1
|
Sun J, Li Q, Ding Y, Wei D, Hadisurya M, Luo Z, Gu Z, Chen B, Tao WA. Profiling Phosphoproteome Landscape in Circulating Extracellular Vesicles from Microliters of Biofluids through Functionally Tunable Paramagnetic Separation. Angew Chem Int Ed Engl 2023; 62:e202305668. [PMID: 37216424 PMCID: PMC11019431 DOI: 10.1002/anie.202305668] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 05/17/2023] [Accepted: 05/22/2023] [Indexed: 05/24/2023]
Abstract
Many biological processes are regulated through dynamic protein phosphorylation. Monitoring disease-relevant phosphorylation events in circulating biofluids is highly appealing but also technically challenging. We introduce here a functionally tunable material and a strategy, extracellular vesicles to phosphoproteins (EVTOP), which achieves one-pot extracellular vesicles (EVs) isolation, extraction, and digestion of EV proteins, and enrichment of phosphopeptides, with only a trace amount of starting biofluids. EVs are efficiently isolated by magnetic beads functionalized with TiIV ions and a membrane-penetrating peptide, octa-arginine R8 + , which also provides the hydrophilic surface to retain EV proteins during lysis. Subsequent on-bead digestion concurrently converts EVTOP to TiIV ion-only surface for efficient enrichment of phosphopeptides for phosphoproteomic analyses. The streamlined, ultra-sensitive platform enabled us to quantify 500 unique EV phosphopeptides with only a few μL of plasma and over 1200 phosphopeptides with 100 μL of cerebrospinal fluid (CSF). We explored its clinical application of monitoring the outcome of chemotherapy of primary central nervous system lymphoma (PCNSL) patients with a small volume of CSF, presenting a powerful tool for broad clinical applications.
Collapse
Affiliation(s)
- Jie Sun
- State Key Laboratory of Bioelectronics, National Demonstration Center for Experimental Biomedical Engineering Education, Southeast University, Nanjing, China
| | - Qing Li
- Department of Hematology, Huashan Hospital, Shanghai, China
| | - Yajie Ding
- State Key Laboratory of Bioelectronics, National Demonstration Center for Experimental Biomedical Engineering Education, Southeast University, Nanjing, China
| | - Dong Wei
- State Key Laboratory of Bioelectronics, National Demonstration Center for Experimental Biomedical Engineering Education, Southeast University, Nanjing, China
| | - Marco Hadisurya
- Department of Biochemistry, Department of Biochemistry, Purdue University, West Lafayette, IN 47907; Institute for Cancer ResearchPurdue University West Lafayette, IN47907
| | - Zhuojun Luo
- Department of Biochemistry, Department of Biochemistry, Purdue University, West Lafayette, IN 47907; Institute for Cancer ResearchPurdue University West Lafayette, IN47907
| | - Zhongze Gu
- State Key Laboratory of Bioelectronics, National Demonstration Center for Experimental Biomedical Engineering Education, Southeast University, Nanjing, China
| | - Bobin Chen
- Department of Hematology, Huashan Hospital, Shanghai, China
| | - W. Andy Tao
- Department of Biochemistry, Department of Biochemistry, Purdue University, West Lafayette, IN 47907; Institute for Cancer ResearchPurdue University West Lafayette, IN47907
| |
Collapse
|
2
|
Proteomics for comprehensive characterization of extracellular vesicles in neurodegenerative disease. Exp Neurol 2022; 355:114149. [PMID: 35732219 DOI: 10.1016/j.expneurol.2022.114149] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 01/28/2022] [Accepted: 06/15/2022] [Indexed: 11/22/2022]
Abstract
Extracellular vesicles (EVs) are small lipid bilayer particles ubiquitously released by almost every cell type. A specific and selective constituents of EVs loaded with variety of proteins, lipids, small noncoding RNAs, and long non-coding RNAs are reflective of cellular events, type, and physiologic/pathophysiologic status of the cell of origin. Moreover, these molecular contents carry information from the cell of origin to recipient cells, modulating intercellular communication. Recent studies demonstrated that EVs not only play a neuroprotective role by mediating the removal of toxic proteins, but also emerge as an important player in various neurodegenerative disease onset and progression through facilitating of misfolded proteins propagation. For this reason, neurodegenerative disease-associated differences in EV proteome relative to normal EVs can be used to fulfil diagnostic, prognostic, and therapeutic purposes. Nonetheless, characterizing EV proteome obtained from biological samples (brain tissue and body fluids, including urea, blood, saliva, and CSF) is a challenging task. Herein, we review the status of EV proteome profiling and the updated discovery of potential biomarkers for the diagnosis of neurodegenerative disease with an emphasis on the integration of high-throughput advanced mass spectrometry (MS) technologies for both qualitative and quantitative analysis of EVs in different clinical tissue/body fluid samples in past five years.
Collapse
|
3
|
Jiao F, Gao F, Liu Y, Fan Z, Xiang X, Xia C, Lv Y, Xie Y, Bai H, Zhang W, Qin W, Qian X. A facile "one-material" strategy for tandem enrichment of small extracellular vesicles phosphoproteome. Talanta 2021; 223:121776. [PMID: 33298282 DOI: 10.1016/j.talanta.2020.121776] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 10/09/2020] [Accepted: 10/12/2020] [Indexed: 01/08/2023]
Abstract
Small extracellular vesicles (SEVs), are cell-derived, membrane-enclosed nanometer-sized vesicles that play vital roles in many biological processes. Recent years, more and more evidences proved that small EVs have close relationship with many diseases such as cancers and Alzheimer's disease. The use of phosphoproteins in SEVs as potential biomarkers is a promising new choice for early diagnosis and prognosis of cancer. However, current techniques for SEVs isolation still facing many challenges, such as highly instrument dependent, time consuming and insufficient purity. Furthermore, complex enrichment procedures and low microgram amounts of proteins available from clinical sources largely limit the throughput and the coveage depth of SEVs phosphoproteome mapping. Here, we synthesized Ti4+-modified magnetic graphene-oxide composites (GFST) and developed a "one-material" strategy for facile and efficient phosphoproteome enrichment and identification in SEVs from human serum. By taking advantage of chelation and electrostatic interactions between metal ions and phosphate groups, GFST shows excellent performance in both SEVs isolation and phosphopeptide enrichment. Close to 85% recovery is achieved within a few minutes by simple incubation with GFST and magnetic separation. Proteome profiling of the isolated serum SEVs without phosphopeptide enrichment results in 515 proteins, which is approximately one-fold more than those otained by ultracentrifugation or coprecipitation kits. Further application of GFST in one-material-based enrichment led to identification of 859 phosphosites in 530 phosphoproteins. Kinase-substrate correlation analysis reveals enriched substrates of CAMK in serum SEVs phosphoproteome. Therefore, we expect that the low instrument dependency and the limited sample requirement of this new strategy may facilitate clinical investigations in SEV-based transportation of abnormal kinases and substrates for drug target discovery and cancer monitoring.
Collapse
Affiliation(s)
- Fenglong Jiao
- National Center for Protein Sciences Beijing, State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Lifeomics, Beijing, 102206, China
| | - Fangyuan Gao
- National Center for Protein Sciences Beijing, State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Lifeomics, Beijing, 102206, China
| | - Yuanyuan Liu
- National Center for Protein Sciences Beijing, State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Lifeomics, Beijing, 102206, China
| | - Zhiya Fan
- National Center for Protein Sciences Beijing, State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Lifeomics, Beijing, 102206, China
| | - Xiaochao Xiang
- National Center for Protein Sciences Beijing, State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Lifeomics, Beijing, 102206, China
| | - Chaoshuang Xia
- National Center for Protein Sciences Beijing, State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Lifeomics, Beijing, 102206, China
| | - Yayao Lv
- National Center for Protein Sciences Beijing, State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Lifeomics, Beijing, 102206, China
| | - Yuping Xie
- National Center for Protein Sciences Beijing, State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Lifeomics, Beijing, 102206, China
| | - Haihong Bai
- Phase I Clinical Trial Center, Capital Medical University Affiliated Beijing Shijitan Hospital University, Beijing, 100038, China
| | - Wanjun Zhang
- National Center for Protein Sciences Beijing, State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Lifeomics, Beijing, 102206, China
| | - Weijie Qin
- National Center for Protein Sciences Beijing, State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Lifeomics, Beijing, 102206, China; College of Basic Medicine, Anhui Medical University, Hefei, 230032, China.
| | - Xiaohong Qian
- National Center for Protein Sciences Beijing, State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Lifeomics, Beijing, 102206, China
| |
Collapse
|
4
|
Yu LR, Veenstra TD. Characterization of Phosphorylated Proteins Using Mass Spectrometry. Curr Protein Pept Sci 2020; 22:148-157. [PMID: 33231146 DOI: 10.2174/1389203721999201123200439] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 08/14/2020] [Accepted: 08/31/2020] [Indexed: 11/22/2022]
Abstract
Phosphorylation is arguably the most important post-translational modification that occurs within proteins. Phosphorylation is used as a signal to control numerous physiological activities ranging from gene expression to metabolism. Identifying phosphorylation sites within proteins was historically a challenge as it required either radioisotope labeling or the use of phospho-specific antibodies. The advent of mass spectrometry (MS) has had a major impact on the ability to qualitatively and quantitatively characterize phosphorylated proteins. In this article, we describe MS methods for characterizing phosphorylation sites within individual proteins as well as entire proteome samples. The utility of these methods is illustrated in examples that show the information that can be gained using these MS techniques.
