Brandon DL, Adams LM. Milk matrix effects on antibody binding analyzed by enzyme-linked immunosorbent assay and biolayer interferometry.
JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2015;
63:3593-3598. [PMID:
25822824 DOI:
10.1021/acs.jafc.5b01136]
[Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Biolayer interferometry (BLI) was employed to study the impact of the milk matrix on the binding of ricin to asialofetuin (ASF) and to antibodies. This optical sensing platform used ligands immobilized covalently or via biotin-streptavidin linkage, and the results were compared to those obtained by enzyme-linked immunosorbent assay (ELISA). In sandwich ELISA, the binding of ricin to ASF was dramatically decreased when galactose was present during the analyte or detection antibody binding step. Low concentrations of milk (1%, v/v) produced a similar reduction in ricin binding to ASF but not to a high-affinity monoclonal antibody (mAb), increasing the dissociation rate of ASF-ricin complexes up to 100-fold. The effect of milk on the binding of ricin to ASF was ascribable to dialyzable factors, and milk sugar can account for these effects. The use of high-affinity mAbs in ELISA effectively limits the milk matrix effect on ricin analysis.
Collapse