1
|
Chen F, Ma L, Liu Q, Zhou Z, Yi W. Recent advances and therapeutic applications of PPARγ-targeted ligands based on the inhibition mechanism of Ser273 phosphorylation. Metabolism 2025; 163:156097. [PMID: 39637972 DOI: 10.1016/j.metabol.2024.156097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 11/27/2024] [Accepted: 11/30/2024] [Indexed: 12/07/2024]
Abstract
PPARγ functions as a master ligand-dependent transcription factor that regulates the expressions of a variety of key genes related to metabolic homeostasis and inflammatory immunity. It has been recognized as a popular and druggable target in modern drug discovery. Similar to other nuclear receptors, PPARγ is a phosphoprotein, and its biological functions are regulated by phosphorylation, especially at Ser273 site which is mediated by CDK5 or ERK. In the past decade, the excessive level of PPARγ-Ser273 phosphorylation has been confirmed to be a crucial factor in promoting the occurrence and development of some major diseases. Ligands capable of inhibiting PPARγ-Ser273 phosphorylation have shown great potentials for treatment. Despite these achievements, to our knowledge, no related review focusing on this topic has been conducted so far. Therefore, we herein summarize the basic knowledge of PPARγ and CDK5/ERK-mediated PPARγ-Ser273 phosphorylation as well as its physiopathological role in representative diseases. We also review the developments and therapeutic applications of PPARγ-targeted ligands based on this mechanism. Finally, we suggest several directions for future investigations. We expect that this review can evoke more inspiration of scientific communities, ultimately facilitating the promotion of the PPARγ-Ser273 phosphorylation-involved mechanism as a promising breakthrough point for addressing the clinical treatment of human diseases.
Collapse
Affiliation(s)
- Fangyuan Chen
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation & Molecular Target and Clinical Pharmacology, the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 511436, China
| | - Lei Ma
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation & Molecular Target and Clinical Pharmacology, the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 511436, China
| | - Qingmei Liu
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation & Molecular Target and Clinical Pharmacology, the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 511436, China
| | - Zhi Zhou
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation & Molecular Target and Clinical Pharmacology, the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 511436, China.
| | - Wei Yi
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation & Molecular Target and Clinical Pharmacology, the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 511436, China.
| |
Collapse
|
2
|
Rayl ML, Nemetchek MD, Voss AH, Hughes TS. Agonists of the Nuclear Receptor PPARγ Can Produce Biased Signaling. Mol Pharmacol 2024; 106:309-318. [PMID: 39443155 PMCID: PMC11585255 DOI: 10.1124/molpharm.124.000992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 09/13/2024] [Accepted: 10/03/2024] [Indexed: 10/25/2024] Open
Abstract
Biased signaling and ligand bias, often termed functional selectivity or selective nuclear receptor modulation, have been reported for nuclear receptor partial agonists over the past 20 years. Whether signaling differences produced by partial agonists result from less intense modulation, off-target effects, or biased signaling remains unclear. A commonly postulated mechanism for biased signaling is coactivator favoritism, where agonists induce different coactivator recruitment profiles. We find that both GW1929 (full agonist) and MRL24 (partial agonist) favor recruitment of 100 to 300 residue regions from S-motif coactivators compared with a reference full agonist (rosiglitazone), yielding 95% bias value confidence intervals of 0.05-0.17 and 0.29-0.38, respectively. Calculations based on these data indicate that GW1929 and MRL24 would induce 30% to 60% higher S-motif coactivator occupancy at the receptor compared with rosiglitazone. We compare the transcriptional effects of these same three ligands on human adipocytes using RNA sequencing and exploratory Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis. Only 50% (rosiglitazone) and 77% (GW1929) of all gene expression changes are shared between these full agonists after 3 hours of exposure. After 24 hours of exposure, 13/98 KEGG pathways appear more intensely modulated by rosiglitazone than GW1929 (e.g., 95% confidence interval of bias in the regulation of lipolysis in adipocytes pathway is 0.03-0.09), despite similar signaling for the remaining 85 affected pathways. Similarly, rosiglitazone has an unusually large effect on several lipid metabolism-related pathways compared with the partial agonist MRL24. These data indicate that nuclear receptor full and partial agonists can induce biased signaling, likely through differences in coactivator recruitment. SIGNIFICANCE STATEMENT: Many nuclear receptor partial agonists cause fewer adverse effects and similar efficacy compared with full agonists, potentially by inducing biased agonism. Our data support the idea that partial agonists, and a full agonist, of the nuclear receptor Peroxisome proliferator-activated receptor gamma (PPARγ) are biased agonists, causing different signaling by inducing PPARγ to favor different coactivators. These data indicate that biased agonism can occur in nuclear receptors and should be considered in efforts to develop improved nuclear receptor-targeted drugs.
