1
|
Lopes-Fatturi A, Fonseca-Souza G, Wambier LM, Brancher JA, Küchler EC, Feltrin-Souza J. Genetic polymorphisms associated with developmental defects of enamel: A systematic review. Int J Paediatr Dent 2025; 35:298-310. [PMID: 38949474 DOI: 10.1111/ipd.13233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 05/20/2024] [Accepted: 06/15/2024] [Indexed: 07/02/2024]
Abstract
BACKGROUND Polymorphisms in genes related to enamel formation and mineralization may increase the risk of developmental defects of enamel (DDE). AIM To evaluate the existing literature on genetic polymorphisms associated with DDE. DESIGN This systematic review was registered in the PROSPERO (CRD42018115270). The literature search was performed in PubMed, Scopus, Web of Science, LILACS, BBO, Cochrane Library, and in the gray literature. Observational studies assessing the association between DDE and genetic polymorphism were included. The Newcastle-Ottawa Scale was used to assess the risk of bias. RESULTS One thousand one hundred and forty-six articles were identified, and 28 met the inclusion criteria. Five studies presented a low risk of bias. Ninety-two genes related to enamel development, craniofacial patterning morphogenesis, immune response, and hormone transcription/reception were included. Molar-incisor hypomineralization (MIH) and/or hypomineralization of primary second molars (HPSM) were associated with 80 polymorphisms of genes responsible for enamel development, immune response, morphogenesis, and xenobiotic detoxication. A significant association was found between the different clinical manifestations of dental fluorosis (DF) with nine polymorphisms of genes responsible for enamel development, craniofacial development, hormonal transcription/reception, and oxidative stress. Hypoplasia was associated with polymorphisms located in intronic regions. CONCLUSION MIH, HPSM, DF, and hypoplasia reported as having a complex etiology are significantly associated with genetic polymorphisms of several genes.
Collapse
|
2
|
Li A, Wang J, Meng X, Ma X, Liu Y, Li H, Mo Z, Zhang R, Wu L, Yan S, Campoverde PFC, Zafar G, Ma Y, Que W, Li Z, Wang T, Tarnue KF, Pei J. The potential of urinary miR-200c-3p as a biomarker of fluorosis in rats. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 289:117644. [PMID: 39755087 DOI: 10.1016/j.ecoenv.2024.117644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 12/27/2024] [Accepted: 12/30/2024] [Indexed: 01/06/2025]
Abstract
Fluorine is a strong oxidizing element and excessive intake can have harmful effects, particularly on the body's calcified tissues. Recent studies have demonstrated a link between miRNA and fluorosis. This study aimed to evaluate the time-dose-effect relationship of miR-200c-3p in plasma, urine and cartilage of rats with drinking water fluorosis, and to explore its potential as a biomarker. Analyses were conducted using Generalised linear models, Restricted cubic spline, Spearman correlation analysis, and Receiver operating characteristic curve (ROC). Results indicated that both fluoride exposure time and dose had significantly affected on urinary and cartilage miR-200c-3p expression in rats, while plasma miR-200c-3p expression was only influenced by fluoride exposure time. Restricted cubic spline plots revealed that urinary miR-200c-3p was non-linearly and positively correlated with serum fluoride, urinary fluoride, dental fluorosis, and Mankin score groups, and also linearly and positively correlated with cartilage fluoride. Regression analysis showed that for each unit increase in urinary miR-200c-3p, the likelihood of dental fluorosis increased by 1.300 times, and in the Mankin score groups, the likelihood increased by 1.251 times. The ROC curves demonstrated that urinary miR-200c-3p had high sensitivity and specificity in diagnosing dental and skeletal fluorosis. Blood and cartilage miR-200c-3p showed weaker diagnostic efficacy. In summary, fluoride has different effects on the expression levels of miRNA-200c in various biological samples of rats, and miRNAs in urine demonstrate potential as biomarkers for fluorosis.
