1
|
Alshammari A, Abdulmawla ST, Alsaigh R, Alarjani KM, Aldosari NS, Muthuramamoorthy M, Assaifan AK, Albrithen H, Alzahrani KE, Alodhayb AN. Toward the Real-Time and Rapid Quantification of Bacterial Cells Utilizing a Quartz Tuning Fork Sensor. MICROMACHINES 2023; 14:1114. [PMID: 37374699 DOI: 10.3390/mi14061114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 05/20/2023] [Accepted: 05/21/2023] [Indexed: 06/29/2023]
Abstract
The quantitative evaluation of bacterial populations is required in many studies, particularly in the field of microbiology. The current techniques can be time-consuming and require a large volume of samples and trained laboratory personnel. In this regard, on-site, easy-to-use, and direct detection techniques are desirable. In this study, a quartz tuning fork (QTF) was investigated for the real-time detection of E. coli in different media, as well as the ability to determine the bacterial state and correlate the QTF parameters to the bacterial concentration. QTFs that are commercially available can also be used as sensitive sensors of viscosity and density by determining the QTFs' damping and resonance frequency. As a result, the influence of viscous biofilm adhered to its surface should be detectable. First, the response of a QTF to different media without E. coli was investigated, and Luria-Bertani broth (LB) growth medium caused the largest change in frequency. Then, the QTF was tested against different concentrations of E. coli (i.e., 102-105 colony-forming units per milliliter (CFU/mL)). As the E. coli concentration increased, the frequency decreased from 32.836 to 32.242 kHz. Similarly, the quality factor decreased with the increasing E. coli concentration. With a coefficient (R) of 0.955, a linear correlation between the QTF parameters and bacterial concentration was established with a 26 CFU/mL detection limit. Furthermore, a considerable change in frequency was observed against live and dead cells in different media. These observations demonstrate the ability of QTFs to distinguish between different bacterial states. QTFs allow real-time, rapid, low-cost, and non-destructive microbial enumeration testing that requires only a small volume of liquid sample.
Collapse
Affiliation(s)
- Abeer Alshammari
- Department of Physics and Astronomy, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Sabaa T Abdulmawla
- Department of Physics and Astronomy, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Reem Alsaigh
- Department of Physics and Astronomy, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Khaloud Mohammed Alarjani
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Norah Salim Aldosari
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | | | - Abdulaziz K Assaifan
- Department of Biomedical Technology, College of Applied Medical Sciences, King Saud University, Riyadh 11451, Saudi Arabia
| | - Hamad Albrithen
- Department of Physics and Astronomy, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Khalid E Alzahrani
- Department of Physics and Astronomy, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Abdullah N Alodhayb
- Department of Physics and Astronomy, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
2
|
Kumari S, Nehra A, Gupta K, Puri A, Kumar V, Singh KP, Kumar M, Sharma A. Chlorambucil-Loaded Graphene-Oxide-Based Nano-Vesicles for Cancer Therapy. Pharmaceutics 2023; 15:649. [PMID: 36839970 PMCID: PMC9961782 DOI: 10.3390/pharmaceutics15020649] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 02/03/2023] [Accepted: 02/05/2023] [Indexed: 02/17/2023] Open
Abstract
In this study, the authors have designed biocompatible nano-vesicles using graphene oxide (GO) for the release of chlorambucil (CHL) drugs targeting cancerous cells. The GO sheets were first sulfonated and conjugated with folic acid (FA) molecules for controlled release and high loading efficiency of CHL. The chlorambucil (CHL) drug loading onto the functionalized GO surface was performed through π-π stacking and hydrophobic interactions with the aromatic planes of GO. The drug loading and "in vitro" release from the nano-vesicles at different pH were studied. The average particle size, absorption, and loading efficiency (%) of FA-conjugated GO sheets (CHL-GO) were observed to be 300 nm, 58%, and 77%, respectively. The drug release study at different pH (i.e., 7.4 and 5.5) showed a slight deceleration at pH 7.4 over pH 5.5. The amount of drug released was very small at pH 7.4 in the first hour which progressively increased to 24% after 8 h. The rate of drug release was faster at pH 5.5; initially, 16% to 27% in the first 3 h, and finally it reached 73% after 9 h. These observations indicate that the drug is released more rapidly at acidic pH with a larger amount of drug-loading ability. The rate of drug release from the CHL-loaded GO was 25% and 75% after 24 h. The biotoxicity study in terms of % cell viability of CHL-free and CHL-loaded GO against human cervical adenocarcinoma cell line was found to have lower cytotoxicity of CHL-loaded nano-vesicles (IC50 = 18 μM) as compared to CHL-free (IC50 = 8 μM). It is concluded that a high drug-loading efficiency and controlled release with excellent biotoxicity of CHL-GO offers an excellent application in the biomedical field.