Collapse
Affiliation(s)
- Mariah L Rayl
- Biochemistry and Biophysics Graduate Program (M.L.R., T.S.H.), Department of Biomedical and Pharmaceutical Sciences (M.D.N., T.S.H.), and Pharmaceutical Sciences and Drug Design Graduate Program (A.H.V., T.S.H.), University of Montana, Missoula, Montana
| | - Michelle D Nemetchek
- Biochemistry and Biophysics Graduate Program (M.L.R., T.S.H.), Department of Biomedical and Pharmaceutical Sciences (M.D.N., T.S.H.), and Pharmaceutical Sciences and Drug Design Graduate Program (A.H.V., T.S.H.), University of Montana, Missoula, Montana
| | - Andrew H Voss
- Biochemistry and Biophysics Graduate Program (M.L.R., T.S.H.), Department of Biomedical and Pharmaceutical Sciences (M.D.N., T.S.H.), and Pharmaceutical Sciences and Drug Design Graduate Program (A.H.V., T.S.H.), University of Montana, Missoula, Montana
| | - Travis S Hughes
- Biochemistry and Biophysics Graduate Program (M.L.R., T.S.H.), Department of Biomedical and Pharmaceutical Sciences (M.D.N., T.S.H.), and Pharmaceutical Sciences and Drug Design Graduate Program (A.H.V., T.S.H.), University of Montana, Missoula, Montana
| |
Collapse
|
3
|
Pourazadi L, Sharafi M, Torshizi MAK, Shahverdi A, Alizadeh A. Peroxisome proliferator-activated receptors (PPARs) as a mediator of dietary fatty acids affects reproductive performance in broiler breeder roosters. Theriogenology 2020; 158:331-338. [PMID: 33010655 DOI: 10.1016/j.theriogenology.2020.09.020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Revised: 09/05/2020] [Accepted: 09/14/2020] [Indexed: 11/30/2022]
Abstract
This study analyzed the effects of dietary sources of omega-3 and omega-6 fatty acids on semen parameters and fertility potential in broiler breeder roosters. The mRNA and protein profiles of peroxisome proliferator-activated receptors-γ (PPAR-γ) expression in sperm as potential mediator of FAs were considered. Roosters were categorized into three groups and received their diets for 24 weeks as follows: 1) control diet received a basal diet (CTRL); 2) Fish oil based diet (FO) received the basal diet supplemented with 15 g/kg of diet fish oil; and 3) sunflower oil based diet (SO) received the basal diet supplemented with 15 g/kg of diet sunflower oil. While the different diets had significant effects on semen parameters, the effect of sampling time was not significant. The effect of the diets on sperm parameters were significantly higher in the SO and FO groups in total motility, progressive motility, amplitude of lateral head displacement, linearity, straightness, wobble and viability (P ≤ 0.05). Fertility rate was significantly improved in the FO and SO groups (P = 0001). The highest value for PPAR-γ mRNA was observed in the SO group compared to other groups (P ≤ 0.05). Moreover, supplementation of the roosters' diets with FO and SO increased PPAR-γ protein expression compared to the control. It seems that PPAR-γ could be a strong potential mediator of the underlying mechanism of improvement in semen parameters and reproductive performance of roosters under the effects of both dietary omega-3 and omega-6 polyunsaturated fatty acids.
Collapse
Affiliation(s)
- Laya Pourazadi
- Department of Poultry Science, Faculty of Agriculture, Tarbiat Modares University, Tehran, 14115-336, Iran
| | - Mohsen Sharafi
- Department of Poultry Science, Faculty of Agriculture, Tarbiat Modares University, Tehran, 14115-336, Iran.
| | | | - Abdolhossein Shahverdi
- Department of Embryology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, 148-16635, Iran
| | - AliReza Alizadeh
- Department of Embryology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, 148-16635, Iran
| |
Collapse
|
4
|
Definition of functionally and structurally distinct repressive states in the nuclear receptor PPARγ. Nat Commun 2019; 10:5825. [PMID: 31862968 PMCID: PMC6925260 DOI: 10.1038/s41467-019-13768-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Accepted: 11/26/2019] [Indexed: 12/19/2022] Open
Abstract
The repressive states of nuclear receptors (i.e., apo or bound to antagonists or inverse agonists) are poorly defined, despite the fact that nuclear receptors are a major drug target. Most ligand bound structures of nuclear receptors, including peroxisome proliferator-activated receptor γ (PPARγ), are similar to the apo structure. Here we use NMR, accelerated molecular dynamics and hydrogen-deuterium exchange mass spectrometry to define the PPARγ structural ensemble. We find that the helix 3 charge clamp positioning varies widely in apo and is stabilized by efficacious ligand binding. We also reveal a previously undescribed mechanism for inverse agonism involving an omega loop to helix switch which induces disruption of a tripartite salt-bridge network. We demonstrate that ligand binding can induce multiple structurally distinct repressive states. One state recruits peptides from two different corepressors, while another recruits just one, providing structural evidence of ligand bias in a nuclear receptor. The repressive states of peroxisome proliferator-activated receptor γ (PPARγ) are ill-defined, despite nuclear receptors being a major drug target. Here authors demonstrate multiple structurally distinct repressive states, providing a structural rationale for ligand bias in a nuclear receptor.
