1
|
Dinu LA, Kurbanoglu S. Enhancing electrochemical sensing through the use of functionalized graphene composites as nanozymes. NANOSCALE 2023; 15:16514-16538. [PMID: 37815527 DOI: 10.1039/d3nr01998e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/11/2023]
Abstract
Graphene-based nanozymes possess inherent nanomaterial properties that offer not only a simple substitute for enzymes but also a versatile platform capable of bonding with complex biochemical environments. The current review discusses the replacement of enzymes in developing biosensors with nanozymes. Functionalization of graphene-based materials with various nanoparticles can enhance their nanozymatic properties. Graphene oxide functionalization has been shown to yield graphene-based nanozymes that closely mimic several natural enzymes. This review provides an overview of the classification, current state-of-the-art development, synthesis routes, and types of functionalized graphene-based nanozymes for the design of electrochemical sensors. Furthermore, it includes a summary of the application of functionalized graphene-based nanozymes for constructing electrochemical sensors for pollutants, drugs, and various water and food samples. Challenges related to nanozymes as electrocatalytic materials are discussed, along with potential solutions and approaches for addressing these shortcomings.
Collapse
Affiliation(s)
- Livia Alexandra Dinu
- National Institute for Research and Development in Microtechnologies (IMT Bucharest), 126A Erou Iancu Nicolae Street, 077190 Voluntari, Ilfov, Romania
| | - Sevinc Kurbanoglu
- Faculty of Pharmacy, Department of Analytical Chemistry, Ankara University, 06560, Tandogan, Ankara, Türkiye.
| |
Collapse
|
2
|
Meskher H, Achi F, Zouaoui A, Ha S, Peacock M, Belkhalfa H. Simultaneous and Selective Electrochemical Determination of Catechol and Hydroquinone on A Nickel Oxide (NiO) Reduced Graphene Oxide (rGO) Doped Multiwalled Carbon Nanotube (fMWCNT) Modified Platinum Electrode. ANAL LETT 2021. [DOI: 10.1080/00032719.2021.2008951] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Hicham Meskher
- Laboratory of Valorization and Promotion of Saharian Ressources (VPSR), Kasdi-Merbah University, Ouargla, Algeria
| | - Fethi Achi
- Laboratory of Valorization and Promotion of Saharian Ressources (VPSR), Kasdi-Merbah University, Ouargla, Algeria
| | - Ahmed Zouaoui
- Growth and Characterization of New Semiconductors Laboratory (LCCNS), Ferhat Abbas University, Setif, Algeria
| | - Sohmyung Ha
- Division of Engineering, New York University Abu Dhabi, Abu Dhabi, UAE
- Tandon School of Engineering, New York University, New York, NY, USA
| | | | - Hakim Belkhalfa
- Centre de Recherche Scientifique et Technique en Analyses Physico-chimiques (CRAPC), Bou-Ismail, Alegria
| |
Collapse
|
3
|
Kanoun O, Lazarević-Pašti T, Pašti I, Nasraoui S, Talbi M, Brahem A, Adiraju A, Sheremet E, Rodriguez RD, Ben Ali M, Al-Hamry A. A Review of Nanocomposite-Modified Electrochemical Sensors for Water Quality Monitoring. SENSORS (BASEL, SWITZERLAND) 2021; 21:4131. [PMID: 34208587 PMCID: PMC8233775 DOI: 10.3390/s21124131] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 05/31/2021] [Accepted: 06/02/2021] [Indexed: 12/12/2022]
Abstract
Electrochemical sensors play a significant role in detecting chemical ions, molecules, and pathogens in water and other applications. These sensors are sensitive, portable, fast, inexpensive, and suitable for online and in-situ measurements compared to other methods. They can provide the detection for any compound that can undergo certain transformations within a potential window. It enables applications in multiple ion detection, mainly since these sensors are primarily non-specific. In this paper, we provide a survey of electrochemical sensors for the detection of water contaminants, i.e., pesticides, nitrate, nitrite, phosphorus, water hardeners, disinfectant, and other emergent contaminants (phenol, estrogen, gallic acid etc.). We focus on the influence of surface modification of the working electrodes by carbon nanomaterials, metallic nanostructures, imprinted polymers and evaluate the corresponding sensing performance. Especially for pesticides, which are challenging and need special care, we highlight biosensors, such as enzymatic sensors, immunobiosensor, aptasensors, and biomimetic sensors. We discuss the sensors' overall performance, especially concerning real-sample performance and the capability for actual field application.
