1
|
Ma M, Liu F, Miles HN, Kim EJ, Fields L, Xu W, Li L. Proteome-wide Profiling of Asymmetric Dimethylated Arginine in Human Breast Tumors. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2023; 34:1692-1700. [PMID: 37463068 PMCID: PMC10726702 DOI: 10.1021/jasms.3c00154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2023]
Abstract
Arginine methylation catalyzed by protein arginine methyltransferases (PRMTs) is a prevalent post-translational modification (PTM) that regulates diverse cellular processes. Aberrant expression of type I PRMTs that catalyze asymmetric arginine dimethylation (ADMA) is often found in cancer, though little is known about the ADMA status of substrate proteins in tumors. Using LC-MS/MS along with pan-specific ADMA antibodies, we performed global mapping of ADMA in five patient-derived xenograft (PDX) tumors representing different subtypes of human breast cancer. In total, 403 methylated sites from 213 proteins were identified, including 322 novel sites when compared to the PhosphositesPlus database. Moreover, using peptide arrays in vitro, approximately 70% of the putative substrates were validated to be methylated by PRMT1, PRMT4, and PRMT6. Notably, when compared with our previously identified ADMA sites from breast cancer cell lines, only 75 ADMA sites overlapped between cell lines and PDX tumors. Collectively, this study provides a useful resource for both PRMT and breast cancer communities for further exploitation of the functions of PRMT dysregulation during breast cancer progression.
Collapse
Affiliation(s)
- Min Ma
- School of Pharmacy, University of Wisconsin–Madison, Madison, Wisconsin, United States
| | - Fabao Liu
- McArdle Laboratory for Cancer Research, University of Wisconsin–Madison, Madison, Wisconsin, 53705, United States
- Advanced Medical Research Institute, Shandong University, Shandong, 250012, PR China
| | - Hannah N. Miles
- School of Pharmacy, University of Wisconsin–Madison, Madison, Wisconsin, United States
| | - Eui-Jun Kim
- McArdle Laboratory for Cancer Research, University of Wisconsin–Madison, Madison, Wisconsin, 53705, United States
| | - Lauren Fields
- Department of Chemistry, University of Wisconsin–Madison, Madison, Wisconsin, 53706, United States
| | - Wei Xu
- McArdle Laboratory for Cancer Research, University of Wisconsin–Madison, Madison, Wisconsin, 53705, United States
| | - Lingjun Li
- School of Pharmacy, University of Wisconsin–Madison, Madison, Wisconsin, United States
- Department of Chemistry, University of Wisconsin–Madison, Madison, Wisconsin, 53706, United States
- Lachman Institute for Pharmaceutical Development, School of Pharmacy, University of Wisconsin-Madison, Madison, WI, 53705, United States
- Wisconsin Center for NanoBioSystems, School of Pharmacy, University of Wisconsin-Madison, Madison, WI, 53705, United States
| |
Collapse
|
2
|
Stutzmann C, Peng J, Wu Z, Savoie C, Sirois I, Thibault P, Wheeler AR, Caron E. Unlocking the potential of microfluidics in mass spectrometry-based immunopeptidomics for tumor antigen discovery. CELL REPORTS METHODS 2023; 3:100511. [PMID: 37426761 PMCID: PMC10326451 DOI: 10.1016/j.crmeth.2023.100511] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
The identification of tumor-specific antigens (TSAs) is critical for developing effective cancer immunotherapies. Mass spectrometry (MS)-based immunopeptidomics has emerged as a powerful tool for identifying TSAs as physical molecules. However, current immunopeptidomics platforms face challenges in measuring low-abundance TSAs in a precise, sensitive, and reproducible manner from small needle-tissue biopsies (<1 mg). Inspired by recent advances in single-cell proteomics, microfluidics technology offers a promising solution to these limitations by providing improved isolation of human leukocyte antigen (HLA)-associated peptides with higher sensitivity. In this context, we highlight the challenges in sample preparation and the rationale for developing microfluidics technology in immunopeptidomics. Additionally, we provide an overview of promising microfluidic methods, including microchip pillar arrays, valved-based systems, droplet microfluidics, and digital microfluidics, and discuss the latest research on their application in MS-based immunopeptidomics and single-cell proteomics.
