1
|
Jiang Y, Cao S, Zhou B, Cao Q, Xu M, Sun T, Zhao X, Zhou Z, Wang Y. Hemocytes in blue mussel Mytilus edulis adopt different energy supply modes to cope with different BDE-47 exposures. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 885:163766. [PMID: 37146804 DOI: 10.1016/j.scitotenv.2023.163766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 04/04/2023] [Accepted: 04/23/2023] [Indexed: 05/07/2023]
Abstract
The energetic response of blue mussel Mytilus edulis when coping with tetrabromodiphenyl ether (BDE-47) exposure was evaluated from the perspective of alterations in energy supply mode, and the possible regulating mechanism was discussed based on a 21-day bioassay. The results showed that the energy supply mode changed with concentration: 0.1 μg/L BDE-47 decreased the activity of isocitrate dehydrogenase (IDH), succinate dehydrogenase (SDH), malate dehydrogenase and oxidative phosphorylation, suggesting inhibition of the tricarboxylic (TCA) acid cycle and aerobic respiration. The coincident increase in phosphofructokinase and the decrease in lactate dehydrogenase (LDH) indicated that glycolysis and anaerobic respiration were increased. When exposed to 1.0 μg/L BDE-47, M. edulis mainly utilized aerobic respiration, but lowered glucose metabolism as indicated by the decrease in glutamine and l-leucine was suggested to be involved in this process, which was differed from that in the control. The reoccurrence of IDH and SDH inhibition as well as LDH elevation indicated attenuation of aerobic and anaerobic respiration when the concentration increased to 10 μg/L, but severe protein damage was evidenced based on the elevation of amino acids and glutamine. Under the 0.1 μg/L BDE-47, activation of the AMPK-Hif-1a signaling pathway promoted the expression of glut1, which was the potential mechanism for the improvement of anaerobic respiration, and further activated glycolysis and anaerobic respiration. This study shows that the energy supply mode experienced a conversion from aerobic respiration under normal conditions to anaerobic mode in the low BDE-47 treatment and back to aerobic respiration with increasing BDE-47 concentrations, which may represent a potential mechanism for mussel physiological responses when faced with different levels of BDE-47 stress.
Collapse
Affiliation(s)
- Yongshun Jiang
- School of Marine Science and Engineering, Qingdao Agricultural University, No. 17 Wenhai Road, Qingdao, China; Laboratory for Marine Ecology and Environmental Science, Laoshan Laboratory, No. 1 Wenhai Road, Qingdao, China.
| | - Sai Cao
- Department of Marine Ecology, College of Marine Life Sciences, Ocean University of China, No. 5 Yushan Road, Qingdao, China; Laboratory for Marine Ecology and Environmental Science, Laoshan Laboratory, No. 1 Wenhai Road, Qingdao, China.
| | - Bin Zhou
- Department of Marine Ecology, College of Marine Life Sciences, Ocean University of China, No. 5 Yushan Road, Qingdao, China; Laboratory for Marine Ecology and Environmental Science, Laoshan Laboratory, No. 1 Wenhai Road, Qingdao, China.
| | - Qiyue Cao
- Department of Marine Ecology, College of Marine Life Sciences, Ocean University of China, No. 5 Yushan Road, Qingdao, China
| | - Mengxue Xu
- Department of Marine Ecology, College of Marine Life Sciences, Ocean University of China, No. 5 Yushan Road, Qingdao, China; Marine Science Research Institute of Shandong Province, Qingdao 266104, China
| | - Tianli Sun
- National Marine Hazard Mitigation Service, No. 6, Qiwangfen North Road, Beijing, China.
| | - Xinyu Zhao
- Laboratory for Marine Ecology and Environmental Science, Laoshan Laboratory, No. 1 Wenhai Road, Qingdao, China
| | - Zhongyuan Zhou
- Department of Marine Ecology, College of Marine Life Sciences, Ocean University of China, No. 5 Yushan Road, Qingdao, China; Laboratory for Marine Ecology and Environmental Science, Laoshan Laboratory, No. 1 Wenhai Road, Qingdao, China.
