as well as the spatial organization of pathway components. Yet, we rarely understand the dynamics and stoichiometry of rate-limiting intermediates along a reaction trajectory. Here, we review how quantitative proteomic tools and enrichment strategies are being used to quantify UB-dependent signaling systems, and to integrate UB signaling with regulatory phosphorylation events, illustrated with the PINK1/PARKIN pathway. A key feature of ubiquitylation is that the identity of UB chain linkage types can control downstream processes. We also describe how proteomic and enzymological tools can be used to identify and quantify UB chain synthesis and linkage preferences. The emergence of sophisticated quantitative proteomic approaches will set a new standard for elucidating biochemical mechanisms of UB-driven signaling systems.
Collapse
Affiliation(s)
- Alban Ordureau
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Christian Münch
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - J Wade Harper
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
9
|
Higgins R, Gendron JM, Rising L, Mak R, Webb K, Kaiser SE, Zuzow N, Riviere P, Yang B, Fenech E, Tang X, Lindsay SA, Christianson JC, Hampton RY, Wasserman SA, Bennett EJ. The Unfolded Protein Response Triggers Site-Specific Regulatory Ubiquitylation of 40S Ribosomal Proteins. Mol Cell 2015; 59:35-49. [PMID: 26051182 DOI: 10.1016/j.molcel.2015.04.026] [Citation(s) in RCA: 121] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Revised: 03/17/2015] [Accepted: 04/12/2015] [Indexed: 01/07/2023]
Abstract
Insults to ER homeostasis activate the unfolded protein response (UPR), which elevates protein folding and degradation capacity and attenuates protein synthesis. While a role for ubiquitin in regulating the degradation of misfolded ER-resident proteins is well described, ubiquitin-dependent regulation of translational reprogramming during the UPR remains uncharacterized. Using global quantitative ubiquitin proteomics, we identify evolutionarily conserved, site-specific regulatory ubiquitylation of 40S ribosomal proteins. We demonstrate that these events occur on assembled cytoplasmic ribosomes and are stimulated by both UPR activation and translation inhibition. We further show that ER stress-stimulated regulatory 40S ribosomal ubiquitylation occurs on a timescale similar to eIF2α phosphorylation, is dependent upon PERK signaling, and is required for optimal cell survival during chronic UPR activation. In total, these results reveal regulatory 40S ribosomal ubiquitylation as an important facet of eukaryotic translational control.
Collapse
Affiliation(s)
- Reneé Higgins
- Section of Cell and Developmental Biology, Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Joshua M Gendron
- Section of Cell and Developmental Biology, Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Lisa Rising
- Section of Cell and Developmental Biology, Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Raymond Mak
- Section of Cell and Developmental Biology, Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Kristofor Webb
- Section of Cell and Developmental Biology, Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Stephen E Kaiser
- Cancer Structural Biology, Oncology Medicinal Chemistry, Pfizer Worldwide Research and Development, 10770 Science Center Drive, San Diego, CA 92121, USA
| | - Nathan Zuzow
- Section of Cell and Developmental Biology, Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Paul Riviere
- Section of Cell and Developmental Biology, Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Bing Yang
- Section of Cell and Developmental Biology, Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Emma Fenech
- Ludwig Institute for Cancer Research, University of Oxford, ORCRB, Headington, Oxford OX3 7DQ, United Kingdom
| | - Xin Tang
- Section of Cell and Developmental Biology, Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Scott A Lindsay
- Section of Cell and Developmental Biology, Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - John C Christianson
- Ludwig Institute for Cancer Research, University of Oxford, ORCRB, Headington, Oxford OX3 7DQ, United Kingdom
| | - Randolph Y Hampton
- Section of Cell and Developmental Biology, Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Steven A Wasserman
- Section of Cell and Developmental Biology, Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Eric J Bennett
- Section of Cell and Developmental Biology, Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
10
|