Collapse
Affiliation(s)
| | - Jiaxi Peng
- Department of Chemistry, University of Toronto, Toronto, ON, Canada
| | - Zhaoguan Wu
- CHU Sainte Justine Research Center, Montreal, QC, Canada
| | | | | | - Pierre Thibault
- Institute for Research in Immunology and Cancer, University of Montreal, Montreal, QC, Canada
- Department of Chemistry, University of Montreal, Montreal, QC, Canada
| | - Aaron R. Wheeler
- Department of Chemistry, University of Toronto, Toronto, ON, Canada
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON, Canada
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, ON, Canada
| | - Etienne Caron
- CHU Sainte Justine Research Center, Montreal, QC, Canada
- Department of Pathology and Cellular Biology, University of Montreal, Montreal, QC, Canada
| |
Collapse
|
3
|
Admon A. The biogenesis of the immunopeptidome. Semin Immunol 2023; 67:101766. [PMID: 37141766 DOI: 10.1016/j.smim.2023.101766] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 04/26/2023] [Accepted: 04/26/2023] [Indexed: 05/06/2023]
Abstract
The immunopeptidome is the repertoire of peptides bound and presented by the MHC class I, class II, and non-classical molecules. The peptides are produced by the degradation of most cellular proteins, and in some cases, peptides are produced from extracellular proteins taken up by the cells. This review attempts to first describe some of its known and well-accepted concepts, and next, raise some questions about a few of the established dogmas in this field: The production of novel peptides by splicing is questioned, suggesting here that spliced peptides are extremely rare, if existent at all. The degree of the contribution to the immunopeptidome by degradation of cellular protein by the proteasome is doubted, therefore this review attempts to explain why it is likely that this contribution to the immunopeptidome is possibly overstated. The contribution of defective ribosome products (DRiPs) and non-canonical peptides to the immunopeptidome is noted and methods are suggested to quantify them. In addition, the common misconception that the MHC class II peptidome is mostly derived from extracellular proteins is noted, and corrected. It is stressed that the confirmation of sequence assignments of non-canonical and spliced peptides should rely on targeted mass spectrometry using spiking-in of heavy isotope-labeled peptides. Finally, the new methodologies and modern instrumentation currently available for high throughput kinetics and quantitative immunopeptidomics are described. These advanced methods open up new possibilities for utilizing the big data generated and taking a fresh look at the established dogmas and reevaluating them critically.
Collapse
Affiliation(s)
- Arie Admon
- Faculty of Biology, Technion-Israel Institute of Technology, Israel.
| |
Collapse
|
4
|
Liu Y, Wu W, Cai C, Zhang H, Shen H, Han Y. Patient-derived xenograft models in cancer therapy: technologies and applications. Signal Transduct Target Ther 2023; 8:160. [PMID: 37045827 PMCID: PMC10097874 DOI: 10.1038/s41392-023-01419-2] [Citation(s) in RCA: 130] [Impact Index Per Article: 65.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 03/21/2023] [Indexed: 04/14/2023] Open
Abstract
Patient-derived xenograft (PDX) models, in which tumor tissues from patients are implanted into immunocompromised or humanized mice, have shown superiority in recapitulating the characteristics of cancer, such as the spatial structure of cancer and the intratumor heterogeneity of cancer. Moreover, PDX models retain the genomic features of patients across different stages, subtypes, and diversified treatment backgrounds. Optimized PDX engraftment procedures and modern technologies such as multi-omics and deep learning have enabled a more comprehensive depiction of the PDX molecular landscape and boosted the utilization of PDX models. These irreplaceable advantages make PDX models an ideal choice in cancer treatment studies, such as preclinical trials of novel drugs, validating novel drug combinations, screening drug-sensitive patients, and exploring drug resistance mechanisms. In this review, we gave an overview of the history of PDX models and the process of PDX model establishment. Subsequently, the review presents the strengths and weaknesses of PDX models and highlights the integration of novel technologies in PDX model research. Finally, we delineated the broad application of PDX models in chemotherapy, targeted therapy, immunotherapy, and other novel therapies.