Collapse
Affiliation(s)
- Li-Rong Yu
- Division of Systems Biology, National Center for Toxicological Research, U.S. Food and Drug Administration, 3900 NCTR Road, Jefferson, AR 72079, United States
| | - Timothy D Veenstra
- School of Pharmacy, Cedarville University, 251 North Main Street, Cedarville, OH 45314, United States
| |
Collapse
|
5
|
Griffith AA, Holmes W. Fine Tuning: Effects of Post-Translational Modification on Hsp70 Chaperones. Int J Mol Sci 2019; 20:ijms20174207. [PMID: 31466231 PMCID: PMC6747426 DOI: 10.3390/ijms20174207] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 08/22/2019] [Accepted: 08/26/2019] [Indexed: 02/07/2023] Open
Abstract
The discovery of heat shock proteins shaped our view of protein folding in the cell. Since their initial discovery, chaperone proteins were identified in all domains of life, demonstrating their vital and conserved functional roles in protein homeostasis. Chaperone proteins maintain proper protein folding in the cell by utilizing a variety of distinct, characteristic mechanisms to prevent aberrant intermolecular interactions, prevent protein aggregation, and lower entropic costs to allow for protein refolding. Continued study has found that chaperones may exhibit alternative functions, including maintaining protein folding during endoplasmic reticulum (ER) import and chaperone-mediated degradation, among others. Alternative chaperone functions are frequently controlled by post-translational modification, in which a given chaperone can switch between functions through covalent modification. This review will focus on the Hsp70 class chaperones and their Hsp40 co-chaperones, specifically highlighting the importance of post-translational control of chaperones. These modifications may serve as a target for therapeutic intervention in the treatment of diseases of protein misfolding and aggregation.
Collapse
Affiliation(s)
| | - William Holmes
- Rhode Island College, Biology Department, Providence, RI 02908, USA.
| |
Collapse
|
6
|
Cheng A, Grant CE, Noble WS, Bailey TL. MoMo: discovery of statistically significant post-translational modification motifs. Bioinformatics 2019; 35:2774-2782. [PMID: 30596994 PMCID: PMC6691336 DOI: 10.1093/bioinformatics/bty1058] [Citation(s) in RCA: 143] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 12/14/2018] [Accepted: 12/26/2018] [Indexed: 01/05/2023] Open
Abstract
MOTIVATION Post-translational modifications (PTMs) of proteins are associated with many significant biological functions and can be identified in high throughput using tandem mass spectrometry. Many PTMs are associated with short sequence patterns called 'motifs' that help localize the modifying enzyme. Accordingly, many algorithms have been designed to identify these motifs from mass spectrometry data. Accurate statistical confidence estimates for discovered motifs are critically important for proper interpretation and in the design of downstream experimental validation. RESULTS We describe a method for assigning statistical confidence estimates to PTM motifs, and we demonstrate that this method provides accurate P-values on both simulated and real data. Our methods are implemented in MoMo, a software tool for discovering motifs among sets of PTMs that we make available as a web server and as downloadable source code. MoMo re-implements the two most widely used PTM motif discovery algorithms-motif-x and MoDL-while offering many enhancements. Relative to motif-x, MoMo offers improved statistical confidence estimates and more accurate calculation of motif scores. The MoMo web server offers more proteome databases, more input formats, larger inputs and longer running times than the motif-x web server. Finally, our study demonstrates that the confidence estimates produced by motif-x are inaccurate. This inaccuracy stems in part from the common practice of drawing 'background' peptides from an unshuffled proteome database. Our results thus suggest that many of the papers that use motif-x to find motifs may be reporting results that lack statistical support. AVAILABILITY AND IMPLEMENTATION The MoMo web server and source code are provided at http://meme-suite.org. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Alice Cheng
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Charles E Grant
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - William S Noble
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
- Department of Computer Science and Engineering, University of Washington, Seattle, WA, USA
| | | |
Collapse
|
7
|
Kurylo I, Hamdi A, Addad A, Boukherroub R, Coffinier Y. Comparison of Ti-Based Coatings on Silicon Nanowires for Phosphopeptide Enrichment and Their Laser Assisted Desorption/Ionization Mass Spectrometry Detection. NANOMATERIALS 2017; 7:nano7090272. [PMID: 28914806 PMCID: PMC5618383 DOI: 10.3390/nano7090272] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 09/04/2017] [Accepted: 09/09/2017] [Indexed: 01/15/2023]
Abstract
We created different TiO2-based coatings on silicon nanowires (SiNWs) by using either thermal metallization or atomic layer deposition (ALD). The fabricated surfaces were characterized by X-ray photoelectron spectroscopy (XPS), energy dispersive X-ray spectroscopy (EDX), and reflectivity measurements. Surfaces with different TiO2 based coating thicknesses were then used for phosphopeptide enrichment and subsequent detection by laser desorption/ionization mass spectrometry (LDI-MS). Results showed that the best enrichment and LDI-MS detection were obtained using the silicon nanowires covered with 10 nm of oxidized Ti deposited by means of thermal evaporation. This sample was also able to perform phosphopeptide enrichment and MS detection from serum.
Collapse
Affiliation(s)
- Ievgen Kurylo
- University Lille, CNRS, Centrale Lille, ISEN, University Valenciennes, IEMN, UMR CNRS 8520, Avenue Poincaré, BP 60069, 59652 Villeneuve d'Ascq, France.
| | - Abderrahmane Hamdi
- University Lille, CNRS, Centrale Lille, ISEN, University Valenciennes, IEMN, UMR CNRS 8520, Avenue Poincaré, BP 60069, 59652 Villeneuve d'Ascq, France.
- Laboratory of Semi-Conductors, Nano-Structures and Advanced Technologies, Research and Technology Centre of Energy, Borj-Cedria Science and Technology Park, BP 95, 2050 Hammam-Lif, Tunisia.
- Faculty of Science of Bizerte, University of Carthage, 7021 Zarzouna, Tunisia.
| | - Ahmed Addad
- Unité Matériaux et Transformations (UMET), UMR CNRS 8207, Université Lille1, Cité Scientifique, 59655 Villeneuve d'Ascq, France.
| | - Rabah Boukherroub
- University Lille, CNRS, Centrale Lille, ISEN, University Valenciennes, IEMN, UMR CNRS 8520, Avenue Poincaré, BP 60069, 59652 Villeneuve d'Ascq, France.
| | - Yannick Coffinier
- University Lille, CNRS, Centrale Lille, ISEN, University Valenciennes, IEMN, UMR CNRS 8520, Avenue Poincaré, BP 60069, 59652 Villeneuve d'Ascq, France.
| |
Collapse
|
8
|
Long XY, Li JY, Sheng D, Lian HZ. Spinel-type manganese ferrite (MnFe 2 O 4 ) microspheres: A novel affinity probe for selective and fast enrichment of phosphopeptides. Talanta 2017; 166:36-45. [DOI: 10.1016/j.talanta.2017.01.025] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2016] [Revised: 01/01/2017] [Accepted: 01/06/2017] [Indexed: 02/02/2023]
|
9
|
Smith KP, Gifford KM, Waitzman JS, Rice SE. Survey of phosphorylation near drug binding sites in the Protein Data Bank (PDB) and their effects. Proteins 2015; 83:25-36. [PMID: 24833420 PMCID: PMC4233198 DOI: 10.1002/prot.24605] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Revised: 04/28/2014] [Accepted: 05/09/2014] [Indexed: 12/21/2022]
Abstract
While it is currently estimated that 40 to 50% of eukaryotic proteins are phosphorylated, little is known about the frequency and local effects of phosphorylation near pharmaceutical inhibitor binding sites. In this study, we investigated how frequently phosphorylation may affect the binding of drug inhibitors to target proteins. We examined the 453 non-redundant structures of soluble mammalian drug target proteins bound to inhibitors currently available in the Protein Data Bank (PDB). We cross-referenced these structures with phosphorylation data available from the PhosphoSitePlus database. Three hundred twenty-two of 453 (71%) of drug targets have evidence of phosphorylation that has been validated by multiple methods or labs. For 132 of 453 (29%) of those, the phosphorylation site is within 12 Å of the small molecule-binding site, where it would likely alter small molecule binding affinity. We propose a framework for distinguishing between drug-phosphorylation site interactions that are likely to alter the efficacy of drugs versus those that are not. In addition we highlight examples of well-established drug targets, such as estrogen receptor alpha, for which phosphorylation may affect drug affinity and clinical efficacy. Our data suggest that phosphorylation may affect drug binding and efficacy for a significant fraction of drug target proteins.