| | - You Wang
- Department of Marine Ecology, College of Marine Life Sciences, Ocean University of China, No. 5 Yushan Road, Qingdao, China; Laboratory for Marine Ecology and Environmental Science, Laoshan Laboratory, No. 1 Wenhai Road, Qingdao, China.
| |
Collapse
|
2
|
Analysis of brominated flame retardants in the aquatic environment: a review. Arh Hig Rada Toksikol 2021; 72:254-267. [PMID: 34985845 PMCID: PMC8785114 DOI: 10.2478/aiht-2021-72-3576] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 11/01/2021] [Indexed: 11/20/2022] Open
Abstract
The most common and consequently analysed brominated flame retardants (BFRs) are polybrominated biphenyls (PBBs), polybrominated diphenyl ethers (PBDEs), tetrabromobisphenol A (TBBPA), tetrabromobisphenol S (TBBPS), and hexabromocyclododecane (HBCD). As these persistent organic pollutants are widespread in the environment and have a number of harmful effects on human health, the production and use of most has been banned for several years. The aquatic environment is polluted by these compounds through their deposition from the atmosphere, sewage sludge, wastewater treatment plants, and landfills, and higher levels are found in areas with developed industry and agriculture and near landfills. Each compound also seems to show preference for specific compartments of the aquatic environment, i.e. water, sediment, or aquatic organisms, according to their physicochemical properties. The aim of this review was to take a closer look at the analysis of BFRs, as without reliable analysis we would not be able to determine their levels and distribution across the aquatic compartments and assess human exposure and health risks. Particularly worrying are the health risks associated with PBDEs in fish, whose levels generally exceed the permitted values.
Collapse
|
3
|
Jiang Y, Wang Y, Sun T, Lu K, Zhao X, Zhang Z, Lv M, Liu C, Zhou B. Depicting an energetic chain involved in physiological responses of blue mussel Mytilus edulis coping with BDE-47 exposure. CHEMOSPHERE 2021; 269:128736. [PMID: 33131734 DOI: 10.1016/j.chemosphere.2020.128736] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 10/20/2020] [Accepted: 10/22/2020] [Indexed: 06/11/2023]
Abstract
Depiction on an energetic chain in terms of assimilation, allocation and consumption as well as the linkage between energetic alteration and physiological process was performed in blue mussel Mytilus edulis coping with tetrabromodiphenyl ether (BDE-47) based on a 21-day bioassay to shed light on the possible mechanism from energetic perspective. The filtration was hindered along with BDE-47 concentration increment and the influence of digestion was suggested according to the combination of the digestive enzymatic activities' alteration and digestive gland tissue impairment, both of which decided the energy availability reduction. Energy consumption indicated by the electron transport system activity was firstly inhibited while was greatly increased with BDE-47 increment, and the cellular energy allocation and adenylate pool were decreased simultaneously. An energetic chain was thus depicted: it tended to reduce energy absorption, elevate the energy consumption and decrease the energy metabolism with BDE-47 exposure, and M. edulis adopted the energetic strategy with variation regarding to the stressing level, suggesting as the preference switched from protein utilization to lipid utilization with the concentration increment. A consistence was observed in index of growth and survival with the change of energy allocation, inferring the energetic involvement in sustaining the viability of the mussel.
Collapse
Affiliation(s)
- Yongshun Jiang
- Department of Marine Ecology, College of Marine Life Sciences, Ocean University of China, No.5 Yushan Road, Qingdao, China; Marine Science and Technology College, Qingdao Agricultural University, No.17 Wenhai Road, Qingdao, China.
| | - You Wang
- Department of Marine Ecology, College of Marine Life Sciences, Ocean University of China, No.5 Yushan Road, Qingdao, China; Laboratory for Marine Ecology and Environmental Science, Pilot Qingdao National Laboratory for Marine Science and Technology, No 1. Wenhai Road, Qingdao, China
| | - Tianli Sun
- National Marine Hazard Mitigation Service, No. 6, Qiwangfen North Road, Beijing, China
| | - Keyu Lu
- Department of Marine Ecology, College of Marine Life Sciences, Ocean University of China, No.5 Yushan Road, Qingdao, China; Laboratory for Marine Ecology and Environmental Science, Pilot Qingdao National Laboratory for Marine Science and Technology, No 1. Wenhai Road, Qingdao, China.