Collapse
Affiliation(s)
- Yihan Liu
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, P.R. China
| | - Wantao Wu
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, P.R. China
| | - Changjing Cai
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, P.R. China
| | - Hao Zhang
- Department of Neurosurgery, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Hong Shen
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, P.R. China.
| | - Ying Han
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, P.R. China.
| |
Collapse
|
5
|
Shapiro IE, Bassani-Sternberg M. The impact of immunopeptidomics: From basic research to clinical implementation. Semin Immunol 2023; 66:101727. [PMID: 36764021 DOI: 10.1016/j.smim.2023.101727] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 01/30/2023] [Accepted: 02/01/2023] [Indexed: 02/10/2023]
Abstract
The immunopeptidome is the set of peptides presented by the major histocompatibility complex (MHC) molecules, in humans also known as the human leukocyte antigen (HLA), on the surface of cells that mediate T-cell immunosurveillance. The immunopeptidome is a sampling of the cellular proteome and hence it contains information about the health state of cells. The peptide repertoire is influenced by intra- and extra-cellular perturbations - such as in the case of drug exposure, infection, or oncogenic transformation. Immunopeptidomics is the bioanalytical method by which the presented peptides are extracted from biological samples and analyzed by high-performance liquid chromatography coupled to tandem mass spectrometry (MS), resulting in a deep qualitative and quantitative snapshot of the immunopeptidome. In this review, we discuss published immunopeptidomics studies from recent years, grouped into three main domains: i) basic, ii) pre-clinical and iii) clinical research and applications. We review selected fundamental immunopeptidomics studies on the antigen processing and presentation machinery, on HLA restriction and studies that advanced our understanding of various diseases, and how exploration of the antigenic landscape allowed immune targeting at the pre-clinical stage, paving the way to pioneering exploratory clinical trials where immunopeptidomics is directly implemented in the conception of innovative treatments for cancer patients.
Collapse
Affiliation(s)
- Ilja E Shapiro
- Ludwig Institute for Cancer Research, University of Lausanne, 1005 Lausanne, Switzerland; Department of Oncology, Centre hospitalier universitaire vaudois (CHUV), 1005 Lausanne, Switzerland; Agora Cancer Research Centre, 1011 Lausanne, Switzerland
| | - Michal Bassani-Sternberg
- Ludwig Institute for Cancer Research, University of Lausanne, 1005 Lausanne, Switzerland; Department of Oncology, Centre hospitalier universitaire vaudois (CHUV), 1005 Lausanne, Switzerland; Agora Cancer Research Centre, 1011 Lausanne, Switzerland; Center of Experimental Therapeutics, Department of Oncology, Centre hospitalier universitaire vaudois (CHUV), 1005 Lausanne, Switzerland.
| |
Collapse
|
6
|
Neoantigens: promising targets for cancer therapy. Signal Transduct Target Ther 2023; 8:9. [PMID: 36604431 PMCID: PMC9816309 DOI: 10.1038/s41392-022-01270-x] [Citation(s) in RCA: 364] [Impact Index Per Article: 182.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/14/2022] [Accepted: 11/27/2022] [Indexed: 01/07/2023] Open
Abstract
Recent advances in neoantigen research have accelerated the development and regulatory approval of tumor immunotherapies, including cancer vaccines, adoptive cell therapy and antibody-based therapies, especially for solid tumors. Neoantigens are newly formed antigens generated by tumor cells as a result of various tumor-specific alterations, such as genomic mutation, dysregulated RNA splicing, disordered post-translational modification, and integrated viral open reading frames. Neoantigens are recognized as non-self and trigger an immune response that is not subject to central and peripheral tolerance. The quick identification and prediction of tumor-specific neoantigens have been made possible by the advanced development of next-generation sequencing and bioinformatic technologies. Compared to tumor-associated antigens, the highly immunogenic and tumor-specific neoantigens provide emerging targets for personalized cancer immunotherapies, and serve as prospective predictors for tumor survival prognosis and immune checkpoint blockade responses. The development of cancer therapies will be aided by understanding the mechanism underlying neoantigen-induced anti-tumor immune response and by streamlining the process of neoantigen-based immunotherapies. This review provides an overview on the identification and characterization of neoantigens and outlines the clinical applications of prospective immunotherapeutic strategies based on neoantigens. We also explore their current status, inherent challenges, and clinical translation potential.
