Bahadoran S, Teymouri Y, Hassanpour H, Mohebbi A, Akbari MR. Effect of sage (Salvia officinalis L.) extract in antioxidant status and intestinal morphology of pulmonary hypertensive chickens.
Vet Med Sci 2023;
9:2176-2184. [PMID:
35405032 PMCID:
PMC10508482 DOI:
10.1002/vms3.804]
[Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/20/2023] Open
Abstract
OBJECTIVES
The effects of dietary sage on the growth performance, antioxidant status, intestinal mucosa morphology, and pulmonary hypertensive response were investigated in broiler chickens with pulmonary hypertension.
METHODS
Chicks (Ross 308) were reared under cold stress for 35 days and treated with 0.05% vitamin C (positive control) and 0 (control), 0.1 or 0.2% sage extracts, then performance, oxidant and antioxidant status, and intestinal morphology were evaluated.
RESULTS
The index of pulmonary hypertension (RV:TV) was decreased, and weight gain (days 22-35) was increased in all treatments (except for sage 0.1%) compared with control (P < 0.05). Lipid peroxidation was decreased, whereas the activity of antioxidant enzymes (GPX, CAT, and SOD) was increased in the sage 0.2% group compared with control (P < 0.05). In the lung, SOD, CAT, and GPX transcripts were decreased in the sage 0.2% group compared with control (P < 0.05). In the right ventricle of the heart, SOD and CAT transcripts were increased in the sage 0.2% group compared with other groups of chickens, whereas GPX transcript was decreased (P < 0.05). The jejunal villus length in the chickens fed sage was significantly lower than in control (P < 0.05). The ileal villus width, villus surface area, and lamina proporia thickness in the chickens fed sage (0.2%) were increased compared with control (P < 0.05).
CONCLUSIONS
Dietary supplementation of sage (0.2%) could modulate pulmonary hypertensive response, improve antioxidant status (enzymatic activity), intestinal morphometry, and absorptive surface in the broiler chickens.
Collapse