1
|
Fujita M, Goto M, Tanaka M, Yoshida W. Detection of CpG methylation level using methyl-CpG-binding domain-fused fluorescent protein. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2023; 15:2294-2299. [PMID: 37010025 DOI: 10.1039/d3ay00227f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Methylation of cytosine to 5-methylcytosine on CpG dinucleotides is the most frequently studied epigenetic modification involved in the regulation of gene expression. In normal tissues, tissue-specific CpG methylation patterns are established during development. In contrast, alterations in methylation patterns have been observed in abnormal cells, such as cancer cells. Cancer type-specific CpG methylation patterns have been identified and used as biomarkers for cancer diagnosis. In this study, we developed a hybridization-based CpG methylation level sensing system using a methyl-CpG-binding domain (MBD)-fused fluorescent protein. In this system, the target DNA is captured by a complementary methylated probe DNA. When the target DNA is methylated, a symmetrically methylated CpG is formed in the double-stranded DNA. MBD specifically recognizes symmetrical methyl-CpG on double-stranded DNA; therefore, the methylation level is quantified by measuring the fluorescence intensity of the bound MBD-fused fluorescent protein. We prepared MBD-fused AcGFP1 and quantified the CpG methylation levels of the target DNA against SEPT9, BRCA1, and long interspersed nuclear element-1 (LINE-1) using MBD-AcGFP1. This detection principle can be applied to the simultaneous and genome-wide modified base detection systems using microarrays coupled with modified base binding proteins fused to fluorescent proteins.
Collapse
Affiliation(s)
- Marika Fujita
- Graduate School of Bionics, Tokyo University of Technology, 1404-1 Katakuramachi, Hachioji, Tokyo, 192-0982, Japan.
| | - Masanori Goto
- Graduate School of Bionics, Tokyo University of Technology, 1404-1 Katakuramachi, Hachioji, Tokyo, 192-0982, Japan.
| | - Masayoshi Tanaka
- Department of Chemical Science and Engineering, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa, 226-8503, Japan.
| | - Wataru Yoshida
- Graduate School of Bionics, Tokyo University of Technology, 1404-1 Katakuramachi, Hachioji, Tokyo, 192-0982, Japan.
- School of Bioscience and Biotechnology, Tokyo University of Technology, 1404-1 Katakuramachi, Hachioji, Tokyo, 192-0982, Japan
| |
Collapse
|
2
|
Goto A, Yoshida W. Hybridization-based CpG methylation level detection using methyl-CpG-binding domain-fused luciferase. Anal Bioanal Chem 2023; 415:2329-2337. [PMID: 36961575 DOI: 10.1007/s00216-023-04657-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 03/02/2023] [Accepted: 03/16/2023] [Indexed: 03/25/2023]
Abstract
Hypermethylation of tumor-suppressor genes and global hypomethylation, which is related to methylation level at the retroelement, have been recognized as features of the cancer genome. In this study, we developed a hybridization-based CpG methylation level detection method using methyl-CpG-binding domain-fused firefly luciferase (MBD-Fluc). In this method, methylated probe oligonucleotides were used to capture target oligonucleotides. Fully methylated and hemimethylated double-stranded DNA (dsDNA) was formed by hybridization of the methylated captured oligonucleotides with methylated or unmethylated target oligonucleotides, respectively. MBD-Fluc specifically binds to fully methylated dsDNA but not to hemimethylated dsDNA; therefore, methylated target oligonucleotides can be detected by measuring the luciferase activity of the bound MBD-Fluc. Using the corresponding methylated probe oligonucleotides, the CpG methylation levels of SEPT9, BRCA1, and long interspersed nuclear element-1 (LINE-1) oligonucleotides were quantified. Moreover, we demonstrated that the emission detection signal was not affected by the methylation state of the overhang region of the target oligonucleotide, which was not hybridized to the probe oligonucleotide, indicating that methylated CpG of the target region could be accurately detected. Unmethylated-CpG-binding domain-fused luciferases and 5-hydroxymethyl-CpG-binding domain-fused luciferases have been constructed, suggesting that other modified bases can be detected by the same platform.