Collapse
Affiliation(s)
- Kyle P Smith
- Department of Cell and Molecular Biology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, 60611
| | | | | | | |
Collapse
|
10
|
Küster SK, Pabst M, Zenobi R, Dittrich PS. Automatisierte Detektion von Proteinphosphorylierung durch Nanoliter-Enzymreaktionen auf Mikroarrays. Angew Chem Int Ed Engl 2014. [DOI: 10.1002/ange.201409440] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
11
|
Küster SK, Pabst M, Zenobi R, Dittrich PS. Screening for protein phosphorylation using nanoscale reactions on microdroplet arrays. Angew Chem Int Ed Engl 2014; 54:1671-5. [PMID: 25504774 DOI: 10.1002/anie.201409440] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Indexed: 12/25/2022]
Abstract
We present a novel and straightforward screening method to detect protein phosphorylations in complex protein mixtures. A proteolytic digest is separated by a conventional nanoscale liquid chromatography (nano-LC) separation and the eluate is immediately compartmentalized into microdroplets, which are spotted on a microarray MALDI plate. Subsequently, the enzyme alkaline phosphatase is applied to every second microarray spot to remove the phosphate groups from phosphorylated peptides, which results in a mass shift of n×-80 Da. The MALDI-MS scan of the microarray is then evaluated by a software algorithm to automatically identify the phosphorylated peptides by exploiting the characteristic chromatographic peak profile induced by the phosphatase treatment. This screening method does not require extensive MS/MS experiments or peak list evaluation and can be easily extended to other enzymatic or chemical reactions.
Collapse
Affiliation(s)
- Simon K Küster
- Department of Chemistry and Applied Biosciences, ETH Zurich, Vladimir-Prelog-Weg 3, 8093 Zurich (Switzerland)
| | | | | | | |
Collapse
|
12
|
Analysis of Cdk5-related phosphoproteomics in growth cones. J Mol Neurosci 2014; 52:384-91. [PMID: 24234032 DOI: 10.1007/s12031-013-0162-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2013] [Accepted: 10/23/2013] [Indexed: 10/26/2022]
Abstract
Neurons establish interactions with target cells via elongation and guidance of axons, and the growth cone plays pivotal roles in this process. Cyclin-dependent kinase 5 (Cdk5)is a key regulator of nervous system development. Cdk5 regulates several significant events by phosphorylating substrates that are involved in neurogenesis, and previous studies of Cdk5 have typically focused on single substrates. Here, we took anew approach to investigate Cdk5 substrates using mass spectrometry and bioinformatics analyses. Axonal growth cones were isolated and analyzed by HPLC-MALDI-MS/MS. In total, 178,617 MS/MS spectra were detected. Candidates were analyzed by GPS 2.1 and Scansite 3, which predicted that 2,664 and 275 sites, respectively, were potential phosphorylation sites of Cdk5. There were 190 overlapped phosphorylation sites, corresponding to 89 proteins. Those proteins correlated with axonal functions were classified, and two of them were verified using a classic site-specific mutation strategy. This is the first study in which the phosphoproteome of axonal growth cones was identified. The systematic examination of Cdk5 substrates could provide a reference for further study of molecular mechanisms of axonal growth cones, and new insights into treatments of neuronal disorders.
Collapse
|
13
|
Abstract
The eukaryotic cell division cycle has been studied at the molecular level for over 30 years, most fruitfully in model organisms. In the past 5 years, developments in mass spectrometry-based proteomics have been applied to the study of protein interactions and post-translational modifications involving key cell cycle regulators such as cyclin-dependent kinases and the anaphase-promoting complex, as well as effectors such as centrosomes, the kinetochore and DNA replication forks. In addition, innovations in chemical biology, functional proteomics and bioinformatics have been employed to study the cell cycle at the proteome level. This review surveys the contributions of proteomics to cell cycle research. The near future should see the application of more quantitative proteomic approaches to probe the dynamic aspects of the molecular system that underlie the cell cycle in model organisms and in human cells.
Collapse
Affiliation(s)
- Vincent Archambault
- Department of Genetics, University of Cambridge, Downing Street, CB2 3EH, UK.
| |
Collapse
|
14
|
Sweet SMM, Cooper HJ. Electron capture dissociation in the analysis of protein phosphorylation. Expert Rev Proteomics 2014; 4:149-59. [PMID: 17425452 DOI: 10.1586/14789450.4.2.149] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Protein phosphorylation is a widespread and important post-translational modification. Despite recent advances in phosphoproteomic methods, phosphopeptide identification and site localization remain challenging. Electron capture dissociation has inherent advantages for phosphorylation analysis. The use of electron capture dissociation in this area to date is reviewed and future prospects are outlined.
Collapse
Affiliation(s)
- Steve M M Sweet
- University of Birmingham, School of Biosciences, Edgbaston, Birmingham, UK.
| | | |
Collapse
|
15
|
Shen F, Hu Y, Guan P, Ren X. Facile preparation of titanium phosphate-modified chitosan for selective capture of phosphopeptides. J Sep Sci 2012; 36:540-7. [DOI: 10.1002/jssc.201200821] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2012] [Revised: 09/29/2012] [Accepted: 10/12/2012] [Indexed: 11/11/2022]
Affiliation(s)
- Feng Shen
- Department of Plant Nutrition, College of Resources and Environmental Sciences; China Agricultural University; Beijing P. R. China
| | - Yufeng Hu
- Department of Environmental Sciences and Engineering, College of Resources and Environmental Sciences; China Agricultural University; Beijing P. R. China
| | - Ping Guan
- Department of Plant Nutrition, College of Resources and Environmental Sciences; China Agricultural University; Beijing P. R. China
| | - Xueqin Ren
- Department of Environmental Sciences and Engineering, College of Resources and Environmental Sciences; China Agricultural University; Beijing P. R. China
| |
Collapse
|
16
|
Quizi JL, Baron K, Al-Zahrani KN, O'Reilly P, Sriram RK, Conway J, Laurin AA, Sabourin LA. SLK-mediated phosphorylation of paxillin is required for focal adhesion turnover and cell migration. Oncogene 2012; 32:4656-63. [PMID: 23128389 DOI: 10.1038/onc.2012.488] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2012] [Revised: 09/05/2012] [Accepted: 09/07/2012] [Indexed: 12/27/2022]
Abstract
Focal adhesion turnover is a complex process required for cell migration. We have previously shown that the Ste20-like kinase (SLK) is required for cell migration and efficient focal adhesion (FA) turnover in a FA kinase (FAK)-dependent manner. However, the role of SLK in this process remains unclear. Using a candidate substrate approach, we show that SLK phosphorylates the adhesion adapter protein paxillin on serine 250. Serine 250 phosphorylation is required for paxillin redistribution and cell motility. Mutation of paxillin serine 250 prevents its phosphorylation by SLK in vitro and results in impaired migration in vivo as evidenced by an accumulation of phospho-FAK-Tyr397 and altered FA turnover rates. Together, our data suggest that SLK phosphorylation of paxillin on serine 250 is required for FAK-dependent FA dynamics.
Collapse
Affiliation(s)
- J L Quizi
- 1] Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada [2] Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Kang JH, Toita R, Kim CW, Katayama Y. Protein kinase C (PKC) isozyme-specific substrates and their design. Biotechnol Adv 2012; 30:1662-72. [PMID: 22841933 DOI: 10.1016/j.biotechadv.2012.07.004] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2012] [Revised: 07/17/2012] [Accepted: 07/18/2012] [Indexed: 11/30/2022]
|
18
|
Metodiev M, Alldridge L. Phosphoproteomics: A possible route to novel biomarkers of breast cancer. Proteomics Clin Appl 2012; 2:181-94. [PMID: 21136824 DOI: 10.1002/prca.200780011] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Proteomics is rapidly transforming the way that cancer and other pathologies are investigated. The ability to identify hundreds of proteins and to compare their abundance in different clinical samples presents a unique opportunity for direct identification of novel disease markers. Furthermore, recent advances allow us to analyse and compare PTMs. This gives an additional dimension for defining a new class of protein biomarker based not only on abundance and expression but also on the occurrence of covalent modifications specific to a disease state or therapy response. Such modifications are often a consequence of the activation/inactivation of a particular disease related pathway. In this review we evaluate the available information on breast cancer related protein-phosphorylation events, illustrating the rationale for investigating this PTM as a target for breast cancer research with eventual clinical relevance. We present a critical survey of the published experimental strategies to study protein phosphorylation on a system wide scale and highlight recent specific advances in breast cancer phosphoproteomics. Finally we discuss the feasibility of establishing novel biomarkers for breast cancer based on the detection of patterns of specific protein phosphorylation events.