Collapse
Affiliation(s)
- Olfa Kanoun
- Professorship Measurement and Sensor Technology, Chemnitz University of Technology, 09111 Chemnitz, Germany; (S.N.); (M.T.); (A.B.); (A.A.); (A.A.-H.)
| | - Tamara Lazarević-Pašti
- Department of Physical Chemistry, “VINČA” Institute of Nuclear Sciences—National Institute of the Republic of Serbia, University of Belgrade, 11000 Belgrade, Serbia;
| | - Igor Pašti
- Faculty of Physical Chemistry, University of Belgrade, 11000 Belgrade, Serbia;
| | - Salem Nasraoui
- Professorship Measurement and Sensor Technology, Chemnitz University of Technology, 09111 Chemnitz, Germany; (S.N.); (M.T.); (A.B.); (A.A.); (A.A.-H.)
- NANOMISENE Lab, LR16CRMN01, Centre for Research on Microelectronics and Nanotechnology of Sousse, Technopole of Sousse B.P. 334, Sahloul, Sousse 4034, Tunisia;
- Higher Institute of Applied Sciences and Technology of Sousse, University of Sousse, 4003 Tunisia of Sousse, GREENS-ISSAT, Cité Ettafala, Ibn Khaldoun, Sousse 4003, Tunisia
| | - Malak Talbi
- Professorship Measurement and Sensor Technology, Chemnitz University of Technology, 09111 Chemnitz, Germany; (S.N.); (M.T.); (A.B.); (A.A.); (A.A.-H.)
- NANOMISENE Lab, LR16CRMN01, Centre for Research on Microelectronics and Nanotechnology of Sousse, Technopole of Sousse B.P. 334, Sahloul, Sousse 4034, Tunisia;
- Higher Institute of Applied Sciences and Technology of Sousse, University of Sousse, 4003 Tunisia of Sousse, GREENS-ISSAT, Cité Ettafala, Ibn Khaldoun, Sousse 4003, Tunisia
| | - Amina Brahem
- Professorship Measurement and Sensor Technology, Chemnitz University of Technology, 09111 Chemnitz, Germany; (S.N.); (M.T.); (A.B.); (A.A.); (A.A.-H.)
- NANOMISENE Lab, LR16CRMN01, Centre for Research on Microelectronics and Nanotechnology of Sousse, Technopole of Sousse B.P. 334, Sahloul, Sousse 4034, Tunisia;
- Higher Institute of Applied Sciences and Technology of Sousse, University of Sousse, 4003 Tunisia of Sousse, GREENS-ISSAT, Cité Ettafala, Ibn Khaldoun, Sousse 4003, Tunisia
| | - Anurag Adiraju
- Professorship Measurement and Sensor Technology, Chemnitz University of Technology, 09111 Chemnitz, Germany; (S.N.); (M.T.); (A.B.); (A.A.); (A.A.-H.)
| | - Evgeniya Sheremet
- Research School of Physics, Tomsk Polytechnic University, Tomsk 634050, Russia;
| | - Raul D. Rodriguez
- Research School of Chemical and Biomedical Technologies, Tomsk Polytechnic University, Tomsk 634050, Russia;
| | - Mounir Ben Ali
- NANOMISENE Lab, LR16CRMN01, Centre for Research on Microelectronics and Nanotechnology of Sousse, Technopole of Sousse B.P. 334, Sahloul, Sousse 4034, Tunisia;
- Higher Institute of Applied Sciences and Technology of Sousse, University of Sousse, 4003 Tunisia of Sousse, GREENS-ISSAT, Cité Ettafala, Ibn Khaldoun, Sousse 4003, Tunisia
| | - Ammar Al-Hamry
- Professorship Measurement and Sensor Technology, Chemnitz University of Technology, 09111 Chemnitz, Germany; (S.N.); (M.T.); (A.B.); (A.A.); (A.A.-H.)