Collapse
|
7
|
Pei M, Dong A, Ma X, Li S, Guo Y, Li M, Wang Z, Wang H, Zhu L, Pan C, Wang Y. Identification of potential antigenic peptides of Brucella through proteome and peptidome. Vet Med Sci 2022; 9:523-534. [PMID: 36583994 PMCID: PMC9856995 DOI: 10.1002/vms3.1048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Brucellosis, caused by Brucella spp., is a major zoonotic public health threat. Although several Brucella vaccines have been demonstrated for use in animals, Brucella spp. can cause human infection and to date, there are no human-use vaccines licensed by any agency. Recently, methods in vaccine informatics have made major breakthroughs in peptide-based epitopes, opening up a new avenue of vaccine development. OBJECTIVES The purpose of this article was to identify potential antigenic peptides in Brucella by proteome and peptidome analyses. METHODS Mouse infection models were first established by injection with Brucella and spleen protein profiles were then analysed. Subsequently, the major histocompatibility complex class I or II (major histocompatibility complex [MHC]-I/II)-binding peptides in blood samples were collected by immunoprecipitation and peptides derived from Brucella proteins were identified through liquid chromatography-mass spectrometry (LC-MS/MS). These peptides were then evaluated in a variety of ways, such as in terms of conservation in Brucella and synchronicity in predicted peptides (similarity and coverage), which allowed us to more effectively measure their antigenic potential. RESULTS The expression of the inflammatory cytokines IL1B and IFN-γ was significantly altered in the spleen of infected mice and some Brucella proteins, such as Muri, AcpP and GroES, were also detected. Meanwhile, in blood, 35 peptides were identified and most showed high conservation, highlighting their potential as antigen epitopes for vaccine development. In particular, we identified four proteins containing both MHC-I- and MHC-II-binding peptides including AtpA, AtpD, DnaK and BAbS19_II02030. They were also compared with the predicted peptides to estimate their reliability. CONCLUSIONS The peptides we screened could bind to MHC molecules. After being stimulated with antigen T epitopes, Memory T cells can stimulate T cell activation and promote immune responses. Our results indicated that the peptides we identified may be good candidate targets for the design of subunit vaccines and these results pave the way for the study of safer vaccines against Brucella.
Collapse
Affiliation(s)
- Meijuan Pei
- Department of Clinical LaboratoryThe Third Medical Centre of Chinese PLA General HospitalThe Training Site for Postgraduate of Jinzhou Medical UniversityBeijingChina,State Key Laboratory of Pathogen and BiosecurityBeijing Institute of BiotechnologyBeijingChina
| | - Ao Dong
- State Key Laboratory of Pathogen and BiosecurityBeijing Institute of BiotechnologyBeijingChina
| | - Xueping Ma
- Department of Clinical LaboratoryThe Third Medical Centre of Chinese PLA General HospitalBeijingChina
| | - Shulei Li
- Department of Clinical LaboratoryThe Third Medical Centre of Chinese PLA General HospitalThe Training Site for Postgraduate of Jinzhou Medical UniversityBeijingChina,State Key Laboratory of Pathogen and BiosecurityBeijing Institute of BiotechnologyBeijingChina
| | - Yan Guo
- State Key Laboratory of Pathogen and BiosecurityBeijing Institute of BiotechnologyBeijingChina
| | - Menglan Li
- Department of Clinical LaboratoryThe Third Medical Centre of Chinese PLA General HospitalBeijingChina
| | - Zhenghui Wang
- Department of Clinical LaboratoryThe Third Medical Centre of Chinese PLA General HospitalBeijingChina
| | - Hengliang Wang
- State Key Laboratory of Pathogen and BiosecurityBeijing Institute of BiotechnologyBeijingChina
| | - Li Zhu
- State Key Laboratory of Pathogen and BiosecurityBeijing Institute of BiotechnologyBeijingChina
| | - Chao Pan
- State Key Laboratory of Pathogen and BiosecurityBeijing Institute of BiotechnologyBeijingChina
| | - Yufei Wang
- Department of Clinical LaboratoryThe Third Medical Centre of Chinese PLA General HospitalThe Training Site for Postgraduate of Jinzhou Medical UniversityBeijingChina,Department of Clinical LaboratoryThe Third Medical Centre of Chinese PLA General HospitalBeijingChina
| |
Collapse
|
8
|
Bai R, Yuan C. Kita-Kyushu Lung Cancer Antigen-1 (KK-LC-1): A Promising Cancer Testis Antigen. Aging Dis 2022; 13:1267-1277. [PMID: 35855340 PMCID: PMC9286905 DOI: 10.14336/ad.2021.1207] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 12/07/2021] [Indexed: 12/11/2022] Open
Abstract
Cancer has always been a huge problem in the field of human health, and its early diagnosis and treatment are the key to solving this problem. Cancer testis antigens (CTAs) are a family of multifunctional proteins that are specifically expressed in male spermatozoa and tumor cells but not in healthy somatic cells. Studies have found that CTAs are involved in the occurrence and development of tumors, and some CTAs trigger immunogenicity, which suggests a possibility of tumor immunotherapy. The differential expression and function of CTAs in normal tissues and tumor cells can promote the screening of tumor markers and the development of new immunotherapies. This article introduces the expression of Kita-Kyushu lung cancer antigen-1 (KK-LC-1), a new member of the CTA family, in different types of tumors and its role in immunotherapy.