Collapse
Affiliation(s)
- Metodi Metodiev
- Department of Biological Sciences, University of Essex, Wivenhoe Park, Colchester, Essex, UK
| | | |
Collapse
|
19
|
Bachmann S, Bakry R, Huck CW, Polato F, Corradini D, Bonn GK. Peptide mapping using capillary electrophoresis offline coupled to matrix-assisted laser desorption ionization time of flight mass spectrometry. Electrophoresis 2011; 32:2830-9. [PMID: 21953317 DOI: 10.1002/elps.201000653] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2010] [Revised: 03/14/2011] [Accepted: 03/14/2011] [Indexed: 01/20/2023]
Abstract
This article reports the results of a study carried out to evaluate the offline hyphenation of capillary zone electrophoresis with matrix-assisted lased desorption ionization time of flight mass spectrometry (MALDI-TOF-MS) for the analysis of low-abundant complex samples, represented by the tryptic phosphorylated peptides of phosphoproteins, such as α-casein, β-casein, and fetuin. The proposed method employs a latex-coated capillary and consists in the online preconcentration of the tryptic peptides by a pH-mediated stacking method, their separation by capillary zone electrophoresis, and subsequent deposition of the separated analytes onto a MALDI target for their MS analysis. The online preconcentration method allows loading a large sample volume (∼150 nL), which is introduced into the capillary after the hydrodynamic injection of a short plug of 1.0 M ammonium hydroxide solution and is sandwiched between two plugs of the acidic background electrolyte solution (BGE) filling the capillary. The sample spotting of the separated analytes onto the MALDI target is performed either during or postseparation using an automatic spotting device connected to the exit of the separation capillary. The proposed method allows the separation and identification of multiphosphorylated peptides from other peptides and enables their identification at femtomole level with improved efficiency compared with LC approaches hyphenated to MS.
Collapse
Affiliation(s)
- Stefan Bachmann
- Institute of Analytical Chemistry and Radiochemistry, Leopold-Franzens University, Innsbruck, Austria
| | | | | | | | | | | |
Collapse
|
20
|
Wang X, Stewart PA, Cao Q, Sang QXA, Chung LWK, Emmett MR, Marshall AG. Characterization of the phosphoproteome in androgen-repressed human prostate cancer cells by Fourier transform ion cyclotron resonance mass spectrometry. J Proteome Res 2011; 10:3920-8. [PMID: 21786837 DOI: 10.1021/pr2000144] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Androgen-repressed human prostate cancer, ARCaP, grows and is highly metastatic to bone and soft tissues in castrated mice. The molecular mechanisms underlying the aberrant responses to androgen are not fully understood. Here, we apply state-of-the-art mass spectrometry methods to investigate the phosphoproteome profiles in ARCaP cells. Because protein biological phosphorylation is always substoichiometric and the ionization efficiency of phosphopeptides is low, selective enrichment of phosphorylated proteins/peptides is required for mass spectrometric analysis of phosphorylation from complex biological samples. Therefore, we compare the sensitivity, efficiency, and specificity for three established enrichment strategies: calcium phosphate precipitation (CPP), immobilized metal ion affinity chromatography (IMAC), and TiO(2)-modified metal oxide chromatography. Calcium phosphate precipitation coupled with the TiO(2) approach offers the best strategy to characterize phosphorylation in ARCaP cells. We analyzed phosphopeptides from ARCaP cells by LC-MS/MS with a hybrid LTQ/FT-ICR mass spectrometer. After database search and stringent filtering, we identified 385 phosphoproteins with an average peptide mass error of 0.32 ± 0.6 ppm. Key identified oncogenic pathways include the mammalian target of rapamycin (mTOR) pathway and the E2F signaling pathway. Androgen-induced proliferation inhibitor (APRIN) was detected in its phosphorylated form, implicating a molecular mechanism underlying the ARCaP phenotype.
Collapse
Affiliation(s)
- Xu Wang
- Department of Chemistry and Biochemistry, 95 Chieftain Way, Florida State University, Tallahassee, Florida 32306, United States
| | | | | | | | | | | | | |
Collapse
|
21
|
Ibrahim YM, Shvartsburg AA, Smith RD, Belov ME. Ultrasensitive identification of localization variants of modified peptides using ion mobility spectrometry. Anal Chem 2011; 83:5617-23. [PMID: 21692493 PMCID: PMC3136632 DOI: 10.1021/ac200719n] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Localization of the modification sites on peptides is challenging, particularly when multiple modifications or mixtures of localization isomers (variants) are involved. Such variants commonly coelute in liquid chromatography and may be undistinguishable in tandem mass spectrometry (MS/MS) for lack of unique fragments. Here, we have resolved the variants of singly and doubly phosphorylated peptides employing drift tube ion mobility spectrometry (IMS) coupled to time-of-flight mass spectrometry. Even with a moderate IMS resolving power of ∼80-100, substantial separation was achieved for both 2+ and 3+ ions normally generated by electrospray ionization, including for the variants indistinguishable by MS/MS. Variants often exhibit a distribution of 3-D conformers, which can be adjusted for optimum IMS separation by prior field heating of ions in a funnel trap. The peak assignments were confirmed using MS/MS after IMS separation, but known species could be identified using just the ion mobility "tag". Avoiding the MS/MS step lowers the detection limit of localization variants to <100 amol, an order of magnitude better than that provided by electron transfer dissociation in an Orbitrap MS.
Collapse
Affiliation(s)
- Yehia M Ibrahim
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | | | | | | |
Collapse
|
22
|
Lamoureaux TL, Lee DH. Chemical activation of MEK1--a redox trigger for evaluating the effects of phosphorylation. Chem Commun (Camb) 2011; 47:8623-5. [PMID: 21717004 DOI: 10.1039/c1cc11745a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An approach to generate mimics of phosphorylated serine proteins chemically through site-specific sulfonation of cysteine is presented. This chemical modification is reversible in the presence of reducing agent and therefore is analogous to the kinase/phosphatase system used in nature.
Collapse
Affiliation(s)
- Toni L Lamoureaux
- Department of Chemistry, Tufts University, Medford, Massachusetts 02155, USA
| | | |
Collapse
|
23
|
Kan’shin ED, Nifant’ev IE, Pshezhetskii AV. Mass spectrometric analysis of protein phosphorylation. JOURNAL OF ANALYTICAL CHEMISTRY 2010. [DOI: 10.1134/s1061934810130010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
24
|
Abstract
Reversible protein phosphorylation serves as a basis for regulating a number of cellular processes. Aberrant activation of kinase signaling pathways is commonly associated with several cancers. Recent developments in phosphoprotein/phosphopeptide enrichment strategies and quantitative mass spectrometry have resulted in robust pipelines for high-throughput characterization of phosphorylation in a global fashion. Today, it is possible to profile site-specific phosphorylation events on thousands of proteins in a single experiment. The potential of this approach is already being realized to characterize signaling pathways that govern oncogenesis. In addition, chemical proteomic strategies have been used to unravel targets of kinase inhibitors, which are otherwise difficult to characterize. This review summarizes various approaches used for analysis of the phosphoproteome in general, and protein kinases in particular, highlighting key cancer phosphoproteomic studies.
Collapse
Affiliation(s)
- H C Harsha
- Institute of Bioinformatics, International Technology Park, Bangalore, India.
| | | |
Collapse
|
25
|
Shvartsburg AA, Creese AJ, Smith RD, Cooper HJ. Separation of peptide isomers with variant modified sites by high-resolution differential ion mobility spectrometry. Anal Chem 2010; 82:8327-34. [PMID: 20843012 PMCID: PMC2973842 DOI: 10.1021/ac101878a] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Many proteins and proteolytic peptides incorporate the same post-translational modification (PTM) at different sites, creating multiple localization variants with different functions or activities that may coexist in cells. Current analytical methods based on liquid chromatography (LC) followed by tandem mass spectrometry (MS/MS) are challenged by such isomers that often coelute in LC and/or produce nonunique fragment ions. The application of ion mobility spectrometry (IMS) was explored, but success has been limited by insufficient resolution. We show that high-resolution differential ion mobility spectrometry (FAIMS) employing helium-rich gases can readily separate phosphopeptides with variant modification sites. Use of He/N(2) mixtures containing up to 74% He has allowed separating to >95% three monophosphorylated peptides of identical sequence. Similar separation was achieved at 50% He, using an elevated electric field. Bisphosphorylated isomers that differ in only one modification site were separated to the same extent. We anticipate FAIMS capabilities for such separations to extend to other PTMs.