Collapse
|
5
|
Elucidating the Beneficial Role of PPAR Agonists in Cardiac Diseases. Int J Mol Sci 2018; 19:ijms19113464. [PMID: 30400386 PMCID: PMC6275024 DOI: 10.3390/ijms19113464] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 10/28/2018] [Accepted: 11/02/2018] [Indexed: 12/13/2022] Open
Abstract
Peroxisome proliferator-activated receptors (PPARs) are nuclear hormone receptors that bind to DNA and regulate transcription of genes involved in lipid and glucose metabolism. A growing number of studies provide strong evidence that PPARs are the promising pharmacological targets for therapeutic intervention in various diseases including cardiovascular disorders caused by compromised energy metabolism. PPAR agonists have been widely used for decades as lipid-lowering and anti-inflammatory drugs. Existing studies are mainly focused on the anti-atherosclerotic effects of PPAR agonists; however, their role in the maintenance of cellular bioenergetics remains unclear. Recent studies on animal models and patients suggest that PPAR agonists can normalize lipid metabolism by stimulating fatty acid oxidation. These studies indicate the importance of elucidation of PPAR agonists as potential pharmacological agents for protection of the heart from energy deprivation. Here, we summarize and provide a comprehensive analysis of previous studies on the role of PPARs in the heart under normal and pathological conditions. In addition, the review discusses the PPARs as a therapeutic target and the beneficial effects of PPAR agonists, particularly bezafibrate, to attenuate cardiomyopathy and heart failure in patients and animal models.
Collapse
|
6
|
Broekema MF, Hollman DAA, Koppen A, van den Ham HJ, Melchers D, Pijnenburg D, Ruijtenbeek R, van Mil SWC, Houtman R, Kalkhoven E. Profiling of 3696 Nuclear Receptor-Coregulator Interactions: A Resource for Biological and Clinical Discovery. Endocrinology 2018; 159:2397-2407. [PMID: 29718163 DOI: 10.1210/en.2018-00149] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Accepted: 04/24/2018] [Indexed: 12/13/2022]
Abstract
Nuclear receptors (NRs) are ligand-inducible transcription factors that play critical roles in metazoan development, reproduction, and physiology and therefore are implicated in a broad range of pathologies. The transcriptional activity of NRs critically depends on their interaction(s) with transcriptional coregulator proteins, including coactivators and corepressors. Short leucine-rich peptide motifs in these proteins (LxxLL in coactivators and LxxxIxxxL in corepressors) are essential and sufficient for NR binding. With 350 different coregulator proteins identified to date and with many coregulators containing multiple interaction motifs, an enormous combinatorial potential is present for selective NR-mediated gene regulation. However, NR-coregulator interactions have often been determined experimentally on a one-to-one basis across diverse experimental conditions. In addition, NR-coregulator interactions are difficult to predict because the molecular determinants that govern specificity are not well established. Therefore, many biologically and clinically relevant NR-coregulator interactions may remain to be discovered. Here, we present a comprehensive overview of 3696 NR-coregulator interactions by systematically characterizing the binding of 24 nuclear receptors with 154 coregulator peptides. We identified unique ligand-dependent NR-coregulator interaction profiles for each NR, confirming many well-established NR-coregulator interactions. Hierarchical clustering based on the NR-coregulator interaction profiles largely recapitulates the classification of NR subfamilies based on the primary amino acid sequences of the ligand-binding domains, indicating that amino acid sequence is an important, although not the only, molecular determinant in directing and fine-tuning NR-coregulator interactions. This NR-coregulator peptide interactome provides an open data resource for future biological and clinical discovery as well as NR-based drug design.
Collapse
Affiliation(s)
- Marjoleine F Broekema
- Molecular Cancer Research and Center for Molecular Medicine, University Medical Center Utrecht, Utrecht University, CG Utrecht, Netherlands
| | - Danielle A A Hollman
- Molecular Cancer Research and Center for Molecular Medicine, University Medical Center Utrecht, Utrecht University, CG Utrecht, Netherlands
| | - Arjen Koppen
- Molecular Cancer Research and Center for Molecular Medicine, University Medical Center Utrecht, Utrecht University, CG Utrecht, Netherlands
| | | | - Diana Melchers
- PamGene International B. V., BJ 's-Hertogenbosch, Netherlands
| | - Dirk Pijnenburg
- PamGene International B. V., BJ 's-Hertogenbosch, Netherlands
| | - Rob Ruijtenbeek
- PamGene International B. V., BJ 's-Hertogenbosch, Netherlands
| | - Saskia W C van Mil
- Molecular Cancer Research and Center for Molecular Medicine, University Medical Center Utrecht, Utrecht University, CG Utrecht, Netherlands
| | - René Houtman
- PamGene International B. V., BJ 's-Hertogenbosch, Netherlands
| | - Eric Kalkhoven
- Molecular Cancer Research and Center for Molecular Medicine, University Medical Center Utrecht, Utrecht University, CG Utrecht, Netherlands
| |
Collapse
|