| | - Xinyu Zhao
- Department of Marine Ecology, College of Marine Life Sciences, Ocean University of China, No.5 Yushan Road, Qingdao, China
| | - Zhipeng Zhang
- Tianjin Research Institute for Water Transport Engineering, M. O. T., No. 2618, Xingang Erhao Road, Tianjin, China
| | - Mengchen Lv
- Department of Marine Ecology, College of Marine Life Sciences, Ocean University of China, No.5 Yushan Road, Qingdao, China
| | - Chunchen Liu
- Department of Marine Ecology, College of Marine Life Sciences, Ocean University of China, No.5 Yushan Road, Qingdao, China; College of Life Sciences, Qufu Normal University, Qufu, Shandong, China.
| | - Bin Zhou
- Department of Marine Ecology, College of Marine Life Sciences, Ocean University of China, No.5 Yushan Road, Qingdao, China; Laboratory for Marine Ecology and Environmental Science, Pilot Qingdao National Laboratory for Marine Science and Technology, No 1. Wenhai Road, Qingdao, China.
| |
Collapse
|
4
|
Zhao Y, Tang X, Lv M, Liu Q, Li J, Zhang B, Li L, Zhang X, Zhao Y. The molecular response mechanisms of a diatom Thalassiosira pseudonana to the toxicity of BDE-47 based on whole transcriptome analysis. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2020; 229:105669. [PMID: 33142158 DOI: 10.1016/j.aquatox.2020.105669] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 10/16/2020] [Accepted: 10/21/2020] [Indexed: 06/11/2023]
Abstract
Polybrominated diphenyl ethers (PBDEs) are ubiquitously distributed persistent organic pollutants (POPs) in marine environments. Phytoplankton are the entrance of PBDEs entering to biotic environments from abiotic environments, while the responding mechanisms of phytoplankton to PBDEs have not been full established. Therefore, we chose the model diatom Thalassiosira pseudonana in this study, by integrating whole transcriptome analysis with physiological-biochemical data, to reveal the molecular responding mechanisms of T. pseudonana to the toxicity of BDE-47. Our results indicated the changes of genes expressions correlated to the physiological-biochemical changes, and there were multiple molecular mechanisms of T. pseudonana responding to the toxicity of BDE-47: Gene expressions evidence explained the suppression of light reaction and proved the occurrence of cellular oxidative stress; In the meanwhile, up-regulations of genes in pathways involving carbon metabolisms happened, including the Calvin cycle, glycolysis, TCA cycle, fatty acid synthesis, and triacylglycerol synthesis; Lastly, DNA damage was found and three outcome including DNA repair, cell cycle arrest and programmed cell death (PCD) happened, which could finally inhibit the cell division and population growth of T. pseudonana. This study presented the most complete molecular responding mechanisms of phytoplankton cells to PBDEs, and provided valuable information of various PBDEs-sensitive genes with multiple functions for further research involving organic pollutants and phytoplankton.
Collapse
Affiliation(s)
- Yirong Zhao
- College of Marine Life Sciences, Department of Marine Ecology, Ocean University of China, Qingdao, 266003, China
| | - Xuexi Tang
- College of Marine Life Sciences, Department of Marine Ecology, Ocean University of China, Qingdao, 266003, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China.