Collapse
Affiliation(s)
- Alexandre A Shvartsburg
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, P.O. Box 999, Richland, Washington 99352, USA
| | | | | | | |
Collapse
|
26
|
Arsenic-induced protein phosphorylation changes in HeLa cells. Anal Bioanal Chem 2010; 398:2099-107. [PMID: 20803194 DOI: 10.1007/s00216-010-4128-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2010] [Revised: 08/11/2010] [Accepted: 08/11/2010] [Indexed: 10/19/2022]
Abstract
Arsenic is well documented as a chemotherapeutic agent capable of inducing cell death while at the same time is considered a human carcinogen and an environmental contaminant. Although arsenic toxicity is well known and has formed an impressive literature over the time, little is known about how its effects are exerted at the proteome level. Protein phosphorylation is an important post-translational modification involved in the regulation of cell signaling and likely is altered by arsenic treatment. Despite the importance of phosphorylation for many regulatory processes in cells, the identification and characterization of phosphorylation, as effected by arsenic through mass spectrometric detection, are not fully studied. Here, we identify phosphorylated proteins, which are related to post-translational modifications after phenylarsine oxide (PAO) inoculation to HeLa cells. PAO was chosen because of its high cytotoxicity, measured earlier in these labs. In this study, size exclusion chromatography coupled to inductively coupled plasma mass spectrometry (SEC-ICP-MS) is used to establish several molecular weight fractions with phosphorylated proteins by monitoring (31)P signal vs. time via ICP-MS. SEC-ICP-MS fractions are collected and then separated by the nano-LC-CHIP/ITMS system for peptide determination. Spectrum Mill and MASCOT protein database search engines are used for protein identification. Several phosphorylation sites and proteins related to post-translational modifications are also identified.
Collapse
|
27
|
Systematic characterization by mass spectrometric analysis of phosphorylation sites in IRF-3 regulatory domain activated by IKK-i. J Proteomics 2010; 73:1196-203. [DOI: 10.1016/j.jprot.2010.02.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2009] [Revised: 12/24/2009] [Accepted: 02/09/2010] [Indexed: 11/17/2022]
|
28
|
Mayya V, Han DK. Phosphoproteomics by mass spectrometry: insights, implications, applications and limitations. Expert Rev Proteomics 2010; 6:605-18. [PMID: 19929607 DOI: 10.1586/epr.09.84] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Phosphorylation of proteins is a predominant, reversible post-translational modification. It is central to a wide variety of physiological responses and signaling mechanisms. Recent advances have allowed the global scope of phosphorylation to be addressed by mass spectrometry using phosphoproteomic approaches. In this perspective, we discuss four aspects of phosphoproteomics: the insights and implications from recently published phosphoproteomic studies and the applications and limitations of current phosphoproteomic strategies. Since approximately 50,000 known phosphorylation sites do not yet have any ascribed function, we present our perspectives on a major function of protein phosphorylation that may be of predictive value in hypothesis-based investigations. Finally, we discuss strategies to measure the stoichiometry of phosphorylation in a proteome-wide manner that is not provided by current phosphoproteomic approaches.
Collapse
Affiliation(s)
- Viveka Mayya
- Center for Vascular Biology, Department of Cell Biology, University of Connecticut Health Center, 263 Farmington Avenue, Farmington, CT 06030, USA.
| | | |
Collapse
|
29
|
Annan RB, Lee AY, Reid ID, Sayad A, Whiteway M, Hallett M, Thomas DY. A biochemical genomics screen for substrates of Ste20p kinase enables the in silico prediction of novel substrates. PLoS One 2009; 4:e8279. [PMID: 20020052 PMCID: PMC2791418 DOI: 10.1371/journal.pone.0008279] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2009] [Accepted: 11/19/2009] [Indexed: 01/13/2023] Open
Abstract
The Ste20/PAK family is involved in many cellular processes, including the regulation of actin-based cytoskeletal dynamics and the activation of MAPK signaling pathways. Despite its numerous roles, few of its substrates have been identified. To better characterize the roles of the yeast Ste20p kinase, we developed an in vitro biochemical genomics screen to identify its substrates. When applied to 539 purified yeast proteins, the screen reported 14 targets of Ste20p phosphorylation. We used the data resulting from our screen to build an in silico predictor to identify Ste20p substrates on a proteome-wide basis. Since kinase-substrate specificity is often mediated by additional binding events at sites distal to the phosphorylation site, the predictor uses the presence/absence of multiple sequence motifs to evaluate potential substrates. Statistical validation estimates a threefold improvement in substrate recovery over random predictions, despite the lack of a single dominant motif that can characterize Ste20p phosphorylation. The set of predicted substrates significantly overrepresents elements of the genetic and physical interaction networks surrounding Ste20p, suggesting that some of the predicted substrates are in vivo targets. We validated this combined experimental and computational approach for identifying kinase substrates by confirming the in vitro phosphorylation of polarisome components Bni1p and Bud6p, thus suggesting a mechanism by which Ste20p effects polarized growth.
Collapse
Affiliation(s)
- Robert B Annan
- Department of Biochemistry, McGill University, Montreal, Quebec, Canada.
| | | | | | | | | | | | | |
Collapse
|
30
|
Imanishi SY, Kouvonen P, Smått JH, Heikkilä M, Peuhu E, Mikhailov A, Ritala M, Lindén M, Corthals GL, Eriksson JE. Phosphopeptide enrichment with stable spatial coordination on a titanium dioxide coated glass slide. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2009; 23:3661-3667. [PMID: 19899184 DOI: 10.1002/rcm.4291] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Recent advances in phosphoproteomics have established powerful tools to analyze phosphorylation events. However, their spatial localization is lost due to sample homogenization procedures prior to the analysis. Imaging mass spectrometry (IMS) has emerged as a method to visualize the spatial distribution of molecules in tissue samples, but its application is still limited to relatively abundant molecules. Due to low phosphorylation stoichiometry, direct detection and imaging of protein phosphorylation by MS has not been achieved yet. Therefore we have developed a novel phosphopeptide enrichment strategy as a potential tool for in situ affinity imaging MS (AIMS). A specific type of titanium dioxide (TiO2)-coated glass slides was designed and validated with casein tryptic digests for their ability to selectively retain phosphopeptides while maintaining their spatial coordination.
Collapse
Affiliation(s)
- Susumu Y Imanishi
- Turku Centre for Biotechnology, University of Turku and Abo Akademi University, FIN-20521 Turku, Finland
| | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Kesic M, Doueiri R, Ward M, Semmes OJ, Green PL. Phosphorylation regulates human T-cell leukemia virus type 1 Rex function. Retrovirology 2009; 6:105. [PMID: 19919707 PMCID: PMC2780990 DOI: 10.1186/1742-4690-6-105] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2009] [Accepted: 11/17/2009] [Indexed: 11/10/2022] Open
Abstract
Background Human T-cell leukemia virus type 1 (HTLV-1) is a pathogenic complex deltaretrovirus, which is the causative agent of adult T-cell leukemia/lymphoma (ATL) and HTLV-1-associated myelopathy/tropical spastic paraparesis. In addition to the structural and enzymatic viral gene products, HTLV-1 encodes the positive regulatory proteins Tax and Rex along with viral accessory proteins. Tax and Rex proteins orchestrate the timely expression of viral genes important in viral replication and cellular transformation. Rex is a nucleolar-localizing shuttling protein that acts post-transcriptionally by binding and facilitating the export of the unspliced and incompletely spliced viral mRNAs from the nucleus to the cytoplasm. HTLV-1 Rex (Rex-1) is a phosphoprotein and general protein kinase inhibition correlates with reduced function. Therefore, it has been proposed that Rex-1 function may be regulated through site-specific phosphorylation. Results We conducted a phosphoryl mapping of Rex-1 over-expressed in transfected 293 T cells using a combination of affinity purification and liquid chromatography tandem mass spectrometry. We achieved 100% physical coverage of the Rex-1 polypeptide and identified five novel phosphorylation sites at Thr-22, Ser-36, Thr-37, Ser-97, and Ser-106. We also confirmed evidence of two previously identified residues, Ser-70 and Thr-174, but found no evidence of phosphorylation at Ser-177. The functional significance of these phosphorylation events was evaluated using a Rex reporter assay and site-directed mutational analysis. Our results indicate that phosphorylation at Ser-97 and Thr-174 is critical for Rex-1 function. Conclusion We have mapped completely the site-specific phosphorylation of Rex-1 identifying a total of seven residues; Thr-22, Ser-36, Thr-37, Ser-70, Ser-97, Ser-106, and Thr-174. Overall, this work is the first to completely map the phosphorylation sites in Rex-1 and provides important insight into the regulation of Rex-1 function.