Tong Z, Kim MS, Pandey A, Espenshade PJ. Identification of candidate substrates for the Golgi Tul1 E3 ligase using quantitative diGly proteomics in yeast. Mol Cell Proteomics 2014; 13:2871-82. [PMID: 25078903 DOI: 10.1074/mcp.m114.040774] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Maintenance of protein homeostasis is essential for cellular survival. Central to this regulation are mechanisms of protein quality control in which misfolded proteins are recognized and degraded by the ubiquitin-proteasome system. One well-studied protein quality control pathway requires endoplasmic reticulum (ER)-resident, multi-subunit E3 ubiquitin ligases that function in ER-associated degradation. Using fission yeast, our lab identified the Golgi Dsc E3 ligase as required for proteolytic activation of fungal sterol regulatory element-binding protein transcription factors. The Dsc E3 ligase contains five integral membrane subunits and structurally resembles ER-associated degradation E3 ligases. Saccharomyces cerevisiae codes for homologs of Dsc E3 ligase subunits, including the Dsc1 E3 ligase homolog Tul1 that functions in Golgi protein quality control. Interestingly, S. cerevisiae lacks sterol regulatory element-binding protein homologs, indicating that novel Tul1 E3 ligase substrates exist. Here, we show that the S. cerevisiae Tul1 E3 ligase consists of Tul1, Dsc2, Dsc3, and Ubx3 and define Tul1 complex architecture. Tul1 E3 ligase function required each subunit as judged by vacuolar sorting of the artificial substrate Pep12D. Genetic studies demonstrated that Tul1 E3 ligase was required in cells lacking the multivesicular body pathway and under conditions of ubiquitin depletion. To identify candidate substrates, we performed quantitative diGly proteomics using stable isotope labeling by amino acids in cell culture to survey ubiquitylation in wild-type and tul1Δ cells. We identified 3116 non-redundant ubiquitylation sites, including 10 sites in candidate substrates. Quantitative proteomics found 4.5% of quantified proteins (53/1172) to be differentially expressed in tul1Δ cells. Correcting the diGly dataset for these differences increased the number of Tul1-dependent ubiquitylation sites. Together, our data demonstrate that the Tul1 E3 ligase functions in protein homeostasis under non-stress conditions and support a role in protein quality control. This quantitative diGly proteomics methodology will serve as a robust platform for screening for stress conditions that require Tul1 E3 ligase activity.
Collapse
Affiliation(s)
- Zongtian Tong
- From the ‡Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | - Min-Sik Kim
- §McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | - Akhilesh Pandey
- §McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205; ¶Departments of Biological Chemistry, Oncology and Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205; ‖Adrienne Helis Malvin Medical Research Foundation, New Orleans, Louisiana 70130; **Diana Helis Henry Medical Research Foundation, New Orleans, Louisiana 70130
| | - Peter J Espenshade
- From the ‡Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205;
| |
Collapse
|
11
|
Stes E, Laga M, Walton A, Samyn N, Timmerman E, De Smet I, Goormachtig S, Gevaert K. A COFRADIC protocol to study protein ubiquitination. J Proteome Res 2014; 13:3107-13. [PMID: 24816145 DOI: 10.1021/pr4012443] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Here, we apply the COmbined FRActional DIagonal Chromatography (COFRADIC) technology to enrich for ubiquitinated peptides and to identify sites of ubiquitination by mass spectrometry. Our technology bypasses the need to overexpress tagged variants of ubiquitin and the use of sequence-biased antibodies recognizing ubiquitin remnants. In brief, all protein primary amino groups are blocked by chemical acetylation, after which ubiquitin chains are proteolytically and specifically removed by the catalytic core domain of the USP2 deubiquitinase (USP2cc). Because USP2cc cleaves the isopeptidyl bond between the ubiquitin C-terminus and the ε-amino group of the ubiquitinated lysine, this enzyme reintroduces primary ε-amino groups in proteins. These amino groups are then chemically modified with a handle that allows specific isolation of ubiquitinated peptides during subsequent COFRADIC chromatographic runs. This method led to the identification of over 7500 endogenous ubiquitination sites in more than 3300 different proteins in a native human Jurkat cell lysate.
Collapse
Affiliation(s)
- Elisabeth Stes
- Department of Medical Protein Research, VIB , B-9000 Ghent, Belgium
| | | | | | | | | | | | | | | |
Collapse
|