1
|
Barile M, Giancaspero TA, Leone P, Galluccio M, Indiveri C. Riboflavin transport and metabolism in humans. J Inherit Metab Dis 2016; 39:545-57. [PMID: 27271694 DOI: 10.1007/s10545-016-9950-0] [Citation(s) in RCA: 110] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2016] [Revised: 05/12/2016] [Accepted: 05/19/2016] [Indexed: 12/17/2022]
Abstract
Recent studies elucidated how riboflavin transporters and FAD forming enzymes work in humans and create a coordinated flavin network ensuring the maintenance of cellular flavoproteome. Alteration of this network may be causative of severe metabolic disorders such as multiple acyl-CoA dehydrogenase deficiency (MADD) or Brown-Vialetto-van Laere syndrome. A crucial step in the maintenance of FAD homeostasis is riboflavin uptake by plasma and mitochondrial membranes. Therefore, studies on recently identified human plasma membrane riboflavin transporters are presented, together with those in which still unidentified mitochondrial riboflavin transporter(s) have been described. A main goal of future research is to fill the gaps still existing as for some transcriptional, functional and structural details of human FAD synthases (FADS) encoded by FLAD1 gene, a novel "redox sensing" enzyme. In the frame of the hypothesis that FADS, acting as a "FAD chaperone", could play a crucial role in the biogenesis of mitochondrial flavo-proteome, several basic functional aspects of flavin cofactor delivery to cognate apo-flavoenzyme are also briefly dealt with. The establishment of model organisms performing altered FAD homeostasis will improve the molecular description of human pathologies. The molecular and functional studies of transporters and enzymes herereported, provide guidelines for improving therapies which may have beneficial effects on the altered metabolism.
Collapse
Affiliation(s)
- Maria Barile
- Dipartimento di Bioscienze, Biotecnologie e Biofarmaceutica, Università degli Studi di Bari "Aldo Moro", via Orabona 4, I-70126, Bari, Italy.
| | - Teresa Anna Giancaspero
- Dipartimento di Bioscienze, Biotecnologie e Biofarmaceutica, Università degli Studi di Bari "Aldo Moro", via Orabona 4, I-70126, Bari, Italy
| | - Piero Leone
- Dipartimento di Bioscienze, Biotecnologie e Biofarmaceutica, Università degli Studi di Bari "Aldo Moro", via Orabona 4, I-70126, Bari, Italy
| | - Michele Galluccio
- Dipartimento DiBEST (Biologia, Ecologia, Scienze della Terra), Unità di Biochimica e Biotecnologie Molecolari, Università della Calabria, via Bucci 4c, I-87036, Arcavacata di Rende, Italy
| | - Cesare Indiveri
- Dipartimento DiBEST (Biologia, Ecologia, Scienze della Terra), Unità di Biochimica e Biotecnologie Molecolari, Università della Calabria, via Bucci 4c, I-87036, Arcavacata di Rende, Italy
| |
Collapse
|
2
|
Giancaspero TA, Galluccio M, Miccolis A, Leone P, Eberini I, Iametti S, Indiveri C, Barile M. Human FAD synthase is a bi-functional enzyme with a FAD hydrolase activity in the molybdopterin binding domain. Biochem Biophys Res Commun 2015; 465:443-9. [PMID: 26277395 DOI: 10.1016/j.bbrc.2015.08.035] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Accepted: 08/09/2015] [Indexed: 02/05/2023]
Abstract
FAD synthase (FMN:ATP adenylyl transferase, FMNAT or FADS, EC 2.7.7.2) is involved in the biochemical pathway for converting riboflavin into FAD. Human FADS exists in different isoforms. Two of these have been characterized and are localized in different subcellular compartments. hFADS2 containing 490 amino acids shows a two domain organization: the 3'-phosphoadenosine-5'-phosphosulfate (PAPS) reductase domain, that is the FAD-forming catalytic domain, and a resembling molybdopterin-binding (MPTb) domain. By a multialignment of hFADS2 with other MPTb containing proteins of various organisms from bacteria to plants, the critical residues for hydrolytic function were identified. A homology model of the MPTb domain of hFADS2 was built, using as template the solved structure of a T. acidophilum enzyme. The capacity of hFADS2 to catalyse FAD hydrolysis was revealed. The recombinant hFADS2 was able to hydrolyse added FAD in a Co(2+) and mersalyl dependent reaction. The recombinant PAPS reductase domain is not able to perform the same function. The mutant C440A catalyses the same hydrolytic function of WT with no essential requirement for mersalyl, thus indicating the involvement of C440 in the control of hydrolysis switch. The enzyme C440A is also able to catalyse hydrolysis of FAD bound to the PAPS reductase domain, which is quantitatively converted into FMN.
