1
|
Wu Y, Xiong J, Wei S, Tian L, Shen X, Huang C. Molecularly imprinted polymers by reflux precipitation polymerization for selective solid-phase extraction of quinolone antibiotics from urine. J Chromatogr A 2024; 1714:464550. [PMID: 38043167 DOI: 10.1016/j.chroma.2023.464550] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 11/28/2023] [Accepted: 11/29/2023] [Indexed: 12/05/2023]
Abstract
Molecularly imprinted polymers (MIPs) possess high specific cavities towards the template molecules, thus solid-phase extraction (SPE) based on MIPs using the target as the template has been widely used for selective extraction. However, the performance of SPE depends strongly on the shape and the distribution of the MIP sorbents, and rapid synthesis of MIPs with uniform particles remains a challenge. Our previous studies have shown that reflux precipitation polymerization (RPP) was a simple and rapid method for the synthesis of uniform MIPs. However, synthesis of MIPs by RPP for a group of targets using only one of the targets as the template has rarely been reported. In this work, MIPs with specific recognition capability for a group of quinolone antibiotics were synthesized for the first time via RPP with only ofloxacin as the template. The synthesized MIPs displayed good adsorption performance and selectivity (IF > 3.5) towards five quinolones, and subsequently were used as SPE adsorbents. Based on this MIPs-SPE, after systematic optimization of the SPE operation parameters during loading, washing and elution, an efficient and sensitive enough SPE method for separation and enrichment of the five quinolones in urine was developed and evaluated in combination with LC-MS/MS. The results showed that MIPs-SPE-LC-MS/MS has a good correlation (R2 ≥ 0.9961) in the linear range of 1-500 μg L-1. The limit of detection (LOD) and limit of quantification (LOQ) for the five quinolones were 0.10-0.14 μg L-1 and 0.32-0.48 μg L-1, respectively. In addition, the proposed method demonstrated good reproducibility (≤ 13 %) and high accuracy (92 %-113 %). We are confident that this method holds significant promise for the analysis of quinolones within the contexts of forensic medicine, epidemiology, and environmental chemistry.
Collapse
Affiliation(s)
- Yuzhen Wu
- Department of Forensic Medicine, Huazhong University of Science and Technology, Hangkong Road #13, Wuhan, Hubei 430030, China
| | - Jianhua Xiong
- Department of Forensic Medicine, Huazhong University of Science and Technology, Hangkong Road #13, Wuhan, Hubei 430030, China
| | - Shujun Wei
- Department of Forensic Medicine, Huazhong University of Science and Technology, Hangkong Road #13, Wuhan, Hubei 430030, China
| | - Linxin Tian
- Department of Forensic Medicine, Huazhong University of Science and Technology, Hangkong Road #13, Wuhan, Hubei 430030, China
| | - Xiantao Shen
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, #13 Hangkong Road, Wuhan, Hubei 430030, China.
| | - Chuixiu Huang
- Department of Forensic Medicine, Huazhong University of Science and Technology, Hangkong Road #13, Wuhan, Hubei 430030, China.
| |
Collapse
|
2
|
Synthesis of molecularly imprinted polymers for extraction of fluoroquinolones in environmental, food and biological samples. J Pharm Biomed Anal 2021; 208:114447. [PMID: 34740088 DOI: 10.1016/j.jpba.2021.114447] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 10/23/2021] [Accepted: 10/25/2021] [Indexed: 12/28/2022]
Abstract
In recent years, fluoroquinolones have been found present in important water resources and food sources which compromises the food quality and availability, thereby, causing risks to the consumer. Despite the recent advancement in the development of analytical instrumentation for routine monitoring of fluoroquinolones in water, food, and biological samples, sample pre-treatment is still a major bottleneck of the analytical methods. Therefore, fast, selective, sensitive, and cost-effective sample preparation methods prior to instrumental analysis for fluoroquinolones residues in environmental, food and biological samples are increasingly important. Solid-phase extraction using different adsorbents is one of the most widely used pre-concentration/clean-up techniques for analysis of fluoroquinolones. Molecularly imprinted polymers (MIPs) serve as excellent effective adsorbent materials for selective extraction, separation, clean-up and preconcentration of various pollutants in different complex matrices. Therefore, synthesis of MIPs remains crucial for their applications in sample preparation as this offers much-needed selectivity in the extraction of compounds in complex samples. In this study, the progress made in the synthesis of MIPs for fluoroquinolones and their applications in water, food and biological samples were reviewed. The present review discusses the selection of all the elements of molecular imprinting for fluoroquinolones, polymerization processes and molecular recognition mechanisms. In conclusion, the related challenges and gaps are given to offer ideas for future research focussing on MIPs for fluoroquinolones.