Collapse
Affiliation(s)
- Ailin Li
- Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province & Ministry of Health (23618504), Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, Heilongjiang Province 150081, China
| | - Jian Wang
- Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province & Ministry of Health (23618504), Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, Heilongjiang Province 150081, China
| | - Xinyue Meng
- Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province & Ministry of Health (23618504), Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, Heilongjiang Province 150081, China
| | - Xu Ma
- Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province & Ministry of Health (23618504), Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, Heilongjiang Province 150081, China
| | - Ying Liu
- Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province & Ministry of Health (23618504), Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, Heilongjiang Province 150081, China
| | - Hanying Li
- Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province & Ministry of Health (23618504), Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, Heilongjiang Province 150081, China
| | - Zhe Mo
- Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province & Ministry of Health (23618504), Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, Heilongjiang Province 150081, China; Department of Environmental Health, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou 310051, China
| | - Rui Zhang
- Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province & Ministry of Health (23618504), Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, Heilongjiang Province 150081, China
| | - Lei Wu
- Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province & Ministry of Health (23618504), Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, Heilongjiang Province 150081, China
| | - Shirui Yan
- Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province & Ministry of Health (23618504), Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, Heilongjiang Province 150081, China
| | - Paula Fiorella Chacon Campoverde
- Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province & Ministry of Health (23618504), Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, Heilongjiang Province 150081, China
| | - Gazala Zafar
- Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province & Ministry of Health (23618504), Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, Heilongjiang Province 150081, China
| | - Yongzheng Ma
- Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province & Ministry of Health (23618504), Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, Heilongjiang Province 150081, China
| | - Wenjun Que
- Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province & Ministry of Health (23618504), Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, Heilongjiang Province 150081, China
| | - Zhe Li
- Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province & Ministry of Health (23618504), Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, Heilongjiang Province 150081, China
| | - Tuo Wang
- Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province & Ministry of Health (23618504), Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, Heilongjiang Province 150081, China
| | - Korto Fatti Tarnue
- Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province & Ministry of Health (23618504), Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, Heilongjiang Province 150081, China
| | - Junrui Pei
- Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province & Ministry of Health (23618504), Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, Heilongjiang Province 150081, China.
| |
Collapse
|
3
|
Manoharan S, Ashfaq SS, Perumal E. MicroRNAs in fluorosis pathogenesis: impact on dental, skeletal, and soft tissues. Arch Toxicol 2024; 98:3913-3932. [PMID: 39269498 DOI: 10.1007/s00204-024-03853-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 08/22/2024] [Indexed: 09/15/2024]
Abstract
Fluoride-induced toxicity (fluorosis) poses a significant health concern globally, affecting millions of individuals. Understanding the molecular mechanisms underlying fluorosis, particularly the role of microRNAs (miRNAs), is crucial for developing effective preventive and therapeutic strategies. This review explores the pivotal role of miRNAs in the pathogenesis of fluorosis, particularly examining its impact on both hard (skeletal and dental) and soft (brain, liver, kidney, heart, and reproductive organs) tissues. Skeletal fluorosis manifests as abnormal bone mineralization and structure, while dental fluorosis affects enamel formation. In vitro and in vivo studies suggest a significant involvement of miRNAs in the progression of these conditions. For skeletal fluorosis, miR-124, miR-155, and miR-200c-3p have been identified as key regulators, while miR-296-5p and miR-214-3p are implicated in dental fluorosis. Moreover, soft tissue fluorosis encompasses a spectrum of adverse effects on various organs, including the brain, liver, kidneys, heart, and reproductive system. In soft tissues, miRNAs, such as miR-124, miR-200c-3p, miR-132, and miR-34b-5p, have been linked to cellular damage and dysfunction. Notably, miRNAs exert their effects through the modulation of critical pathways involved in fluorosis pathology, including Wnt signaling, apoptosis, cell cycle, and autophagy. Understanding the regulatory roles of miRNAs in fluorosis pathogenesis holds promise for identifying biomarkers and therapeutic targets. However, further research is needed to elucidate the molecular mechanisms underlying miRNA-mediated responses to fluoride exposure. Integration of miRNA research into fluorosis studies could facilitate the development of diagnostic tools and therapeutic interventions, thus mitigating the detrimental effects of fluorosis on both hard and soft tissues.
Collapse
Affiliation(s)
- Suryaa Manoharan
- Molecular Toxicology Laboratory, Department of Biotechnology, Bharathiar University, Coimbatore, 641046, India
| | - Syed Saadullah Ashfaq
- Molecular Toxicology Laboratory, Department of Biotechnology, Bharathiar University, Coimbatore, 641046, India
| | - Ekambaram Perumal
- Molecular Toxicology Laboratory, Department of Biotechnology, Bharathiar University, Coimbatore, 641046, India.
