1
|
Pham TN, Dinh NX, Tien VM, Ong VH, Das R, Nguyen TL, Tran QH, Tran DT, Vu DL, Le AT. Advances in magnetic field-assisted electrolyte's physicochemical properties and electrokinetic parameters: A case study on the response ability of chloramphenicol on Fe 3O 4@carbon spheres-based electrochemical nanosensor. Anal Chim Acta 2022; 1229:340398. [PMID: 36156214 DOI: 10.1016/j.aca.2022.340398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 08/18/2022] [Accepted: 09/11/2022] [Indexed: 11/29/2022]
Abstract
Despite the utilization of external magnetic field (MF) in promoting the intrinsic unique features of magnetic nanomaterials in many different applications has been reported, however the origin of MF-dependent electrochemical behaviors as well as the electrochemical response of analytes at the electrode in sensor applications is still not clear. In this report, the influence of MF on the electrolyte's physicochemical properties (polarization, mass transport, charge/electron transfer) and electrode's properties (conductivity, morphology, surface area, interaction, adsorption capability, electrocatalytic ability) was thoroughly investigated. Herein, the working electrode surface was modified with carbon spheres (CSs), magnetic nanoparticles (Fe3O4NPs), and their nanocomposites (Fe3O4@CSs), respectively. Then, they were directly used to enhance the electrochemical characteristics and response-ability of chloramphenicol (CAP). More interestingly, a series of various kinetic parameters related to the diffusion-controlled process of K3[Fe(CN)6]/K4[Fe(CN)6)] and the adsorption-controlled process of CAP were calculated at the bare electrode and the modified electrodes with and without the presence of MF. These parameters not only exhibit the crucial role of the modification of electrode surface with the proposed materials but also show positive impacts of the presence of external MF. Besides, the mechanism and hypothesis for the enhancements were proposed and discussed in detail, further demonstrating the development potential of using Fe3O4@CS nanocomposites with MF assistant for advanced energy, environmental, and sensor related-applications.
Collapse
Affiliation(s)
- Tuyet Nhung Pham
- Phenikaa University Nano Institute (PHENA), PHENIKAA University, Hanoi, 12116, Viet Nam.
| | - Ngo Xuan Dinh
- Phenikaa University Nano Institute (PHENA), PHENIKAA University, Hanoi, 12116, Viet Nam
| | - Van Manh Tien
- Phenikaa University Nano Institute (PHENA), PHENIKAA University, Hanoi, 12116, Viet Nam
| | - Van Hoang Ong
- Phenikaa University Nano Institute (PHENA), PHENIKAA University, Hanoi, 12116, Viet Nam; University of Transport Technology, Trieu Khuc, Thanh Xuan District, Hanoi, Viet Nam
| | - Raja Das
- Faculty of Materials Science and Engineering, PHENIKAA University, Hanoi, 12116, Viet Nam
| | - Thi Lan Nguyen
- International Training Institute for Materials Science (ITIMS) and Advanced Institute for Science and Technology (AIST), Hanoi University of Science and Technology (HUST), 01 Dai Co Viet Road, Hanoi, Viet Nam
| | - Quang Huy Tran
- Phenikaa University Nano Institute (PHENA), PHENIKAA University, Hanoi, 12116, Viet Nam
| | - Dang Thanh Tran
- Graduate University of Science and Technology (GUST) & Institute for Materials Science (IMS), Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Hanoi, 10000, Viet Nam
| | - Dinh Lam Vu
- Graduate University of Science and Technology (GUST) & Institute for Materials Science (IMS), Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Hanoi, 10000, Viet Nam
| | - Anh-Tuan Le
- Phenikaa University Nano Institute (PHENA), PHENIKAA University, Hanoi, 12116, Viet Nam; Faculty of Materials Science and Engineering, PHENIKAA University, Hanoi, 12116, Viet Nam.