Collapse
Affiliation(s)
- Matthew Kesic
- Center for Retrovirus Research, The Ohio State University, Columbus, OH 43210, USA.
| | | | | | | | | |
Collapse
|
32
|
Isotope-labeling and affinity enrichment of phosphopeptides for proteomic analysis using liquid chromatography-tandem mass spectrometry. Methods Mol Biol 2009. [PMID: 19544030 DOI: 10.1007/978-1-60761-157-8_17] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
The reversible phosphorylation of proteins is a dynamic process that plays a major role in many vital physiological processes by transmitting signals within cellular pathways and networks. Proteomic measurements using mass spectrometry are capable of characterizing the sites of protein phosphorylation and to quantify their change in abundance. However, the low stoichiometry of protein phosphorylation events often preclude mass spectrometry detection and require additional sample preparation steps to facilitate their characterization. Many analytical methods have been used to map and quantify changes in phosphorylation, and this chapter will present two methods that can be used for extraction of phosphopeptides from protein and proteome digests to map phosphorylation sites using liquid chromatography-tandem mass spectrometry (LC/MS/MS). The first method describes an immobilized metal affinity chromatography (IMAC) technique using Ga3+ to enrich for phosphopeptides from protein digests. The second method describes the utilization of phosphoprotein isotope-coded solid-phase tags (PhIST) to label and enrich phosphopeptides from complex mixtures to both identify and quantify changes in protein phosphorylation. The IMAC and PhIST protocols can be applied to any isolated protein sample and is amenable to additional fractionation using strong cation/anion exchange chromatography prior to reversed-phase LC/MS/MS analysis.
Collapse
|
33
|
Site-specific phosphorylation regulates human T-cell leukemia virus type 2 Rex function in vivo. J Virol 2009; 83:8859-68. [PMID: 19553333 DOI: 10.1128/jvi.00908-09] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Human T-cell leukemia virus type 2 (HTLV-2) Rex is a transacting regulatory protein required for efficient cytoplasmic expression of the unspliced and incompletely spliced viral mRNA transcripts encoding the structural and enzymatic proteins. Previously, it was demonstrated that phosphorylation of Rex-2, predominantly on serine residues, is correlated with an altered conformation, as observed by a gel mobility shift and the detection of two related protein species (p24(Rex) and p26(Rex)). Rex-2 phosphorylation is required for specific binding to its viral-mRNA target sequence and inhibition of mRNA splicing and may be linked to subcellular compartmentalization. Thus, the phosphorylation-induced structural state of Rex in the infected cell may be a switch that determines whether HTLV exists in a latent or productive state. We conducted a phosphoryl and functional mapping of both structural forms of mammalian-cell-expressed Rex 2 using affinity purification, liquid chromatography-tandem mass spectrometry, and site-directed substitutional mutational analysis. We identified two phosphorylation sites in p24(Rex) at Ser-117 and Thr-164. We also identified six phosphorylation sites in p26(Rex) at Thr-19, Ser-117, Ser-125, Ser-151, Ser-153, and Thr-164. We evaluated the functional significance of these phosphorylation events and found that phosphorylation on Thr-164, Ser-151, and Ser-153 is critical for Rex-2 function in vivo and that phosphorylation of Ser-151 is correlated with nuclear/nucleolar subcellular localization. Overall, this work is the first to completely map the phosphorylation sites in Rex-2 and provides important insight into the phosphorylation continuum that tightly regulates Rex-2 structure, cellular localization, and function.
Collapse
|
34
|
Ahmed FE. Sample preparation and fractionation for proteome analysis and cancer biomarker discovery by mass spectrometry. J Sep Sci 2009; 32:771-98. [PMID: 19219839 DOI: 10.1002/jssc.200800622] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Sample preparation and fractionation technologies are one of the most crucial processes in proteomic analysis and biomarker discovery in solubilized samples. Chromatographic or electrophoretic proteomic technologies are also available for separation of cellular protein components. There are, however, considerable limitations in currently available proteomic technologies as none of them allows for the analysis of the entire proteome in a simple step because of the large number of peptides, and because of the wide concentration dynamic range of the proteome in clinical blood samples. The results of any undertaken experiment depend on the condition of the starting material. Therefore, proper experimental design and pertinent sample preparation is essential to obtain meaningful results, particularly in comparative clinical proteomics in which one is looking for minor differences between experimental (diseased) and control (nondiseased) samples. This review discusses problems associated with general and specialized strategies of sample preparation and fractionation, dealing with samples that are solution or suspension, in a frozen tissue state, or formalin-preserved tissue archival samples, and illustrates how sample processing might influence detection with mass spectrometric techniques. Strategies that dramatically improve the potential for cancer biomarker discovery in minimally invasive, blood-collected human samples are also presented.
Collapse
Affiliation(s)
- Farid E Ahmed
- Department of Radiation Oncology, Leo W. Jenkins Cancer Center, The Brody School of Medicine at East Carolina University, Greenville, NC, USA.
| |
Collapse
|
35
|
Morandell S, Stasyk T, Skvortsov S, Ascher S, Huber LA. Quantitative proteomics and phosphoproteomics reveal novel insights into complexity and dynamics of the EGFR signaling network. Proteomics 2008; 8:4383-401. [DOI: 10.1002/pmic.200800204] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
36
|
Charych DH, Coyne M, Yabannavar A, Narberes J, Chow S, Wallroth M, Shafer C, Walter AO. Inhibition of Cdc7/Dbf4 kinase activity affects specific phosphorylation sites on MCM2 in cancer cells. J Cell Biochem 2008; 104:1075-86. [PMID: 18286467 DOI: 10.1002/jcb.21698] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The Cdc7/Dbf4 kinase is required for initiation of DNA replication and also plays a role in checkpoint function in response to replication stress. Exactly how Cdc7/Dbf4 mediates those activities remains to be elucidated. Cdc7/Dbf4 physically interacts with and phosphorylates the minichromosome maintenance complex (MCM), such as MCM2, MCM4 and MCM6. Cdc7/Dbf4 activity is required for association of Cdc45 followed by recruitment of DNA polymerase on the chromatin. Using high resolution mass spectrometry, we identified six phosphorylation sites on MCM2, two of them have not been described before. We provide evidence that Cdc7/Dbf4 mediates phosphorylation on serine 108 and serine 40 on human MCM2 in vitro and in vivo in cancer cells in the absence of DNA damage. Antibodies specific to pS108 or pS40 confirmed the sites and established useful read-outs for inhibition of Cdc7/Dbf4. This report demonstrates the utility of an in vitro to in vivo workflow utilizing immunoprecipitation and mass spectrometry to map phosphorylation sites on endogenous kinase substrates. The approach can be readily generalized to identify target modulation read-outs for other potential kinase cancer targets.
Collapse
Affiliation(s)
- Deborah H Charych
- Novartis Institute of Biomedical Research, Oncology, Emeryville, California 94608, USA.
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Sweet SMM, Mardakheh FK, Ryan KJP, Langton AJ, Heath JK, Cooper HJ. Targeted online liquid chromatography electron capture dissociation mass spectrometry for the localization of sites of in vivo phosphorylation in human Sprouty2. Anal Chem 2008; 80:6650-7. [PMID: 18683950 DOI: 10.1021/ac800963a] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
We demonstrate a strategy employing collision-induced dissociation for phosphopeptide discovery, followed by targeted electron capture dissociation (ECD) for site localization. The high mass accuracy and low background noise of the ECD mass spectra allow facile sequencing of coeluting isobaric phosphopeptides, with up to two isobaric phosphopeptides sequenced from a single mass spectrum. In contrast to the previously described neutral loss dependent ECD method, targeted ECD allows analysis of both phosphotyrosine peptides and lower abundance phosphopeptides. The approach was applied to phosphorylation analysis of human Sprouty2, a regulator of receptor tyrosine kinase signaling. Fifteen sites of phosphorylation were identified, 11 of which are novel.