Collapse
Affiliation(s)
- Ayano Goto
- Graduate School of Bionics, Tokyo University of Technology, 1404-1 Katakuramachi, Hachioji, Tokyo, 192-0982, Japan
| | - Wataru Yoshida
- Graduate School of Bionics, Tokyo University of Technology, 1404-1 Katakuramachi, Hachioji, Tokyo, 192-0982, Japan.
- School of Bioscience and Biotechnology, Tokyo University of Technology, 1404-1 Katakuramachi, Hachioji, Tokyo, 192-0982, Japan.
| |
Collapse
|
3
|
Miyata T, Shimamura H, Asano R, Yoshida W. Universal Design of Luciferase Fusion Proteins for Epigenetic Modifications Detection Based on Bioluminescence Resonance Energy Transfer. Anal Chem 2023; 95:3799-3805. [PMID: 36748925 DOI: 10.1021/acs.analchem.2c05066] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Global hypomethylation and promoter hypermethylation of tumor-suppressor genes are the hallmarks of cancer. We previously reported a global DNA methylation level sensing system based on dual-color bioluminescence resonance energy transfer (BRET) using methyl-CpG binding domain (MBD)-fused firefly luciferase (Fluc) and unmethyl-CpG binding domain (CXXC)-fused Oplophorus luciferase (Oluc). Moreover, BRET-based hydroxymethylation and hemi-methylation level sensing systems have been developed using hydroxymethyl-CpG and hemi-methyl-CpG binding domain-fused Fluc. These studies suggest that target epigenetic modifications can be simultaneously quantified using target-modification-binding protein-fused luciferases. In this study, we focused on the SnoopTag (SnT)/SnoopCatcher (SnC) protein ligation system to establish a universal design for fusion protein construction for any combination. SnT spontaneously forms an isopeptide bond with SnC; therefore, any kind of fusion protein would be constructed by the SnT/SnC system. To establish the proof of concept, MBD-SnT, CXXC-SnT, and SnC-Oluc were prepared and ligated MBD-SnT or CXXC-SnT to SnC-Oluc. The ligation products of MBD-SnT-SnC-Oluc and CXXC-SnT-SnC-Oluc showed luciferase activity and specific binding activity to methyl-CpG and unmethyl-CpG, respectively. The BRET signal using MBD-SnT-SnC-Oluc and CXXC-SnT-SnC-Oluc increased the amount of methyl-CpG and unmethyl-CpG in genomic DNA, respectively. There was a significant negative correlation between the BRET signals; therefore, the global DNA methylation level was quantified using the BRET signals (R2 = 0.99, and R.S.D. <3.5%). These results indicate that the SnT/SnC protein ligation system can be utilized to construct target modification-binding protein-fused luciferases in any combination that detects target modifications in genomic DNA based on BRET.