| |
Collapse
|
2
|
McKeever C, Callan S, Warren S, Dempsey E. Magnetic nanoparticle modified electrodes for voltammetric determination of propellant stabiliser diphenylamine. Talanta 2022; 238:123039. [PMID: 34801896 DOI: 10.1016/j.talanta.2021.123039] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 11/02/2021] [Accepted: 11/03/2021] [Indexed: 12/13/2022]
Abstract
The overall aim of the work was to advance electrochemical devices capable of analysis of forensically relevant residues using rapid electrochemical sensor technology. In order to achieve this, electrochemical detection of the propellant stabiliser diphenylamine (DPA) was achieved via voltammetry with signal enhancement realised in the presence of iron oxide nanoparticle modified transducers. This allowed both mechanistic and analytical evaluation with the aim to achieve the required selectivity and sensitivity for reliable detection. DPA electrochemistry was examined at glassy carbon electrodes in aqueous (3:7 methanol: sodium acetate pH 4.3) electrolyte via potential sweeping, with an irreversible wave at Ep = 0.67 V vs. Ag/AgCl. The diffusion coefficient (D) for the oxidation process was calculated as 1.43 × 10-6 cm2 s-1 with αna = 0.7. DPA electrochemistry in a non aqueous methanol/acetonitrile electrolyte resulted in a D value of 5.47 × 10-8 cm2 s-1 with αna = 0.5. Electrochemical preparation of magnetic iron oxide nanoparticles was achieved via electrooxidation of an iron anode in the presence of an amine surfactant followed by characterisation with SEM/EDX, XRD, FTIR and thermal analysis. A surface confined layer of these magnetic nanoparticles served to positively influence the response to DPA while impeding formation of surface confined oxidation products, with generation of an improved analytical signal - sensitivity 1.13× 10-3 A cm-2 mM-1 relative to bare electrode response (9.80 × 10-4 A cm-2 mM-1) over the range 0.5-50 μM DPA using differential pulse voltammetry, with LOD 3.51 × 10-6 M and LOQ 1.17 × 10-5 M. Real sample analysis involved recovery and differential pulse voltammetry of unburnt and burnt gunshot residue with DPA qualitative and quantitative analysis.
Collapse
Affiliation(s)
- Colm McKeever
- Department of Chemistry, Kathleen Lonsdale Institute for Human Health Research, Maynooth University, Maynooth, Co. Kildare, Ireland
| | - Sarah Callan
- Department of Chemistry, Kathleen Lonsdale Institute for Human Health Research, Maynooth University, Maynooth, Co. Kildare, Ireland
| | - Susan Warren
- CREST Technology Gateway, FOCUS Research Institute, Technological University Dublin, Kevin St., Dublin, Ireland
| | - Eithne Dempsey
- Department of Chemistry, Kathleen Lonsdale Institute for Human Health Research, Maynooth University, Maynooth, Co. Kildare, Ireland.
| |
Collapse
|
4
|
Sawan S, Hamze K, Youssef A, Boukarroum R, Bouhadir K, Errachid A, Maalouf R, Jaffrezic-Renault N. Voltammetric study of the affinity of divalent heavy metals for guanine-functionalized iron oxide nanoparticles. MONATSHEFTE FUR CHEMIE 2021. [DOI: 10.1007/s00706-021-02738-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
6
|
Bai F, Zhang X, Hou X, Liu H, Chen J, Yang T. Individual and Simultaneous Voltammetric Determination of Cd(II), Cu(II) and Pb(II) Applying Amino Functionalized Fe
3
O
4
@Carbon Microspheres Modified Electrode. ELECTROANAL 2019. [DOI: 10.1002/elan.201900234] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Fan Bai
- Collaborative Innovation Center of Steel TechnologyUniversity of Science and Technology Beijing Beijing 100083 China
| | - Xinhao Zhang
- School of Materials Science and EngineeringUniversity of Science and Technology Beijing Beijing 100083 China
| | - Xinmei Hou
- Collaborative Innovation Center of Steel TechnologyUniversity of Science and Technology Beijing Beijing 100083 China
| | - Huijuan Liu
- Collaborative Innovation Center of Steel TechnologyUniversity of Science and Technology Beijing Beijing 100083 China
| | - Junhong Chen
- School of Materials Science and EngineeringUniversity of Science and Technology Beijing Beijing 100083 China
| | - Tao Yang
- Collaborative Innovation Center of Steel TechnologyUniversity of Science and Technology Beijing Beijing 100083 China
| |
Collapse
|
7
|
Magnetic mesoporous thiourea-formaldehyde resin as selective adsorbent: A simple and highly-sensitive electroanalysis strategy for lead ions in drinking water and milk by solid state-based anodic stripping. Food Chem 2018; 239:40-47. [DOI: 10.1016/j.foodchem.2017.06.044] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Revised: 05/15/2017] [Accepted: 06/06/2017] [Indexed: 11/21/2022]
|
8
|
Song Y, Ma R, Jiao C, Hao L, Wang C, Wu Q, Wang Z. Magnetic mesoporous polymelamine-formaldehyde resin as an adsorbent for endocrine disrupting chemicals. Mikrochim Acta 2017; 185:19. [DOI: 10.1007/s00604-017-2593-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Accepted: 11/27/2017] [Indexed: 11/29/2022]
|
9
|
Nie J, He B, Cheng Y, Yin W, Hou C, Huo D, Qian L, Qin Y, Fa H. Design of L-cysteine functionalized Au@SiO2@Fe3O4/nitrogen-doped graphene nanocomposite and its application in electrochemical detection of Pb2+. Chem Res Chin Univ 2017. [DOI: 10.1007/s40242-017-7101-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|