Collapse
Affiliation(s)
- Steve M M Sweet
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | | | | | | | | | | |
Collapse
|
38
|
Zhou H, Ye M, Dong J, Han G, Jiang X, Wu R, Zou H. Specific Phosphopeptide Enrichment with Immobilized Titanium Ion Affinity Chromatography Adsorbent for Phosphoproteome Analysis. J Proteome Res 2008; 7:3957-67. [DOI: 10.1021/pr800223m] [Citation(s) in RCA: 226] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Houjiang Zhou
- National Chromatographic R&A Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Mingliang Ye
- National Chromatographic R&A Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Jing Dong
- National Chromatographic R&A Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Guanghui Han
- National Chromatographic R&A Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Xinning Jiang
- National Chromatographic R&A Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Renan Wu
- National Chromatographic R&A Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Hanfa Zou
- National Chromatographic R&A Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| |
Collapse
|
39
|
Canova MJ, Veyron-Churlet R, Zanella-Cleon I, Cohen-Gonsaud M, Cozzone AJ, Becchi M, Kremer L, Molle V. The Mycobacterium tuberculosis serine/threonine kinase PknL phosphorylates Rv2175c: mass spectrometric profiling of the activation loop phosphorylation sites and their role in the recruitment of Rv2175c. Proteomics 2008; 8:521-33. [PMID: 18175374 DOI: 10.1002/pmic.200700442] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Although Mycobacterium tuberculosis (M. tb) comprises 11 serine/threonine protein kinases, the mechanisms of regulation of these kinases and the nature of their endogenous substrates remain largely unknown. Herein, we characterized the M. tb kinase PknL by demonstrating that it expresses autophosphorylation activity and phosphorylates Rv2175c. On-target dephosphorylation/MALDI-TOF for identification of phosphorylated peptides was used in combination with LC-ESI/MS/MS for localization of phosphorylation sites. By doing so, five phosphorylated threonine residues were identified in PknL. Among them, we showed that the activation loop phosphorylated residues Thr173 and Thr175 were essential for the autophosphorylation activity of PknL. Phosphorylation of the activation loop Thr173 residue is also required for optimal PknL-mediated phosphorylation of Rv2175c. Together, our results indicate that phosphorylation of the PknL activation loop Thr residues not only controls PknL kinase activity but is also required for recruitment and phosphorylation of its substrate. Rv2175c was found to be phosphorylated when overexpressed and purified from Mycobacterium smegmatis as 2-DE indicated the presence of different phosphorylated isoforms. Given the presence of the dcw gene cluster in the close vicinity of the pknL/Rv2175c locus, and its conservation in all mycobacterial species, we propose that PknL/Rv2175c may represent a functional pair in the regulation of mycobacterial cell division and cell envelope biosynthesis.
Collapse
Affiliation(s)
- Marc J Canova
- Institut de Biologie et Chimie des Protéines, CNRS UMR 5086, Université Lyon 1, IFR128 BioSciences, Lyon-Gerland, Lyon, France
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Ruse CI, McClatchy DB, Lu B, Cociorva D, Motoyama A, Kyu Park S, Yates JR. Motif-specific sampling of phosphoproteomes. J Proteome Res 2008; 7:2140-50. [PMID: 18452278 PMCID: PMC2703005 DOI: 10.1021/pr800147u] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Phosphoproteomics, the targeted study of a subfraction of the proteome which is modified by phosphorylation, has become an indispensable tool to study cell signaling dynamics. We described a methodology that linked phosphoproteome and proteome analysis based on Ba2+ binding properties of amino acids. This technology selected motif-specific phosphopeptides independent of the system under analysis. MudPIT (Multidimensional Identification Technology) identified 1037 precipitated phosphopeptides from as little as 250 microg of proteins. To extend coverage of the phosphoproteome, we sampled the nuclear extract of HeLa cells with three values of Ba2+ ions molarity. The presence of more than 70% of identified phosphoproteins was further substantiated by their nonmodified peptides. Upon isoproterenol stimulation of HEK cells, we identified an increasing number of phosphoproteins from MAPK cascades and AKAP signaling hubs. We quantified changes in both protein and phosphorylation levels of 197 phosphoproteins including a critical kinase, MAPK1. Integration of differential phosphorylation of MAPK1 with knowledge bases constructed modules that correlated well with its role as node in cross-talk of canonical pathways.
Collapse
Affiliation(s)
- Cristian I. Ruse
- Department of Chemical Physiology/Cell Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, SR11, La Jolla, California 92037
| | - Daniel B. McClatchy
- Department of Chemical Physiology/Cell Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, SR11, La Jolla, California 92037
| | - Bingwen Lu
- Department of Chemical Physiology/Cell Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, SR11, La Jolla, California 92037
| | - Daniel Cociorva
- Department of Chemical Physiology/Cell Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, SR11, La Jolla, California 92037
| | - Akira Motoyama
- Department of Chemical Physiology/Cell Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, SR11, La Jolla, California 92037
| | - Sung Kyu Park
- Department of Chemical Physiology/Cell Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, SR11, La Jolla, California 92037
| | - John R. Yates
- Department of Chemical Physiology/Cell Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, SR11, La Jolla, California 92037
| |
Collapse
|
41
|
Gabant G, Lorphelin A, Nozerand N, Marchetti C, Bellanger L, Dedieu A, Quéméneur E, Alpha-Bazin B. Autophosphorylated residues involved in the regulation of human chk2 in vitro. J Mol Biol 2008; 380:489-503. [PMID: 18538787 DOI: 10.1016/j.jmb.2008.04.053] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2008] [Revised: 04/10/2008] [Accepted: 04/23/2008] [Indexed: 01/10/2023]
Abstract
Human checkpoint kinase 2 is a major actor in checkpoint activation through phosphorylation by ataxia telangiectasia mutated in response to DNA double-strand breaks. In the absence of de novo DNA damage, its autoactivation, reported in the event of increased Cds1/checkpoint kinase 2 (Chk2) expression, has been attributed to oligomerization. Here we report a study performed on autoactivated recombinant Chk2 proteins that aims to correlate kinase activity and phosphorylation status. Using a fluorescence-based technique to assay human checkpoint kinase 2 catalytic activity, slight differences in the ability to phosphorylate Cdc25C were observed, depending on the recombinant system used. Using mass spectrometry, the phosphorylation sites were mapped to identify sites potentially involved in the kinase activity. Five phosphorylated positions, at Ser120, Ser260, Thr225, Ser379 and Ser435, were found to be common to bacteria and insect cells expression systems. They were present in addition to the six known phosphorylation sites induced by ionizing radiation (Thr68, Thr432, Thr387, Ser516, Ser33/35 and Ser19) detected by immunoblotting. After phosphatase treatment, Chk2 regained activity via autorephosphorylation. The determination of the five common sites and ionizing-radiation-inducible positions as rephosphorylated confirms that they are potential positive regulators of Chk2 kinase activity. For Escherichia coli's most highly phosphorylated 6His-Chk2, 13 additional phosphorylation sites were assigned, including 7 novel sites on top of recently reported phosphorylation sites.
Collapse
Affiliation(s)
- Guillaume Gabant
- CEA, DSV, iBEB, Service de biochimie et toxicologie nucléaire, Centre de Marcoule, BP 17171, F-30207 Bagnols-sur-Cèze Cedex, France
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Cantin GT, Yi W, Lu B, Park SK, Xu T, Lee JD, Yates JR. Combining Protein-Based IMAC, Peptide-Based IMAC, and MudPIT for Efficient Phosphoproteomic Analysis. J Proteome Res 2008; 7:1346-51. [DOI: 10.1021/pr0705441] [Citation(s) in RCA: 122] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
43
|
Wang H, Duan J, Zhang L, Liang Z, Zhang W, Zhang Y. Characterization of multi-phosphopeptides by μHPLC–ESI-MS/MS with alkaline phosphatase treatment. J Sep Sci 2008; 31:480-7. [DOI: 10.1002/jssc.200700445] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
44
|
Jagannadham MV, Nagaraj R. Detecting the site of phosphorylation in phosphopeptides without loss of phosphate group using MALDI TOF mass spectrometry. ANALYTICAL CHEMISTRY INSIGHTS 2008; 3:21-9. [PMID: 19609387 PMCID: PMC2701175 DOI: 10.4137/aci.s497] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Phosphopeptides with one and four phosphate groups were characterized by MALDI mass spectrometry. The molecular ion of monophosphopeptide could be detected both as positive and negative ions by MALDI TOF with delayed extraction (DE) and in the reflector mode. The tetraphospho peptide could be detected in linear mode. When MS/MS spectra of the monophospho peptides were obtained in a MALDI TOF TOF instrument by CID, b and y ions with the intact phosphate group were observed, in addition the b and y ions without the phosphate group. Our study indicates that it is possible to detect phosphorylated peptides with out the loss of phosphate group by MALDI TOF as well as MALDI TOF TOF instruments with delayed extraction and in the reflector mode.