Collapse
Affiliation(s)
- Takamichi Miyata
- Graduate School of Bionics, Tokyo University of Technology, 1404-1 Katakura-machi, Hachioji, Tokyo192-0982, Japan
| | - Hazuki Shimamura
- Graduate School of Bionics, Tokyo University of Technology, 1404-1 Katakura-machi, Hachioji, Tokyo192-0982, Japan
| | - Ryutaro Asano
- Department of Biotechnology and Life Science, Graduate School of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo184-8588, Japan
| | - Wataru Yoshida
- Graduate School of Bionics, Tokyo University of Technology, 1404-1 Katakura-machi, Hachioji, Tokyo192-0982, Japan.,School of Bioscience and Biotechnology, Tokyo University of Technology, 1404-1 Katakura-machi, Hachioji, Tokyo192-0982, Japan
| |
Collapse
|
4
|
Taka N, Asami S, Sakamoto M, Matsui T, Yoshida W. Quantification of Global DNA Hydroxymethylation Level Using UHRF2 SRA-Luciferase Based on Bioluminescence Resonance Energy Transfer. Anal Chem 2022; 94:8618-8624. [DOI: 10.1021/acs.analchem.1c05619] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Natsumi Taka
- Graduate School of Bionics, Tokyo University of Technology, 1404-1 Katakura-machi, Hachioji, Tokyo 192-0982, Japan
| | - Shoya Asami
- School of Bioscience and Biotechnology, Tokyo University of Technology, 1404-1 Katakura-machi, Hachioji, Tokyo 192-0982, Japan
| | - Mikiya Sakamoto
- School of Bioscience and Biotechnology, Tokyo University of Technology, 1404-1 Katakura-machi, Hachioji, Tokyo 192-0982, Japan
| | - Toru Matsui
- Graduate School of Bionics, Tokyo University of Technology, 1404-1 Katakura-machi, Hachioji, Tokyo 192-0982, Japan
- School of Bioscience and Biotechnology, Tokyo University of Technology, 1404-1 Katakura-machi, Hachioji, Tokyo 192-0982, Japan
| | - Wataru Yoshida
- Graduate School of Bionics, Tokyo University of Technology, 1404-1 Katakura-machi, Hachioji, Tokyo 192-0982, Japan
- School of Bioscience and Biotechnology, Tokyo University of Technology, 1404-1 Katakura-machi, Hachioji, Tokyo 192-0982, Japan
| |
Collapse
|
5
|
Taka N, Yoshida W. Quantification of global DNA methylation level using 5-methylcytosine dioxygenase. Anal Bioanal Chem 2020; 412:5299-5305. [PMID: 32504107 DOI: 10.1007/s00216-020-02745-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 05/22/2020] [Accepted: 05/28/2020] [Indexed: 12/19/2022]
Abstract
DNA methylation is one of the best studied epigenetic modifications. Alteration of the global DNA methylation level occurs in abnormal cells, such as those associated with cancers and Alzheimer's disease. Several assays are used to determine the global DNA methylation level, including the bisulfite-based assay, high-performance liquid chromatography (HPLC)-based assay, enzyme-linked immunosorbent assay (ELISA), and methyl acceptance assay. However, these assays require several cumbersome steps to detect methylation levels. We developed a simpler enzymatic assay for the quantification of the global DNA methylation level using the Ten-eleven translocation (TET) protein. TET proteins mediate DNA demethylation through the oxidation of 5-methylcytosine (5mC) in CpG in mammalian cells. Succinate is produced during this oxidation reaction, and the amount of succinate produced correlates to the global DNA methylation level. The catalytic domain of the TET2 was expressed in Escherichia coli (E. coli), and the purified TET2 catalytic domain was reacted with human genomic DNA. The reaction solution was used for enzymatic succinate quantification with no purification step. The results showed that the succinate produced through TET-mediated oxidation increased with increasing global DNA methylation levels in human genomic DNA, which was determined using the bisulfite method. These results show that the global DNA methylation level is quantifiable by measuring the amount of succinate produced by the TET2-mediated 5mC oxidation reaction. Graphical abstract.
Collapse
Affiliation(s)
- Natsumi Taka
- Graduate School of Bionics, Tokyo University of Technology, 1404-1 Katakuramachi, Hachioji, Tokyo, 192-0982, Japan
| | - Wataru Yoshida
- Graduate School of Bionics, Tokyo University of Technology, 1404-1 Katakuramachi, Hachioji, Tokyo, 192-0982, Japan. .,School of Bioscience and Biotechnology, Tokyo University of Technology, 1404-1 Katakuramachi, Hachioji, Tokyo, 192-0982, Japan.
| |
Collapse
|
6
|
Baba Y, Yamamoto K, Yoshida W. Multicolor bioluminescence resonance energy transfer assay for quantification of global DNA methylation. Anal Bioanal Chem 2019; 411:4765-4773. [DOI: 10.1007/s00216-019-01583-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 12/17/2018] [Accepted: 01/02/2019] [Indexed: 12/13/2022]
|