1
|
Cheng HP, Yang TH, Wang JC, Chuang HS. Recent Trends and Innovations in Bead-Based Biosensors for Cancer Detection. SENSORS (BASEL, SWITZERLAND) 2024; 24:2904. [PMID: 38733011 PMCID: PMC11086254 DOI: 10.3390/s24092904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 04/29/2024] [Accepted: 04/30/2024] [Indexed: 05/13/2024]
Abstract
Demand is strong for sensitive, reliable, and cost-effective diagnostic tools for cancer detection. Accordingly, bead-based biosensors have emerged in recent years as promising diagnostic platforms based on wide-ranging cancer biomarkers owing to the versatility, high sensitivity, and flexibility to perform the multiplexing of beads. This comprehensive review highlights recent trends and innovations in the development of bead-based biosensors for cancer-biomarker detection. We introduce various types of bead-based biosensors such as optical, electrochemical, and magnetic biosensors, along with their respective advantages and limitations. Moreover, the review summarizes the latest advancements, including fabrication techniques, signal-amplification strategies, and integration with microfluidics and nanotechnology. Additionally, the challenges and future perspectives in the field of bead-based biosensors for cancer-biomarker detection are discussed. Understanding these innovations in bead-based biosensors can greatly contribute to improvements in cancer diagnostics, thereby facilitating early detection and personalized treatments.
Collapse
Affiliation(s)
- Hui-Pin Cheng
- Department of Biomedical Engineering, National Cheng Kung University, Tainan 701, Taiwan (T.-H.Y.)
| | - Tai-Hua Yang
- Department of Biomedical Engineering, National Cheng Kung University, Tainan 701, Taiwan (T.-H.Y.)
- Department of Orthopedic Surgery, National Cheng Kung University Hospital, Tainan 704, Taiwan
- Medical Device Innovation Center, National Cheng Kung University, Tainan 701, Taiwan
| | - Jhih-Cheng Wang
- Department of Urology, Chimei Medical Center, Tainan 710, Taiwan
- Department of Electrical Engineering, Southern Taiwan University of Science and Technology, Tainan 710, Taiwan
- School of Medicine, College of Medicine, National Sun Yat-sen University, Kaohsiung 804, Taiwan
| | - Han-Sheng Chuang
- Department of Biomedical Engineering, National Cheng Kung University, Tainan 701, Taiwan (T.-H.Y.)
- Medical Device Innovation Center, National Cheng Kung University, Tainan 701, Taiwan
| |
Collapse
|
2
|
Chang D, Li J, Liu R, Liu M, Tram K, Schmitt N, Li Y. A Colorimetric Biosensing Platform with Aptamers, Rolling Circle Amplification and Urease-Mediated Litmus Test. Angew Chem Int Ed Engl 2023; 62:e202315185. [PMID: 37903738 DOI: 10.1002/anie.202315185] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 10/27/2023] [Accepted: 10/30/2023] [Indexed: 11/01/2023]
Abstract
Here we report on an ultra-sensitive colorimetric sensing platform that takes advantage of both the strong amplification power of rolling circle amplification (RCA) and the high efficiency of a simple urease-mediated litmus test. The presence of a target triggers the RCA reaction, and urease-labelled DNA can hybridize to the biotinylated RCA products and be immobilized onto streptavidin-coated magnetic beads. The urease-laden beads are then used to hydrolyze urea, leading to an increase in pH that can be detected by a simple litmus test. We show this sensing platform can be easily integrated with aptamers for sensing diverse targets via the detection of human thrombin and platelet-derived growth factor (PDGF) utilizing structure-switching aptamers as well as SARS-CoV-2 in human saliva using a spike-binding trimeric DNA aptamer. Furthermore, we demonstrate that this colorimetric sensing platform can be integrated into a simple paper-based device for sensing applications.
Collapse
Affiliation(s)
- Dingran Chang
- Michael G. DeGroote Institute for Infectious Disease Research, Department of Biochemistry and Biomedical Sciences, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4 K1, Canada
| | - Jiuxing Li
- Michael G. DeGroote Institute for Infectious Disease Research, Department of Biochemistry and Biomedical Sciences, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4 K1, Canada
| | - Rudi Liu
- Michael G. DeGroote Institute for Infectious Disease Research, Department of Biochemistry and Biomedical Sciences, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4 K1, Canada
| | - Meng Liu
- Michael G. DeGroote Institute for Infectious Disease Research, Department of Biochemistry and Biomedical Sciences, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4 K1, Canada
| | - Kha Tram
- Michael G. DeGroote Institute for Infectious Disease Research, Department of Biochemistry and Biomedical Sciences, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4 K1, Canada
| | - Natalie Schmitt
- Michael G. DeGroote Institute for Infectious Disease Research, Department of Biochemistry and Biomedical Sciences, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4 K1, Canada
| | - Yingfu Li
- Michael G. DeGroote Institute for Infectious Disease Research, Department of Biochemistry and Biomedical Sciences, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4 K1, Canada
| |
Collapse
|
3
|
Chen Z, Liu Z, Liu J, Xiao X. Research progress in the detection of common foodborne hazardous substances based on functional nucleic acids biosensors. Biotechnol Bioeng 2023; 120:3501-3517. [PMID: 37723667 DOI: 10.1002/bit.28555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 08/31/2023] [Accepted: 09/01/2023] [Indexed: 09/20/2023]
Abstract
With the further improvement of food safety requirements, the development of fast, highly sensitive, and portable methods for the determination of foodborne hazardous substances has become a new trend in the food industry. In recent years, biosensors and platforms based on functional nucleic acids, along with a range of signal amplification devices and methods, have been established to enable rapid and sensitive determination of specific substances in samples, opening up a new avenue of analysis and detection. In this paper, functional nucleic acid types including aptamers, deoxyribozymes, and G-quadruplexes which are commonly used in the detection of food source pollutants are introduced. Signal amplification elements include quantum dots, noble metal nanoparticles, magnetic nanoparticles, DNA walkers, and DNA logic gates. Signal amplification technologies including nucleic acid isothermal amplification, hybridization chain reaction, catalytic hairpin assembly, biological barcodes, and microfluidic system are combined with functional nucleic acids sensors and applied to the detection of many foodborne hazardous substances, such as foodborne pathogens, mycotoxins, residual antibiotics, residual pesticides, industrial pollutants, heavy metals, and allergens. Finally, the potential opportunities and broad prospects of functional nucleic acids biosensors in the field of food analysis are discussed.