Collapse
Affiliation(s)
- Surabhi Kumari
- Bio-Nanotechnology Research Laboratory, Biophysics Unit, College of Basic Science & Humanities, G.B. Pant University of Agriculture and Technology, Pantnagar 263145, Uttarakhand, India
| | - Anuj Nehra
- Bio-Nanotechnology Research Laboratory, Biophysics Unit, College of Basic Science & Humanities, G.B. Pant University of Agriculture and Technology, Pantnagar 263145, Uttarakhand, India
- Department of Physics, Guru Jambheshwar University of Science and Technology, Hisar 125001, Haryana, India
| | - Kshitij Gupta
- Basic Research Laboratory, Centre for Cancer Research, National Cancer Institute-Frederick, National Institute of Health, Post Office Box. Building 469, Room No. 216A, Frederick, MD 21702-1201, USA
| | - Anu Puri
- Basic Research Laboratory, Centre for Cancer Research, National Cancer Institute-Frederick, National Institute of Health, Post Office Box. Building 469, Room No. 216A, Frederick, MD 21702-1201, USA
| | - Vinay Kumar
- Department of Physics, CCS Haryana Agricultural University, Hisar 125004, Haryana, India
| | - Krishna Pal Singh
- Bio-Nanotechnology Research Laboratory, Biophysics Unit, College of Basic Science & Humanities, G.B. Pant University of Agriculture and Technology, Pantnagar 263145, Uttarakhand, India
- Vice Chancellor Secretariat, Mahatma Jyotiba Phule Rohilkhand University, Bareilly 243006, Uttar Pradesh, India
| | - Mukesh Kumar
- Department of Physics, Faculty of Science, Shree Guru Gobind Singh Tricentenary University, Gurgaon 122505, Haryana, India
| | - Ashutosh Sharma
- Department of Materials Science and Engineering, Ajou University, Suwon 16499, Republic of Korea
| |
Collapse
|
3
|
Nehra A, Kumar A, Ahlawat S, Kumar V, Singh KP. Substrate-Free Untagged Detection of miR393a Using an Ultrasensitive Electrochemical Biosensor. ACS OMEGA 2022; 7:5176-5189. [PMID: 35187333 PMCID: PMC8851637 DOI: 10.1021/acsomega.1c06098] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Accepted: 01/13/2022] [Indexed: 05/15/2023]
Abstract
Rapid and sensitive detection of numerous regulatory pathways in growth and development processes and defensive responses in plant-pathogen interactions caused by miRNA has been the current interest of agricultural scientists. Herein, an uncomplicated ultrasensitive electrochemical biosensor was fabricated to detect miR393a, as its detection is of vital importance for plant diseases. A streptavidin-coated screen-printed carbon electrode (SPCE) was fabricated and characterized by scanning electrochemical microscopy, scanning electron microscopy, surface plasmon resonance, and cyclic voltammetry. The two-dimensional (2D) structure and chemical functionality of the streptavidin-coated SPCE render it a superior platform for loading a modified probe via a 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide-N-hydroxysuccinimide linker. This biorecognition platform is capable of efficiently using its excellent conductivity, greater surface area, and effective electrochemical execution due to its synergistic effect between streptavidin and carbon electrodes. The biosensor showed a good linear response (R 2 = 0.96) to miR393a concentrations ranging from 100 nM to 100 fM. This streptavidin-based biosensor is highly sensitive to the minimum concentration of miR393a, lowest detection limit, and ultrasensitivity under optimized conditions, i.e., 100 fM, 0.33 fM, and 33.72 μA fM-1 cm-2, respectively. In addition, remarkable recoveries could be obtained to confirm the feasibility of this assay in plant disease samples. The fabricated technology could offer a selective, adaptable, and farmer-friendly strategy for the timely detection of miRNA of plant samples.