| |
Collapse
|
4
|
González-Casamada C, Nevarez-Rascón M, Nevarez-Rascón A, González-Galván M, Isiordia-Espinoza MA, Bologna-Molina R, Sánchez-Pérez L, Molina-Frechero N. Single Nucleotide Polymorphisms and Dental Fluorosis: A Systematic Review. Dent J (Basel) 2022; 10:211. [PMID: 36354656 PMCID: PMC9689045 DOI: 10.3390/dj10110211] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 10/29/2022] [Accepted: 11/01/2022] [Indexed: 12/01/2023] Open
Abstract
Genetic factors contribute to susceptibility and resistance to fluoride exposure. The aim of this systematic review was to identify alleles/genotypes of single nucleotide polymorphisms (SNPs) associated with dental fluorosis (DF) and to identify them as protective or risk factors. PubMed, ScienceDirect, Cochrane Library, Scopus and Web of Science were searched for articles; the last search was performed in August 2022. Human studies that analyzed the relationship between SNPs and DF published in English were included; systematic reviews and meta-analyses were excluded. Methodological quality was graded using the Joanna Briggs Institute checklist and risk of bias was assessed using the Cochrane Collaboration's tool. Eighteen articles were included, 44% of which showed high methodological quality and data from 5,625 participants aged 6 to 75 years were analyzed. The SNPs COL1A2, ESR2, DLX1, DLX2, AMBN, TUFT1, TFIP11, miRNA17, and SOD2 were considered risk factors, and ESR1, MMP20, and ENAM were considered protective factors. In conclusion, there are alleles and genotypes of different single nucleotide polymorphisms involved in increasing or decreasing the risk of developing dental fluorosis.
Collapse
Affiliation(s)
- Carlos González-Casamada
- Health Care Department, Autonomous Metropolitan University Xochimilco, Mexico City 04960, Mexico
| | | | | | | | - Mario Alberto Isiordia-Espinoza
- Institute of Research in Medical Sciences, Department of Clinics, Los Altos University Center, University of Guadalajara, Tepatitlan de Morelos 47650, Jalisco, Mexico
| | - Ronell Bologna-Molina
- Research Department, School of Dentistry, Juarez University of the Durango State, Durango 34000, Mexico
- Molecular Pathology Area, School of Dentistry, University of the Republic, Montevideo 11200, Uruguay
| | - Leonor Sánchez-Pérez
- Division of Biological and Health Sciences, Autonomous Metropolitan University Xochimilco, Mexico City 04960, Mexico
| | - Nelly Molina-Frechero
- Division of Biological and Health Sciences, Autonomous Metropolitan University Xochimilco, Mexico City 04960, Mexico
| |
Collapse
|
6
|
Do methylenetetrahydrofolate dehydrogenase, cyclohydrolase, and formyltetrahydrofolate synthetase 1 polymorphisms modify changes in intelligence of school-age children in areas of endemic fluorosis? Chin Med J (Engl) 2022; 135:1846-1854. [PMID: 35838408 PMCID: PMC9521762 DOI: 10.1097/cm9.0000000000002062] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND Excessive exposure to fluoride can reduce intelligence. Methylenetetrahydrofolate dehydrogenase, cyclohydrolase, and formyltetrahydrofolate synthetase 1 ( MTHFD1 ) polymorphisms have important roles in neurodevelopment. However, the association of MTHFD1 polymorphisms with children's intelligence changes in endemic fluorosis areas has been rarely explored. METHODS A cross-sectional study was conducted in four randomly selected primary schools in Tongxu County, Henan Province, from April to May in 2017. A total of 694 children aged 8 to 12 years were included in the study with the recruitment by the cluster sampling method. Urinary fluoride (UF) and urinary creatinine were separately determined using the fluoride ion-selective electrode and creatinine assay kit. Children were classified as the high fluoride group and control group according to the median of urinary creatinine-adjusted urinary fluoride (UF Cr ) level. Four loci of MTHFD1 were genotyped, and the Combined Raven's Test was used to evaluate children's intelligence quotient (IQ). Generalized linear model and multinomial logistic regression model were performed to analyze the associations between children's UF Cr level, MTHFD1 polymorphisms, and intelligence. The general linear model was used to explore the effects of gene-environment and gene-gene interaction on intelligence. RESULTS In the high fluoride group, children's IQ scores decreased by 2.502 when the UF Cr level increased by 1.0 mg/L (β = -2.502, 95% confidence interval [CI]:-4.411, -0.593), and the possibility for having "excellent" intelligence decreased by 46.3% (odds ratio = 0.537, 95% CI: 0.290, 0.994). Children with the GG genotype showed increased IQ scores than those with the AA genotype of rs11627387 locus in the high fluoride group ( P < 0.05). Interactions between fluoride exposure and MTHFD1 polymorphisms on intelligence were observed (Pinteraction < 0.05). CONCLUSION Our findings suggest that excessive fluoride exposure may have adverse effects on children's intelligence, and changes in children's intelligence may be associated with the interaction between fluoride and MTHFD1 polymorphisms.
Collapse
|