Collapse
Affiliation(s)
- Zijie Chen
- School of Public Health, Hengyang Medical School, University of South China, Hengyang, Hunan, the People's Republic of China
| | - Zhen Liu
- School of Public Health, Hengyang Medical School, University of South China, Hengyang, Hunan, the People's Republic of China
| | - Jingjing Liu
- School of Chemistry and Chemical Engineering, University of South China, Hengyang, Hunan, the People's Republic of China
| | - Xilin Xiao
- School of Public Health, Hengyang Medical School, University of South China, Hengyang, Hunan, the People's Republic of China
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha, Hunan, the People's Republic of China
| |
Collapse
|
4
|
Dual-mode amplified fluorescence oligosensor mediated MOF-MoS2 for ultra-sensitive simultaneous detection of 17β -estradiol and chloramphenicol through catalytic target- recycling activity of exonuclease I. Microchem J 2022. [DOI: 10.1016/j.microc.2021.106971] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
5
|
Huang Y, Wang C, Wei Q, Song Y, Chen P, Wang L, Yang X, Chen X. A sensitive aptasensor based on rolling circle amplification and G-rich ssDNA/terbium (III) luminescence enhancement for ofloxacin detection in food. Talanta 2021; 235:122783. [PMID: 34517641 DOI: 10.1016/j.talanta.2021.122783] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 05/10/2021] [Accepted: 08/02/2021] [Indexed: 11/24/2022]
Abstract
As the light-harvesting "antenna", G-rich oligonucleotides (such as the G-quadruplex) can interact with lanthanide (III) to bring a luminescent enhancement response. In this study, phenomenon of luminescent enhancement of G-triplex/terbium (III) (G3/Tb3+) and interaction between G3 and Tb3+ were first reported and characterized. Based on G3/Tb3+ luminescence, a label-free aptasensor for the detection of ofloxacin (OFL) residues in the food was developed. The OFL triggered the action of rolling circle amplification (RCA) allowed for the amplification product of G3-forming sequences in the single-stranded DNA, which promoted the conformational transition of the G3/Tb3+ complexes once the addition of Tb3+. Under the optimal conditions, the logarithmic correlation between the G3/Tb3+ luminescence intensity and the concentration of OFL was found to be linear in the range of 5-1000 pmol L-1 (R2 = 0.9949). The limit of detection was 0.18 pmol L-1 (3σ/slope). Additionally, the good recoveries of 90.19-108.89 % and the relative standard deviations values of 0.59-5.87 % were obtained in the application of the aptasensor detecting OFL in the practical samples. These results confirmed that the present aptasensor has a good analytical performance and bright prospect for detecting ofloxacin residues in food.
Collapse
Affiliation(s)
- Yukun Huang
- School of Food and Biological Engineering, Xihua University, Chengdu, 610039, China; Key Laboratory of Food Non Thermal Processing, Engineering Technology Research Center of Food Non Thermal Processing, Yibin Xihua University Research Institute, Yibin, Sichuan, 644004, China.
| | - Chong Wang
- School of Food and Biological Engineering, Xihua University, Chengdu, 610039, China
| | - Qiming Wei
- School of Food and Biological Engineering, Xihua University, Chengdu, 610039, China
| | - Yaning Song
- School of Food and Biological Engineering, Xihua University, Chengdu, 610039, China
| | - Pengfei Chen
- School of Food and Biological Engineering, Xihua University, Chengdu, 610039, China
| | - Lijun Wang
- School of Food and Biological Engineering, Xihua University, Chengdu, 610039, China
| | - Xiao Yang
- School of Food and Biological Engineering, Xihua University, Chengdu, 610039, China
| | - Xianggui Chen
- School of Food and Biological Engineering, Xihua University, Chengdu, 610039, China; Key Laboratory of Food Non Thermal Processing, Engineering Technology Research Center of Food Non Thermal Processing, Yibin Xihua University Research Institute, Yibin, Sichuan, 644004, China.
| |
Collapse
|