Collapse
|
45
|
Navaza AP, Encinar JR, Carrascal M, Abián J, Sanz-Medel A. Absolute and Site-Specific Quantification of Protein Phosphorylation Using Integrated Elemental and Molecular Mass Spectrometry: Its Potential To Assess Phosphopeptide Enrichment Procedures. Anal Chem 2008; 80:1777-87. [DOI: 10.1021/ac7022316] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Ana Pereira Navaza
- Department of Physical and Analytical Chemistry, University of Oviedo, Julián Clavería 8, 33006 Oviedo, Spain, and CSIC/UAB Proteomics Facility, IIBB-CSIC, IDIBAPS, Rosello 161, 08036 Barcelona, Spain
| | - Jorge Ruiz Encinar
- Department of Physical and Analytical Chemistry, University of Oviedo, Julián Clavería 8, 33006 Oviedo, Spain, and CSIC/UAB Proteomics Facility, IIBB-CSIC, IDIBAPS, Rosello 161, 08036 Barcelona, Spain
| | - Montserrat Carrascal
- Department of Physical and Analytical Chemistry, University of Oviedo, Julián Clavería 8, 33006 Oviedo, Spain, and CSIC/UAB Proteomics Facility, IIBB-CSIC, IDIBAPS, Rosello 161, 08036 Barcelona, Spain
| | - Joaquín Abián
- Department of Physical and Analytical Chemistry, University of Oviedo, Julián Clavería 8, 33006 Oviedo, Spain, and CSIC/UAB Proteomics Facility, IIBB-CSIC, IDIBAPS, Rosello 161, 08036 Barcelona, Spain
| | - Alfredo Sanz-Medel
- Department of Physical and Analytical Chemistry, University of Oviedo, Julián Clavería 8, 33006 Oviedo, Spain, and CSIC/UAB Proteomics Facility, IIBB-CSIC, IDIBAPS, Rosello 161, 08036 Barcelona, Spain
| |
Collapse
|
46
|
Bouché JP, Froment C, Dozier C, Esmenjaud-Mailhat C, Lemaire M, Monsarrat B, Burlet-Schiltz O, Ducommun B. NanoLC-MS/MS analysis provides new insights into the phosphorylation pattern of Cdc25B in vivo: full overlap with sites of phosphorylation by Chk1 and Cdk1/cycB kinases in vitro. J Proteome Res 2008; 7:1264-73. [PMID: 18237113 DOI: 10.1021/pr700623p] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
NanoLC-MS/MS analysis was used to characterize the phosphorylation pattern in vivo of CDC25B3 (phosphatase splice variant 1) expressed in a human cell line and to compare it to the phosphorylation of CDC25B3 by Cdk1/cyclin B and Chk1 in vitro. Cellular CDC25B3 was purified from U2OS cells conditionally overexpressing the phosphatase. Eighteen sites were detectably phosphorylated in vivo. Nearly all existing (S/T)P sites were phosphorylated in vivo and in vitro. Eight non(S/T)P sites were phosphorylated in vivo. All these sites could be phosphorylated by kinase Chk1, which phosphorylated a total of 11 sites in vitro, with consensus sequence (R/K) X(2-3) (S/P)-non P. Nearly half of the sites identified in this study were not previously described and were not homologous to sites reported to be phosphorylated in other CDC25 species. We also show that in vivo a significant part of CDC25B molecules can be hyperphosphorylated, with up to 13 phosphates per phosphatase molecule.
Collapse
Affiliation(s)
- Jean-Pierre Bouché
- LBCMCP-CNRS-IFR109, Institut d'Exploration Fonctionnelle des Génomes, University of Toulouse, France.
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Marcantonio M, Trost M, Courcelles M, Desjardins M, Thibault P. Combined enzymatic and data mining approaches for comprehensive phosphoproteome analyses: application to cell signaling events of interferon-gamma-stimulated macrophages. Mol Cell Proteomics 2007; 7:645-60. [PMID: 18006492 DOI: 10.1074/mcp.m700383-mcp200] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Protein phosphorylation is a central cell signaling event that underlies a broad spectrum of key physiological processes. Advances in affinity chromatography and mass spectrometry are now providing the ability to identify and quantitate thousands of phosphorylation sites simultaneously. Comprehensive phosphoproteome analyses present sizable analytical challenges in view of suppression effects of phosphopeptides and the variable quality of MS/MS spectra. This work presents an integrated enzymatic and data mining approach enabling the comprehensive detection of native and putative phosphopeptides following alkaline phosphatase digestion of titanium dioxide (TiO2)-enriched cell extracts. The correlation of retention times of more than 750 phospho- and dephosphopeptide pairs from J774 macrophage cell extracts indicated that removal of the phosphate groups can impart a gain or a loss in hydrophobicity that is partly explained by the formation of a salt bridge with proximal amino groups. Dephosphorylation also led to an average 2-fold increase in MS sensitivity that facilitated peptide sequencing. More importantly, alkaline phosphatase digestion enhanced the overall population of putative phosphopeptides from TiO2-enriched cell extracts providing a unique approach to profile multiphosphorylated cognates that would have remained otherwise undetected. The application of this approach is demonstrated for differential phosphoproteome analyses of mouse macrophages exposed to interferon-gamma for 5 min. TiO2 enrichment enabled the identification of 1143 phosphopeptides from 432 different proteins of which 125 phosphopeptides showed a 2-fold change upon interferon-gamma exposure. The use of alkaline phosphatase nearly doubled the number of putative phosphopeptides assignments leading to the observation of key interferon-gamma signaling events involved in vesicle trafficking, production of reactive oxygen species, and mRNA translation.
Collapse
Affiliation(s)
- Maria Marcantonio
- Institute for Research in Immunology and Cancer, Departments of Biochemistry, Université de Montréal, Station Centre-ville, Montréal H3C 3J7, Canada
| | | | | | | | | |
Collapse
|
48
|
Abstract
Phosphorylation, the most intensively studied and common PTM on proteins, is a complex biological phenomenon. Its complexity manifests itself in the large numbers of proteins that attach it, remove it and recognise it as a protein code. Since the first report of protein phosphorylation on vitellin 100 years ago, a wide variety of biochemical and analytical chemical approaches have been developed to enrich and detect protein phosphorylation. The last 5 years have witnessed a renaissance in methodologies capable of characterising protein phosphorylation on a proteome-scale. These technological advances have allowed identification of hundreds to thousands of phosphorylation sites in a proteome and have resulted in a profound paradigm shift. For the first time, using quantitative MS, the topology and significance of global phosphorylation networks may be investigated, marking a new era of cell signalling research. This review addresses recent technological advances in the purification of phosphorylated proteins and peptides and current MS-based strategies used to qualitatively and quantitatively probe these enriched phosphoproteomes. In addition, we review the application of complementary array-based technologies to derive signalling networks from kinase-substrate interactions and discuss future challenges in the field.
Collapse
Affiliation(s)
- Mark O Collins
- Proteomic Mass Spectrometry, Wellcome Trust Sanger Institute, Hinxton, Cambridge, UK.
| | | | | |
Collapse
|
49
|
Nice EC, Rothacker J, Weinstock J, Lim L, Catimel B. Use of multidimensional separation protocols for the purification of trace components in complex biological samples for proteomics analysis. J Chromatogr A 2007; 1168:190-210; discussion 189. [PMID: 17597136 DOI: 10.1016/j.chroma.2007.06.015] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2007] [Revised: 06/06/2007] [Accepted: 06/07/2007] [Indexed: 01/09/2023]
Abstract
The routine detection of low abundance components in complex samples for detailed proteomics analysis continues to be a challenge. Whilst the potential of multidimensional chromatographic fractionation for this purpose has been proposed for some years, and was used effectively for the purification to homogeneity of trace components in bulk biological samples for N-terminal sequence analysis, its practical application in the proteomics arena is still limited. This article reviews some of the recent data using these approaches, including the use of microaffinity purification as part of multidimensional protocols for downstream proteomics analysis.
Collapse
Affiliation(s)
- E C Nice
- Protein Biosensing and Epithelial Laboratories, Ludwig Institute for Cancer Research, Melbourne Tumour Biology Branch, P.O. Royal Melbourne Hospital, Parkville, Vic. 3050, Australia.
| | | | | | | | | |
Collapse
|
50
|
Medzihradszky KF, Guan S, Maltby DA, Burlingame AL. Sulfopeptide fragmentation in electron-capture and electron-transfer dissociation. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2007; 18:1617-24. [PMID: 17629708 DOI: 10.1016/j.jasms.2007.06.002] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2006] [Revised: 06/07/2007] [Accepted: 06/07/2007] [Indexed: 05/16/2023]
Abstract
Sulfopeptides can be misassigned as phosphopeptides because of the isobaric nature of the sulfo- and the phosphomoieties. Instruments having the ability to measure mass with high accuracy may be employed to distinguish these moieties based on their mass defect (the sulfo-group is 9 mmu lighter than the phosphomoiety). However, the assignment of the exact site(s) of post-translational modification is required to probe biological function. We have reported earlier that peptides with identical sequences containing either O-sulfo- or O-phospho-modifications display different fragmentation behavior (K. F. Medzihradszky et al., Mol. Cell. Proteom.2004, 3, 429-440). We have also established that O-sulfo moieties are susceptible to side-chain fragmentation during collision-induced dissociation. Our present study provides evidence that neutral SO(3) losses can also occur in electron capture dissociation and electron-transfer dissociation experiments. We also report that such neutral losses may be reduced by fragmenting peptide-alkali metal adducts, such as sodiated or potassiated peptides.
Collapse
Affiliation(s)
- K F Medzihradszky
- Mass Spectrometry Facility, Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, California 94143-0446, USA.
| | | | | | | |
Collapse
|