Collapse
Affiliation(s)
- Rui Bai
- 1Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Cheng Yuan
- 2Department of Gynecological Oncology, Zhongnan Hospital, Wuhan University, Wuhan, China
| |
Collapse
|
9
|
Khazan-Kost S, Cafri G, Melamed Kadosh D, Mooshayef N, Chatterji S, Dominissini D, Manor S, Zisser B, Broday L, Talalai E, Shemer A, Zadok O, Ofek E, Onn A, Admon A, Peled M. Soluble HLA peptidome of pleural effusions is a valuable source for tumor antigens. J Immunother Cancer 2022; 10:jitc-2021-003733. [PMID: 35580925 PMCID: PMC9114951 DOI: 10.1136/jitc-2021-003733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/31/2022] [Indexed: 11/16/2022] Open
Abstract
Background Soluble human leucocyte antigen (sHLA) molecules, released into the plasma, carry their original peptide cargo and provide insight into the protein synthesis and degradation schemes of their source cells and tissues. Other body fluids, such as pleural effusions, may also contain sHLA-peptide complexes, and can potentially serve as a source of tumor antigens since these fluids are drained from the tumor microenvironment. We explored this possibility by developing a methodology for purifying and analyzing large pleural effusion sHLA class I peptidomes of patients with malignancies or benign diseases. Methods Cleared pleural fluids, cell pellets present in the pleural effusions, and the primary tumor cells cultured from cancer patients’ effusions, were used for immunoaffinity purification of the HLA molecules. The recovered HLA peptides were analyzed by liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS) and the resulting LC-MS/MS data were analyzed with the MaxQuant software tool. Selected tumor antigen peptides were tested for their immunogenicity potential with donor peripheral blood mononuclear cells (PBMCs) in an in vitro assay. Results Mass spectrometry analysis of the pleural effusions revealed 39,669 peptides attributable to 11,305 source proteins. The majority of peptides identified from the pleural effusions were defined as HLA ligands that fit the patients’ HLA consensus sequence motifs. The membranal and soluble HLA peptidomes of each individual patient correlated to each other. Additionally, soluble HLA peptidomes from the same patient, obtained at different visits to the clinic, were highly similar. Compared with benign effusions, the soluble HLA peptidomes of malignant pleural effusions were larger and included HLA peptides derived from known tumor-associated antigens, including cancer/testis antigens, lung-related proteins, and vascular endothelial growth factor pathway proteins. Selected tumor-associated antigens that were identified by the immunopeptidomics were able to successfully prime CD8+ T cells. Conclusions Pleural effusions contain sHLA-peptide complexes, and the pleural effusion HLA peptidome of patients with malignant tumors can serve as a rich source of biomarkers for tumor diagnosis and potential candidates for personalized immunotherapy.