Collapse
Affiliation(s)
- Anuj Nehra
- Centre
for Bio-Nanotechnology, and Department of Nematology, College of Agriculture, Chaudhary Charan Singh Haryana Agricultural University, Hisar 125004, India
| | - Anil Kumar
- Department
of Nematology, College of Agriculture, Chaudhary
Charan Singh Haryana Agricultural University, Hisar 125004, India
| | - Sweeti Ahlawat
- Bio-Nanotechnology
Research Laboratory, Biophysics Unit, College of Basic Sciences &
Humanities, G.B. Pant University of Agriculture
& Technology, U.S. Nagar, Pantnagar 263145, Uttarakhand, India
| | - Vinay Kumar
- Department
of Physics, College of Basic Science & Humanities, Chaudhary Charan Singh Haryana Agricultural University, Hisar 125004, India
| | - Krishna Pal Singh
- Bio-Nanotechnology
Research Laboratory, Biophysics Unit, College of Basic Sciences &
Humanities, G.B. Pant University of Agriculture
& Technology, U.S. Nagar, Pantnagar 263145, Uttarakhand, India
- Department
of Molecular Biology, Biotechnology and Bioinformatics, College of
Basic Science & Humanities, Chaudhary
Charan Singh Haryana Agricultural University, Hisar 125004, Haryana, India
- . Phone: +91-0581-2527282
| |
Collapse
|
4
|
Abdullah A, Dastider SG, Jasim I, Shen Z, Yuksek N, Zhang S, Dweik M, Almasri M. Microfluidic based impedance biosensor for pathogens detection in food products. Electrophoresis 2019; 40:508-520. [DOI: 10.1002/elps.201800405] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 11/28/2018] [Accepted: 11/29/2018] [Indexed: 11/11/2022]
Affiliation(s)
- Amjed Abdullah
- Department of Electrical and Computer Engineering University of Missouri Columbia MO USA
| | | | - Ibrahem Jasim
- Department of Electrical and Computer Engineering University of Missouri Columbia MO USA
| | - Zhenyu Shen
- Department Veterinary Pathobiology University of Missouri Columbia MO USA
| | - Nuh Yuksek
- Department of Electrical and Computer Engineering University of Missouri Columbia MO USA
| | - Shuping Zhang
- Department Veterinary Pathobiology University of Missouri Columbia MO USA
| | - Majed Dweik
- Co‐operative Research and Life and Physical Sciences Lincoln University Jefferson City MO USA
| | - Mahmoud Almasri
- Department of Electrical and Computer Engineering University of Missouri Columbia MO USA
| |
Collapse
|
5
|
Ghosh Dastider S, Abdullah A, Jasim I, Yuksek NS, Dweik M, Almasri M. Low concentration E. coli O157:H7 bacteria sensing using microfluidic MEMS biosensor. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2018; 89:125009. [PMID: 30599553 DOI: 10.1063/1.5043424] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
This paper reports the design, fabrication, and testing of a microfluidic MEMS biosensor for rapid sensing of low concentration Escherichia coli O157:H7. It consists of a specially designed focusing and sensing region, which enables the biosensor to detect low concentration of bacterial cells. The focusing region consists of a ramped vertical electrode pair made of electroplated gold along with tilted thin film finger pairs (45°) embedded inside a microchannel. The focusing region generates positive dielectrophoresis force, which moves the cells towards the edges of the tilted thin film electrode fingers, located at the center of the microchannel. The fluidic drag force then carries the focused cells to the sensing region, where three interdigitated electrode arrays (IDEAs) with 30, 20, and 10 pairs, respectively, are embedded inside the microchannel. This technique resulted in highly concentrated samples in the sensing region. The sensing IDEAs are functionalized with the anti-E. coli antibody for specific sensing of E. coli 0157:H7. As E. coli binds to the antibody, it results in an impedance change, which is measured across a wide frequency range of 100 Hz-10 MHz. The biosensor was fabricated on a glass substrate using the SU8 epoxy resist to form the microchannel, gold electroplating to form the vertical focusing electrode pair, a thin gold film to form the sensing electrode, the finger electrodes, traces and bonding pads, and polydimethylsiloxane to seal the device. The microfluidic impedance biosensor was tested with various low concentration bacterial samples and was able to detect bacterial concentration, as low as 39 CFU/ml with a total sensing time of 2 h.