| |
Collapse
|
4
|
Abu Nayem SM, Shaheen Shah S, Sultana N, Aziz MA, Saleh Ahammad AJ. Electrochemical Sensing Platforms of Dihydroxybenzene: Part 1 – Carbon Nanotubes, Graphene, and their Derivatives. CHEM REC 2021; 21:1039-1072. [DOI: 10.1002/tcr.202100043] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 03/07/2021] [Indexed: 12/12/2022]
Affiliation(s)
- S. M. Abu Nayem
- Department of Chemistry Jagannath University Dhaka 1100 Bangladesh 9583794
| | - Syed Shaheen Shah
- Center of Research Excellence in Nanotechnology King Fahd University of Petroleum & Minerals, KFUPM Box 5040 Dhahran 31261 Saudi Arabia
- Physics Department King Fahd University of Petroleum & Minerals, KFUPM Box 5047 Dhahran 31261 Saudi Arabia
| | - Nasrin Sultana
- Department of Chemistry Jagannath University Dhaka 1100 Bangladesh 9583794
| | - Md. Abdul Aziz
- Center of Research Excellence in Nanotechnology King Fahd University of Petroleum & Minerals, KFUPM Box 5040 Dhahran 31261 Saudi Arabia
| | | |
Collapse
|
5
|
Review on applications of carbon nanomaterials for simultaneous electrochemical sensing of environmental contaminant dihydroxybenzene isomers. ARAB J CHEM 2020. [DOI: 10.1016/j.arabjc.2020.05.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
|
6
|
Nazari M, Kashanian S, Moradipour P, Maleki N. A novel fabrication of sensor using ZnO-Al2O3 ceramic nanofibers to simultaneously detect catechol and hydroquinone. J Electroanal Chem (Lausanne) 2018. [DOI: 10.1016/j.jelechem.2018.01.058] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
7
|
Jiang H, Wang S, Deng W, Zhang Y, Tan Y, Xie Q, Ma M. Graphene-like carbon nanosheets as a new electrode material for electrochemical determination of hydroquinone and catechol. Talanta 2017; 164:300-306. [DOI: 10.1016/j.talanta.2016.11.052] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Accepted: 11/22/2016] [Indexed: 11/26/2022]
|
8
|
Gao J, Liu M, Song H, Zhang S, Qian Y, Li A. Highly-sensitive electrocatalytic determination for toxic phenols based on coupled cMWCNT/cyclodextrin edge-functionalized graphene composite. JOURNAL OF HAZARDOUS MATERIALS 2016; 318:99-108. [PMID: 27415597 DOI: 10.1016/j.jhazmat.2016.06.051] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Revised: 06/13/2016] [Accepted: 06/25/2016] [Indexed: 06/06/2023]
Abstract
Highly-sensitive electrocatalytic determination of toxic phenol compounds is of significance in environmental monitoring due to their low degradation and high toxicity to the environment and humans. In this paper, a rapid and sensitive electrochemical sensor based on coupled carboxyl-multi-walled carbon nanotube (cMWCNT) and cyclodextrin (CD) edge-functionalized graphene composite was successfully employed towards trace detection of three typical phenols (4-aminophenol, 4-AP; 4-chlorophenol, 4-CP; 4-nitrophenol, 4-NP). The morphology studies from scanning electron microscope and transmission electron microscope analysis revealed that cMWCNTs as conductive bridges were successfully incorporated into CD edge-functionalized graphene layers. Further, The electrocatalytic detection performance of the 3D simultaneously reduced and self-assembled sensing architecture (GN-CD-cMWCNT) with trace amounts of CDs was evaluated. The electrochemical studies demonstrated that GN-CD-cMWCNT displays excellent electrocatalytic activity, high sensitivity and stability. Under optimal conditions, the current responses of 4-AP, 4-CP and 4-NP are linear to concentrations over two different ranges, with low detection limit of 0.019, 0.017 and 0.027μM (S/N=3), respectively. And, GN-CD-cMWCNT shows an excellent anti-interference ability against electroactive species and metal ions. In addition, validation of the applicability of the presented sensor was also performed for the determination of three phenols in tap water sample with satisfactory results.