Collapse
Affiliation(s)
- Sofia Khazan-Kost
- Faculty of Biology, Technion Israel Institute of Technology, Haifa, Israel
| | - Gal Cafri
- Chaim Sheba Medical Center, Ramat Gan, Israel
| | | | - Navit Mooshayef
- Institute of Pulmonary Medicine, Chaim Sheba Medical Center, Ramat Gan, Israel
| | - Sumit Chatterji
- Institute of Pulmonary Medicine, Chaim Sheba Medical Center, Ramat Gan, Israel
| | - Dan Dominissini
- Sheba Cancer Research Center, Chaim Sheba Medical Center, Ramat Gan, Israel.,Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Sigal Manor
- Ezer Mizion Bone Marrow Donor Registry, Petah Tikva, Israel
| | - Bracha Zisser
- Ezer Mizion Bone Marrow Donor Registry, Petah Tikva, Israel
| | - Limor Broday
- Department of Cell and Developmental Biology, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Efrosiniia Talalai
- Institute of Pulmonary Medicine, Chaim Sheba Medical Center, Ramat Gan, Israel.,Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Anat Shemer
- Chaim Sheba Medical Center, Ramat Gan, Israel
| | - Oranit Zadok
- Institute of Oncology, Chaim Sheba Medical Center, Ramat Gan, Israel
| | - Efrat Ofek
- Pathology Department, Chaim Sheba Medical Center, Ramat Gan, Israel
| | - Amir Onn
- Institute of Pulmonary Medicine, Chaim Sheba Medical Center, Ramat Gan, Israel.,Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Arie Admon
- Faculty of Biology, Technion Israel Institute of Technology, Haifa, Israel
| | - Michael Peled
- Institute of Pulmonary Medicine, Chaim Sheba Medical Center, Ramat Gan, Israel .,Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
10
|
Kovalchik KA, Ma Q, Wessling L, Saab F, Despault J, Kubiniok P, Hamelin DJ, Faridi P, Li C, Purcell AW, Jang A, Paramithiotis E, Tognetti M, Reiter L, Bruderer R, Lanoix J, Bonneil É, Courcelles M, Thibault P, Caron E, Sirois I. MhcVizPipe: A Quality Control Software for Rapid Assessment of Small- to Large-Scale Immunopeptidome Data Sets. Mol Cell Proteomics 2021; 21:100178. [PMID: 34798331 PMCID: PMC8717601 DOI: 10.1016/j.mcpro.2021.100178] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 10/28/2021] [Accepted: 11/01/2021] [Indexed: 12/12/2022] Open
Abstract
Mass spectrometry (MS)-based immunopeptidomics is maturing into an automatized, high-throughput technology, producing small- to large-scale datasets of clinically relevant MHC class I- and II-associated peptides. Consequently, the development of quality control (QC) and quality assurance (QA) systems capable of detecting sample and/or measurement issues is important for instrument operators and scientists in charge of downstream data interpretation. Here, we created MhcVizPipe (MVP), a semi-automated QC software tool that enables rapid and simultaneous assessment of multiple MHC class I and II immunopeptidomic datasets generated by MS, including datasets generated from large sample cohorts. In essence, MVP provides a rapid and consolidated view of sample quality, composition and MHC-specificity to greatly accelerate the 'pass-fail' QC decision-making process toward data interpretation. MVP parallelizes the use of well-established immunopeptidomic algorithms (NetMHCpan, NetMHCIIpan and GibbsCluster) and rapidly generates organized and easy-to-understand reports in HTML format. The reports are fully portable and can be viewed on any computer with a modern web browser. MVP is intuitive to use and will find utility in any specialized immunopeptidomic laboratory and proteomics core facility that provides immunopeptidomic services to the community.