Collapse
Affiliation(s)
- Teresa Anna Giancaspero
- Dipartimento di Bioscienze, Biotecnologie e Biofarmaceutica, Università degli Studi di Bari "A. Moro", via Orabona 4, I-70126, Bari, Italy.
| | - Michele Galluccio
- Dipartimento DiBEST, Biologia, Ecologia, Scienze della Terra, Unità di Biochimica e Biotecnologie Molecolari, Università della Calabria, via Bucci 4c, I-87036, Arcavacata di Rende, Italy.
| | - Angelica Miccolis
- Dipartimento di Bioscienze, Biotecnologie e Biofarmaceutica, Università degli Studi di Bari "A. Moro", via Orabona 4, I-70126, Bari, Italy.
| | - Piero Leone
- Dipartimento di Bioscienze, Biotecnologie e Biofarmaceutica, Università degli Studi di Bari "A. Moro", via Orabona 4, I-70126, Bari, Italy.
| | - Ivano Eberini
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, via Balzaretti 9, I-20133, Milano, Italy.
| | - Stefania Iametti
- Dipartimento di Scienze per gli Alimenti, la Nutrizione e l'Ambiente, Università degli Studi di Milano, via Celoria 2, I-20133, Milano, Italy.
| | - Cesare Indiveri
- Dipartimento DiBEST, Biologia, Ecologia, Scienze della Terra, Unità di Biochimica e Biotecnologie Molecolari, Università della Calabria, via Bucci 4c, I-87036, Arcavacata di Rende, Italy.
| | - Maria Barile
- Dipartimento di Bioscienze, Biotecnologie e Biofarmaceutica, Università degli Studi di Bari "A. Moro", via Orabona 4, I-70126, Bari, Italy.
| |
Collapse
|
3
|
Giancaspero TA, Busco G, Panebianco C, Carmone C, Miccolis A, Liuzzi GM, Colella M, Barile M. FAD synthesis and degradation in the nucleus create a local flavin cofactor pool. J Biol Chem 2013; 288:29069-80. [PMID: 23946482 DOI: 10.1074/jbc.m113.500066] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
FAD is a redox cofactor ensuring the activity of many flavoenzymes mainly located in mitochondria but also relevant for nuclear redox activities. The last enzyme in the metabolic pathway producing FAD is FAD synthase (EC 2.7.7.2), a protein known to be localized both in cytosol and in mitochondria. FAD degradation to riboflavin occurs via still poorly characterized enzymes, possibly belonging to the NUDIX hydrolase family. By confocal microscopy and immunoblotting experiments, we demonstrate here the existence of FAD synthase in the nucleus of different experimental rat models. HPLC experiments demonstrated that isolated rat liver nuclei contain ∼300 pmol of FAD·mg(-1) protein, which was mainly protein-bound FAD. A mean FAD synthesis rate of 18.1 pmol·min(-1)·mg(-1) protein was estimated by both HPLC and continuous coupled enzymatic spectrophotometric assays. Rat liver nuclei were also shown to be endowed with a FAD pyrophosphatase that hydrolyzes FAD with an optimum at alkaline pH and is significantly inhibited by adenylate-containing nucleotides. The coordinate activity of these FAD forming and degrading enzymes provides a potential mechanism by which a dynamic pool of flavin cofactor is created in the nucleus. These data, which significantly add to the biochemical comprehension of flavin metabolism and its subcellular compartmentation, may also provide the basis for a more detailed comprehension of the role of flavin homeostasis in biologically and clinically relevant epigenetic events.
Collapse
|
4
|
Modulatory Effects of Melatonin on Cadmium-Induced Changes in Biogenic Amines in Rat Hypothalamus. Neurotox Res 2011; 20:240-9. [DOI: 10.1007/s12640-010-9237-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2010] [Revised: 12/21/2010] [Accepted: 12/23/2010] [Indexed: 01/14/2023]
|
5
|
Bialkowski K, Szpila A, Kasprzak KS. Up-regulation of 8-oxo-dGTPase activity of MTH1 protein in the brain, testes and kidneys of mice exposed to (137)Cs gamma radiation. Radiat Res 2009; 172:187-97. [PMID: 19630523 DOI: 10.1667/rr1636.1] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Abstract Mammalian MTH1 protein is an antimutagenic (2'-deoxy)ribonucleoside 5'-triphosphate pyrophosphohydrolase that prevents the incorporation of oxidatively modified nucleotides into nucleic acids. It decomposes most specifically the miscoding products of oxidative damage to purine nucleic acid precursors (e.g. 8-oxo-dGTP, 2-oxo-dATP, 2-oxo-ATP, 8-oxo-GTP) that may cause point mutations or transcription errors when incorporated into DNA and RNA, respectively. The increased expression of MTH1 mRNA and MTH1 protein was previously proposed as a molecular marker of oxidative stress. Therefore, we hypothesized that increased 8-oxo-dGTPase activity of MTH1 protein in mouse organs could serve as a dose-dependent marker of exposure to ionizing radiation, which is known to induce oxidative stress. To test our hypothesis, we measured 8-oxo-dGTPase activity in six organs of male BL6 mice after exposure to 0, 10, 25 and 50 cGy and 1 Gy of (137)Cs gamma radiation given as a single whole-body dose (1 Gy/min). The mice were killed 4, 8 and 24 h after irradiation. A statistically significant induction of 8-oxo-dGTPase was found in brains, testes and kidneys but not in lungs, hearts or livers. Brains, which demonstrated the highest (4.3-fold) increase of 8-oxo-dGTPase activity, were shown to express approximately 50% higher levels of MTH1 protein. However, due to the lack of a simple positive correlation between the dose and the observed 8-oxo-dGTPase activity in brain, testes and kidneys, we conclude that measurements of 8-oxo-dGTPase activity in these organs may serve as a rough indicator rather than a quantifiable marker of radiation-induced oxidative stress.
Collapse
Affiliation(s)
- Karol Bialkowski
- Department of Clinical Biochemistry, Collegium Medicum, Nicolaus Copernicus University, 85-092 Bydgoszcz, Poland.
| | | | | |
Collapse
|