Collapse
Affiliation(s)
- Juanjuan Gao
- School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, PR China
| | - Maoxiang Liu
- School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, PR China
| | - Haiou Song
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, PR China.
| | - Shupeng Zhang
- School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, PR China; State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, PR China.
| | - Yueyue Qian
- School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, PR China
| | - Aimin Li
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, PR China.
| |
Collapse
|
9
|
Kavanoz M, Pekmez NÖ, Can M. Investigation of the behavior of hydrogen-bonded phenolic compounds and their determination by using poly(vinylferrocenium)-polyaniline composite film. J Appl Polym Sci 2016. [DOI: 10.1002/app.43596] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Muammer Kavanoz
- Department of Chemistry; Recep Tayyip Erdogan University; 53100 Rize Turkey
| | | | - Muzaffer Can
- Department of Chemistry; Kırıkkale University; 71450 Kırıkkale Turkey
| |
Collapse
|
10
|
Ren X, Liu J, Ren J, Tang F, Meng X. One-pot synthesis of active copper-containing carbon dots with laccase-like activities. NANOSCALE 2015; 7:19641-19646. [PMID: 26548709 DOI: 10.1039/c5nr04685h] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Herein, an effective strategy for designing a new type of nanozyme, blue fluorescent laccase mimics, is reported. Active copper-containing carbon dots (Cu-CDs) were synthesized through a simple, nontoxic and one-pot hydrothermal method, which showed favorable photoluminescence properties and good photostability under high-salt conditions or in a broad pH range (3.0-13.5). The Cu-CDs possessed intrinsic laccase-like activities and could catalyze the oxidation of the laccase substrate p-phenylenediamine (PPD) to produce a typical color change from colorless to brown. Poly(methacrylic acid sodium salt) (PMAA) not only was used as the carbon source and reducing agent, but also provided carboxyl groups to assist flocculation between Cu-CDs and polyacrylamide, which facilitated the removal of PPD. Importantly, the intrinsic fluorescence of the as-prepared Cu-CDs could indicate the presence of hydroquinone, one of the substrates of laccases, based on laccase mimics and fluorescence quenching.
Collapse
Affiliation(s)
- Xiangling Ren
- Laboratory of Controllable Preparation and Application of Nanomaterials, Center for Micro/nanomaterials and Technology & Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.
| | - Jing Liu
- Laboratory of Controllable Preparation and Application of Nanomaterials, Center for Micro/nanomaterials and Technology & Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.
| | - Jun Ren
- Laboratory of Controllable Preparation and Application of Nanomaterials, Center for Micro/nanomaterials and Technology & Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.
| | - Fangqiong Tang
- Laboratory of Controllable Preparation and Application of Nanomaterials, Center for Micro/nanomaterials and Technology & Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.
| | - Xianwei Meng
- Laboratory of Controllable Preparation and Application of Nanomaterials, Center for Micro/nanomaterials and Technology & Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.
| |
Collapse
|
11
|
Fu J, Tan X, Shi Z, Song X, Zhang S. Highly Sensitive and Simultaneous Detection of Hydroquinone and Catechol Using Poly(mercaptoacetic acid)/Exfoliated Graphene Composite Film-modified Electrode. ELECTROANAL 2015. [DOI: 10.1002/elan.201500535] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|