Collapse
|
3
|
Koetting MC, Peters JT, Steichen SD, Peppas NA. Stimulus-responsive hydrogels: Theory, modern advances, and applications. MATERIALS SCIENCE & ENGINEERING. R, REPORTS : A REVIEW JOURNAL 2015; 93:1-49. [PMID: 27134415 PMCID: PMC4847551 DOI: 10.1016/j.mser.2015.04.001] [Citation(s) in RCA: 604] [Impact Index Per Article: 60.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Over the past century, hydrogels have emerged as effective materials for an immense variety of applications. The unique network structure of hydrogels enables very high levels of hydrophilicity and biocompatibility, while at the same time exhibiting the soft physical properties associated with living tissue, making them ideal biomaterials. Stimulus-responsive hydrogels have been especially impactful, allowing for unprecedented levels of control over material properties in response to external cues. This enhanced control has enabled groundbreaking advances in healthcare, allowing for more effective treatment of a vast array of diseases and improved approaches for tissue engineering and wound healing. In this extensive review, we identify and discuss the multitude of response modalities that have been developed, including temperature, pH, chemical, light, electro, and shear-sensitive hydrogels. We discuss the theoretical analysis of hydrogel properties and the mechanisms used to create these responses, highlighting both the pioneering and most recent work in all of these fields. Finally, we review the many current and proposed applications of these hydrogels in medicine and industry.
Collapse
Affiliation(s)
- Michael C. Koetting
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, TX 78712, United States
- Institute for Biomaterials, Drug Delivery, and Regenerative Medicine, The University of Texas at Austin, Austin, TX 78712, United States
| | - Jonathan T. Peters
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, TX 78712, United States
- Institute for Biomaterials, Drug Delivery, and Regenerative Medicine, The University of Texas at Austin, Austin, TX 78712, United States
| | - Stephanie D. Steichen
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX 78712, United States
- Institute for Biomaterials, Drug Delivery, and Regenerative Medicine, The University of Texas at Austin, Austin, TX 78712, United States
| | - Nicholas A. Peppas
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, TX 78712, United States
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX 78712, United States
- College of Pharmacy, The University of Texas at Austin, Austin, TX 78712, United States
- Institute for Biomaterials, Drug Delivery, and Regenerative Medicine, The University of Texas at Austin, Austin, TX 78712, United States
| |
Collapse
|
4
|
Whitcombe MJ, Kirsch N, Nicholls IA. Molecular imprinting science and technology: a survey of the literature for the years 2004-2011. J Mol Recognit 2014; 27:297-401. [PMID: 24700625 DOI: 10.1002/jmr.2347] [Citation(s) in RCA: 279] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2013] [Revised: 10/28/2013] [Accepted: 12/01/2013] [Indexed: 12/11/2022]
Abstract
Herein, we present a survey of the literature covering the development of molecular imprinting science and technology over the years 2004-2011. In total, 3779 references to the original papers, reviews, edited volumes and monographs from this period are included, along with recently identified uncited materials from prior to 2004, which were omitted in the first instalment of this series covering the years 1930-2003. In the presentation of the assembled references, a section presenting reviews and monographs covering the area is followed by sections describing fundamental aspects of molecular imprinting including the development of novel polymer formats. Thereafter, literature describing efforts to apply these polymeric materials to a range of application areas is presented. Current trends and areas of rapid development are discussed.
Collapse
|
5
|
Lv YK, Zhao MG, Zhang D, Yan HY. ENROFLOXACIN-IMPRINTED MONOLITHIC HPLC COLUMNS SYNTHESIZED BYIN SITUCOPOLYMERIZATION FOR CHROMATOGRAPHIC SEPARATION. J LIQ CHROMATOGR R T 2011. [DOI: 10.1080/10826076.2011.562592] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Yun-Kai Lv
- a College of Chemistry and Environmental Science, Hebei University, Key Laboratory of Analytical Science and Technology of Hebei Province , Baoding, P. R. China
| | - Mi-Ge Zhao
- a College of Chemistry and Environmental Science, Hebei University, Key Laboratory of Analytical Science and Technology of Hebei Province , Baoding, P. R. China
| | - Dong Zhang
- b The Central Institute for Correctional Police , Baoding, P. R. China
| | - Hong-Yuan Yan
- a College of Chemistry and Environmental Science, Hebei University, Key Laboratory of Analytical Science and Technology of Hebei Province , Baoding, P. R. China
| |
Collapse
|
6
|
Beltran A, Borrull F, Marcé R, Cormack P. Molecularly-imprinted polymers: useful sorbents for selective extractions. Trends Analyt Chem 2010. [DOI: 10.1016/j.trac.2010.07.020] [Citation(s) in RCA: 181] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
7
|
Beltran A, Marcé R, Cormack P, Borrull F. Synthetic approaches to parabens molecularly imprinted polymers and their applications to the solid-phase extraction of river water samples. Anal Chim Acta 2010; 677:72-8. [DOI: 10.1016/j.aca.2010.07.021] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2010] [Revised: 07/06/2010] [Accepted: 07/11/2010] [Indexed: 10/19/2022]
|
8
|
Shi X, Song S, Qu G, Zheng S, Wu A, Zhang D. Water Compatible Molecularly Imprinted Polymer Microspheres for Extraction of Ampicillin in Foods. ANAL LETT 2010. [DOI: 10.1080/00032710903486286] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
9
|
Haginaka J. Molecularly imprinted polymers as affinity-based separation media for sample preparation. J Sep Sci 2009; 32:1548-65. [DOI: 10.1002/jssc.200900085] [Citation(s) in RCA: 153] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|