Collapse
Affiliation(s)
- Shibajyoti Ghosh Dastider
- Department of Electrical and Computer Engineering, University of Missouri, Columbia, Missouri 65211, USA
| | - Amjed Abdullah
- Department of Electrical and Computer Engineering, University of Missouri, Columbia, Missouri 65211, USA
| | - Ibrahem Jasim
- Department of Electrical and Computer Engineering, University of Missouri, Columbia, Missouri 65211, USA
| | - Nuh S Yuksek
- Department of Electrical and Computer Engineering, University of Missouri, Columbia, Missouri 65211, USA
| | - Majed Dweik
- Department of Co-operative Research, Lincoln University, Jefferson City, Missouri 65101, USA
| | - Mahmoud Almasri
- Department of Electrical and Computer Engineering, University of Missouri, Columbia, Missouri 65211, USA
| |
Collapse
|
6
|
Nehra A, Chen W, Dimitrov DS, Puri A, Singh KP. Graphene Oxide-Polycarbonate Track-Etched Nanosieve Platform for Sensitive Detection of Human Immunodeficiency Virus Envelope Glycoprotein. ACS APPLIED MATERIALS & INTERFACES 2017; 9:32621-32634. [PMID: 28876042 DOI: 10.1021/acsami.7b12103] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Solid-state nanopores within graphene-based materials are on the brink of fundamentally changing the sensing of desired bioanalytes through ion trafficking across nanoporous membranes. Here, we report on a two-electrode electrochemical biosensor comprised of a graphene oxide-polycarbonate track-etched nanosieve platform for the rapid and sensitive detection of the Human Immunodeficiency Virus Type 1 (HIV-1) envelope glycoprotein ectodomain (gp140MS). We have covalently linked an engineered high-affinity one-domain soluble CD4 fused to a human domain targeting HIV-1 coreceptor binding site and ferrocene (Fc) (2Dm2m) to the nanosieve platform. An exponential decrease in the ionic current resulted from a partial blockade of the nanosieve due to the specific interactions of gp140MS with the 2Dm2m protein, which was immobilized on the nanosieve platform by biolinkage as a function of applied voltages of 0.1-2.0 V. There was no change in current when a nonspecific antigen bovine serum albumin was tested under identical conditions. This platform had high sensitivity, and when the receptor-binding phenomenon was tested to identify the minimum concentration of target analyte, the lowest detection limit was as short as 8.3 fM and with sensitivity and response times of 0.87 mA mM-1 cm-1 and 12 s, respectively. In addition to this remarkable sensitivity, our nanobiorecognition platform has the advantage of superior stability due to the few layered graphene oxide laminates. It also exhibits exceptional biomolecule binding and higher reusability, sustainability, and ease of fabrication in a soft mechanism. Real samples of HIV positive and negative patients were successfully tested to confirm the virus by the developed platform. To the best of our knowledge, this is the first time prosperous pervious remembrance surface has been employed in a nanobiosensing application. In light of the recent great trend of using graphene-based nanopore surfaces created by sophisticated ion-beam methods in sensing and sequencing, this hybrid-surface nanolayer fabricated by the simple vacuum filtration of a few layered graphene oxide laminates may serve as a good alternative in terms of ease of fabrication without expensive instrumental prerequisites.
Collapse
Affiliation(s)
- Anuj Nehra
- Bio-Nanotechnology and Nanobiosensor Research Laboratory, Biophysics Unit, CBSH, G.B. Pant University of Agriculture & Technology , U.S. Nagar, Pantnagar, 263145 Uttarakhand, India
- Department of Molecular Biology, Biotechnology and Bioinformatics, Chaudhary Charan Singh Haryana Agriculture University , Hisar, 125004 Haryana, India
| | | | | | | | - Krishna Pal Singh
- Bio-Nanotechnology and Nanobiosensor Research Laboratory, Biophysics Unit, CBSH, G.B. Pant University of Agriculture & Technology , U.S. Nagar, Pantnagar, 263145 Uttarakhand, India
- Department of Molecular Biology, Biotechnology and Bioinformatics, Chaudhary Charan Singh Haryana Agriculture University , Hisar, 125004 Haryana, India
| |
Collapse
|