Collapse
Affiliation(s)
| | - Qing Ma
- School of Electrical Engineering and Computer Science, Faculty of Engineering, University of Ottawa, ON K1N 6N5, Canada
| | - Laura Wessling
- CHU Sainte-Justine Research Center, Montreal, QC H3T 1C5, Canada
| | - Frederic Saab
- CHU Sainte-Justine Research Center, Montreal, QC H3T 1C5, Canada
| | - Jérôme Despault
- CHU Sainte-Justine Research Center, Montreal, QC H3T 1C5, Canada
| | - Peter Kubiniok
- CHU Sainte-Justine Research Center, Montreal, QC H3T 1C5, Canada
| | - David J Hamelin
- CHU Sainte-Justine Research Center, Montreal, QC H3T 1C5, Canada
| | - Pouya Faridi
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia
| | - Chen Li
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia
| | - Anthony W Purcell
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia
| | - Anne Jang
- CellCarta, Montreal, QC H2X 3Y7, Canada
| | | | | | - Lukas Reiter
- Biognosys, Wagistrasse 21, 8952 Schlieren, Switzerland
| | | | - Joël Lanoix
- Institute of Research in Immunology and Cancer, Montreal, QC H3T 1J4, Canada
| | - Éric Bonneil
- Institute of Research in Immunology and Cancer, Montreal, QC H3T 1J4, Canada
| | - Mathieu Courcelles
- Institute of Research in Immunology and Cancer, Montreal, QC H3T 1J4, Canada
| | - Pierre Thibault
- Institute of Research in Immunology and Cancer, Montreal, QC H3T 1J4, Canada; Department of Chemistry, Université de Montréal, Montreal, QC H3T 1J4, Canada
| | - Etienne Caron
- CHU Sainte-Justine Research Center, Montreal, QC H3T 1C5, Canada; Department of Pathology and Cellular Biology, Faculty of Medicine, Université de Montréal, QC H3T 1J4, Canada.
| | - Isabelle Sirois
- CHU Sainte-Justine Research Center, Montreal, QC H3T 1C5, Canada.
| |
Collapse
|
11
|
Yang P, Meng M, Zhou Q. Oncogenic cancer/testis antigens are a hallmarker of cancer and a sensible target for cancer immunotherapy. Biochim Biophys Acta Rev Cancer 2021; 1876:188558. [PMID: 33933558 DOI: 10.1016/j.bbcan.2021.188558] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Revised: 03/16/2021] [Accepted: 04/26/2021] [Indexed: 02/07/2023]
Abstract
Increasing evidence shows that numerous cancer-testis antigens (CTAs) are uniquely overexpressed in various types of cancer and most CTAs are oncogenic. Overexpression of oncogenic CTAs promotes carcinogenesis, cancer metastasis, and drug resistance. Oncogenic CTAs are generally associated with poor prognosis in cancer patients and are an important hallmark of cancer, making them a crucial target for cancer immunotherapy. CTAs-targeted antibodies, vaccines, and chimeric antigen receptor-modified T cells (CAR-T) have recently been used in cancer treatment and achieved promising outcomes in the preclinical and early clinical trials. However, the efficacy of current CTA-targeted therapeutics is either moderate or low in cancer therapy. CTA-targeted cancer immunotherapy is facing enormous challenges. Several critical scientific problems need to be resolved: (1) the antigen presentation function of MHC-I protein is usually deficient in cancer patients, so that very low amounts of intracellular CTA epitopes are presented to tumor cell membrane surface, leading to weak immune response and subsequent immunity to CTAs; (2) various immunosuppressive cells are rich in tumor tissues leading to diminished tumor immunity; (3) the tumor tissue microenvironment markedly reduces the efficacy of cancer immunotherapy. In the current review paper, the authors propose new strategies and approaches to overcome the barriers of CTAs-targeted immunotherapy and to develop novel potent immune therapeutics against cancer. Finally, we highlight that the oncogenic CTAs have high tumor specificity and immunogenicity, and are sensible targets for cancer immunotherapy. We predict that CTAs-targeted immunotherapy will bring about breakthroughs in cancer therapy in the near future.
Collapse
Affiliation(s)
- Ping Yang
- Department of Pathophysiology, School of Medicine, Nantong University, Nantong, Jiangsu 226000, PR China
| | - Mei Meng
- Cyrus Tang Hematology Center, Jiangsu Institute of Hematology, Soochow University, Suzhou, Jiangsu 215123, PR China; 2011 Collaborative Innovation Center of Hematology, Soochow University, Suzhou, Jiangsu 215123, PR China
| | - Quansheng Zhou
- Cyrus Tang Hematology Center, Jiangsu Institute of Hematology, Soochow University, Suzhou, Jiangsu 215123, PR China; 2011 Collaborative Innovation Center of Hematology, Soochow University, Suzhou, Jiangsu 215123, PR China.
| |
Collapse
|