| | - Mengchen Lv
- College of Marine Life Sciences, Department of Marine Ecology, Ocean University of China, Qingdao, 266003, China
| | - Qian Liu
- College of Marine Life Sciences, Department of Marine Ecology, Ocean University of China, Qingdao, 266003, China
| | - Jun Li
- College of Marine Life Sciences, Department of Marine Ecology, Ocean University of China, Qingdao, 266003, China
| | - Bihan Zhang
- College of Marine Life Sciences, Department of Marine Ecology, Ocean University of China, Qingdao, 266003, China
| | - Luying Li
- College of Marine Life Sciences, Department of Marine Ecology, Ocean University of China, Qingdao, 266003, China
| | - Xinxin Zhang
- College of Marine Life Sciences, Department of Marine Ecology, Ocean University of China, Qingdao, 266003, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China
| | - Yan Zhao
- College of Marine Life Sciences, Department of Marine Ecology, Ocean University of China, Qingdao, 266003, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China.
| |
Collapse
|
5
|
Zhang Z, Tong X, Xing Y, Ma J, Jiang R, Sun Y, Li J, Li X, Wu T, Xie W. Polybrominated diphenyl ethers, decabromodiphenyl ethane and dechlorane plus in aquatic products from the Yellow River Delta, China. MARINE POLLUTION BULLETIN 2020; 161:111733. [PMID: 33068787 DOI: 10.1016/j.marpolbul.2020.111733] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 09/30/2020] [Accepted: 09/30/2020] [Indexed: 06/11/2023]
Abstract
Aquatic biota including fish, shrimp and bivalves were collected from the Yellow River Delta (YRD), China to investigate the levels, composition profile and dietary exposure of polybrominated diphenyl ethers (PBDEs), decabromodiphenyl ethane (DBDPE) and dechlorane plus (DP). The concentrations of PBDEs, DBDPE and DP in the organisms ranged from 5.3 to 149, not detected (nd) - 49, and 0.5-29 ng/g lipid weight, respectively. Higher levels of PBDEs and DP were found in mullet (Liza haematocheila).PBDEs were the major pollutants and BDE 209 was the predominant congener of PBDEs suggesting the great production and application of deca-BDE in YRD. The average fanti values for different species were similar to or a little lower than that of the commercial DP, suggesting syn-DP might be selectively accumulated by the organisms. The estimated daily intake values of HFRs suggested consuming fish was the main pathway for the exposure of halogenated flame retardants.
Collapse
Affiliation(s)
- Zaiwang Zhang
- Shandong Engineering and Technology Research Center for Ecological Fragile Belt of Yellow River Delta, School of Biological & Environmental Engineering, Binzhou University, Binzhou 256603, China
| | - Xue Tong
- Shandong Engineering and Technology Research Center for Ecological Fragile Belt of Yellow River Delta, School of Biological & Environmental Engineering, Binzhou University, Binzhou 256603, China
| | - Yan Xing
- Shandong Engineering and Technology Research Center for Ecological Fragile Belt of Yellow River Delta, School of Biological & Environmental Engineering, Binzhou University, Binzhou 256603, China
| | - Jinyan Ma
- Shandong Engineering and Technology Research Center for Ecological Fragile Belt of Yellow River Delta, School of Biological & Environmental Engineering, Binzhou University, Binzhou 256603, China
| | - Rongjuan Jiang
- Shandong Engineering and Technology Research Center for Ecological Fragile Belt of Yellow River Delta, School of Biological & Environmental Engineering, Binzhou University, Binzhou 256603, China
| | - Yuxin Sun
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; Innovation Academy of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, Guangzhou 510301, China
| | - Jialiang Li
- Shandong Engineering and Technology Research Center for Ecological Fragile Belt of Yellow River Delta, School of Biological & Environmental Engineering, Binzhou University, Binzhou 256603, China
| | - Xueping Li
- Shandong Engineering and Technology Research Center for Ecological Fragile Belt of Yellow River Delta, School of Biological & Environmental Engineering, Binzhou University, Binzhou 256603, China
| | - Tao Wu
- Shandong Engineering and Technology Research Center for Ecological Fragile Belt of Yellow River Delta, School of Biological & Environmental Engineering, Binzhou University, Binzhou 256603, China
| | - Wenjun Xie
- Shandong Engineering and Technology Research Center for Ecological Fragile Belt of Yellow River Delta, School of Biological & Environmental Engineering, Binzhou University, Binzhou 256603, China.
| |
Collapse
|