1
|
Pidal JMG, Fiori S, Scroccarello A, Della Pelle F, Maggio F, Serio A, Ferraro G, Escarpa A, Compagnone D. Laser-induced 2D/0D graphene-nanoceria freestanding paper-based films for on-site hydrogen peroxide monitoring in no-touch disinfection treatments. Mikrochim Acta 2024; 191:361. [PMID: 38822891 PMCID: PMC11144143 DOI: 10.1007/s00604-024-06427-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 05/10/2024] [Indexed: 06/03/2024]
Abstract
A one-shot CO2 laser-based strategy to generate conductive reduced graphene oxide (rGO) decorated with nanoceria (nCe) is proposed. The 2D/0D rGO-nCe films, integrated as catalytic sensing layers in paper-based sensors, were employed for on-site monitoring of indoor fogging treatments against Listeria monocytogenes (Lm), a ubiquitous pathogenic bacterium. The rGO-nCe laser-assisted synthesis was optimized to preserve the rGO film morphological and electron-transfer features and simultaneously integrate catalytic nCe. The films were characterized by microscopical (SEM), spectroscopical (EDX, Raman, and FTIR), and electrochemical techniques. The most performing film was integrated into a nitrocellulose substrate, and the complete sensor was assembled via a combination of xurography and stencil printing. The rGO-nCe sensor's catalytic activity was proved toward the detection of H2O2, obtaining sensitive determination (LOD = 0.3 µM) and an extended linear range (0.5-1500 µM). Eventually, the rGO-nCe sensor was challenged for the real-time continuous monitoring of hydrogen peroxide aerosol during no-touch fogging treatment conducted following the EU's recommendation for biocidal product use. Treatment effectiveness was proved toward three Lm strains characterized by different origins, i.e., type strain ATCC 7644, clinical strain 338, and food strain 641/6II. The sensor allows for discrimination and quantification treatments at different environmental biocidal amounts and fogging times, and correlates with the microbiological inhibition, promoting the proposed sensor as a useful tool to modulate and monitor no-touch treatments.
Collapse
Affiliation(s)
- José M Gordón Pidal
- Department of Analytical Chemistry, Physical Chemistry and Chemical Engineering, University of Alcalá, Alcalá de Henares, Madrid, 28871, Spain
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Campus "Aurelio Saliceti" Via R. Balzarini 1, Teramo, 64100, Italy
| | - Selene Fiori
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Campus "Aurelio Saliceti" Via R. Balzarini 1, Teramo, 64100, Italy
| | - Annalisa Scroccarello
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Campus "Aurelio Saliceti" Via R. Balzarini 1, Teramo, 64100, Italy
| | - Flavio Della Pelle
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Campus "Aurelio Saliceti" Via R. Balzarini 1, Teramo, 64100, Italy.
| | - Francesca Maggio
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Campus "Aurelio Saliceti" Via R. Balzarini 1, Teramo, 64100, Italy
| | - Annalisa Serio
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Campus "Aurelio Saliceti" Via R. Balzarini 1, Teramo, 64100, Italy
| | - Giovanni Ferraro
- Department of Chemistry "Ugo Schiff" and CSGI, University of Florence, Via Della Lastruccia 3, Sesto Fiorentino, Florence, I-50019, Italy
| | - Alberto Escarpa
- Department of Analytical Chemistry, Physical Chemistry and Chemical Engineering, University of Alcalá, Alcalá de Henares, Madrid, 28871, Spain.
| | - Dario Compagnone
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Campus "Aurelio Saliceti" Via R. Balzarini 1, Teramo, 64100, Italy.
| |
Collapse
|
3
|
Yang X, Ouyang Y, Wu F, Hu Y, Zhang H, Wu Z. In situ & controlled preparation of platinum nanoparticles dopping into graphene sheets@cerium oxide nanocomposites sensitized screen printed electrode for nonenzymatic electrochemical sensing of hydrogen peroxide. J Electroanal Chem (Lausanne) 2016. [DOI: 10.1016/j.jelechem.2016.08.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
4
|
Yao Z, Yang X, Wu F, Wu W, Wu F. Synthesis of differently sized silver nanoparticles on a screen-printed electrode sensitized with a nanocomposites consisting of reduced graphene oxide and cerium(IV) oxide for nonenzymatic sensing of hydrogen peroxide. Mikrochim Acta 2016. [DOI: 10.1007/s00604-016-1924-2] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
5
|
Park JW, Park SJ, Kwon OS, Lee C, Jang J. Polypyrrole Nanotube Embedded Reduced Graphene Oxide Transducer for Field-Effect Transistor-Type H2O2 Biosensor. Anal Chem 2014; 86:1822-8. [DOI: 10.1021/ac403770x] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Jin Wook Park
- School
of Chemical and Biological Engineering, Seoul National University, Seoul 151-742, Korea
| | - Seon Joo Park
- School
of Chemical and Biological Engineering, Seoul National University, Seoul 151-742, Korea
| | - Oh Seok Kwon
- School
of Chemical and Biological Engineering, Seoul National University, Seoul 151-742, Korea
- Department
of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts
Avenue, Cambridge, Massachusetts 02139, United States
| | - Choonghyeon Lee
- School
of Chemical and Biological Engineering, Seoul National University, Seoul 151-742, Korea
| | - Jyongsik Jang
- School
of Chemical and Biological Engineering, Seoul National University, Seoul 151-742, Korea
| |
Collapse
|
6
|
Abstract
There is a growing interest in the use of green resources for nanoparticle (NP) synthesis. Natural polymer, Chitosan (CH) has been employed as templates for the preparation of metal oxide NPs. They modify the surface characteristics of the nanometal oxides generated. In the presence of template CH, the spatial separation of the particles, enable the synthesis of highly crystalline, mono-dispersed particles of < 100 nm. The properties of metal oxides can be improved by combining with CH and the product can be employed for different applications. CH along with metal oxide NPs has recently been utilized as a stabilizing agent due to its excellent film-forming ability, mechanical strength, biocompatibility, non-toxicity, high permeability towards water, susceptibility to chemical modification and cost-effectiveness. Metal oxide NPs-CH based hybrid composites have attracted much interest for the development of desired biosensors, MRI agents, buffers, antibacterial agents etc.
Collapse
|
7
|
Chen Y, Gai P, Jin L, Zhu D, Tian D, Abdel-Halim ES, Zhang J, Zhu JJ. Fabrication of PEDOT nanowhiskers for electrical connection of the hemoglobin active center for H2O2 electrochemical biosensing. J Mater Chem B 2013; 1:3451-3457. [DOI: 10.1039/c3tb20513d] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|