1
|
Wagman JB, Duffrin T, Pagano CC, Day BM. Gone Fishin': Perceiving the length of one object that is non-rigidly attached to a wielded object. Perception 2023:3010066231175599. [PMID: 37229751 DOI: 10.1177/03010066231175599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
We performed four experiments to investigate whether people can perceive the length of a target object (a "fish") that is attached to a freely wielded object (the "fishing pole") by a length of string, and if so, whether this ability is grounded in the sensitivity of the touch system to invariant mechanical parameters that describe the forces and torques required to move the target object. In particular, we investigated sensitivity to mass, static moment, and rotational inertia-the forces required to keep an object from falling due to gravity, the torque required to keep an object from rotating due to gravity, and the torques required to actively rotate an object in different directions, respectively. We manipulated the length of the target object (Experiment 1), the mass of the target object (Experiment 2), and the mass distribution of the target object (Experiments 3 and 4). Overall, the results of the four experiments showed that participants can perform this task. Moreover, when the task is configured such that it more closely approximates a wielding at a distance task, the ability to do so is grounded in sensitivity to such forces and torques.
Collapse
|
2
|
Takahashi C, Azad M, Rajasekaran V, Babič J, Mistry M. Human Stiffness Perception and Learning in Interacting With Compliant Environments. Front Neurosci 2022; 16:841901. [PMID: 35757537 PMCID: PMC9215212 DOI: 10.3389/fnins.2022.841901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 04/19/2022] [Indexed: 11/19/2022] Open
Abstract
Humans are capable of adjusting their posture stably when interacting with a compliant surface. Their whole-body motion can be modulated in order to respond to the environment and reach to a stable state. In perceiving an uncertain external force, humans repetitively push it and learn how to produce a stable state. Research in human motor control has led to the hypothesis that the central nervous system integrates an internal model with sensory feedback in order to generate accurate movements. However, how the brain understands external force through exploration movements, and how humans accurately estimate a force from their experience of the force, is yet to be fully understood. To address these questions, we tested human behaviour in different stiffness profiles even though the force at the goal was the same. We generated one linear and two non-linear stiffness profiles, which required the same force at the target but different forces half-way to the target; we then measured the differences in the learning performance at the target and the differences in perception at the half-way point. Human subjects learned the stiffness profile through repetitive movements in reaching the target, and then indicated their estimation of half of the target value (position and force separately). This experimental design enabled us to probe how perception of the force experienced in different profiles affects the participants' estimations. We observed that the early parts of the learning curves were different for the three stiffness profiles. Secondly, the position estimates were accurate independent of the stiffness profile. The estimation in position was most likely influenced by the external environment rather than the profile itself. Interestingly, although visual information about the target had a large influence, we observed significant differences in accuracy of force estimation according to the stiffness profile.
Collapse
Affiliation(s)
- Chie Takahashi
- School of Computer Science, University of Birmingham, Birmingham, United Kingdom
- Edinburgh Centre for Robotics, School of Informatics, University of Edinburgh, Edinburgh, United Kingdom
- School of Metallurgy and Materials, University of Birmingham, Birmingham, United Kingdom
- Department of Psychology, University of Cambridge, Cambridge, United Kingdom
| | - Morteza Azad
- School of Computer Science, University of Birmingham, Birmingham, United Kingdom
| | - Vijaykumar Rajasekaran
- School of Computer Science, University of Birmingham, Birmingham, United Kingdom
- School of Metallurgy and Materials, University of Birmingham, Birmingham, United Kingdom
| | - Jan Babič
- Laboratory for Neuromechanics and Biorobotics, Department for Automation, Biocybernetics and Robotics, Jožef Stefan Institute, Ljubljana, Slovenia
- Faculty of Electrical Engineering, University of Ljubljana, Ljubljana, Slovenia
| | - Michael Mistry
- School of Computer Science, University of Birmingham, Birmingham, United Kingdom
- Edinburgh Centre for Robotics, School of Informatics, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
3
|
Mangalam M, Fragaszy DM, Wagman JB, Day BM, Kelty-Stephen DG, Bongers RM, Stout DW, Osiurak F. On the psychological origins of tool use. Neurosci Biobehav Rev 2022; 134:104521. [PMID: 34998834 DOI: 10.1016/j.neubiorev.2022.104521] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 12/01/2021] [Accepted: 01/01/2022] [Indexed: 01/13/2023]
Abstract
The ubiquity of tool use in human life has generated multiple lines of scientific and philosophical investigation to understand the development and expression of humans' engagement with tools and its relation to other dimensions of human experience. However, existing literature on tool use faces several epistemological challenges in which the same set of questions generate many different answers. At least four critical questions can be identified, which are intimately intertwined-(1) What constitutes tool use? (2) What psychological processes underlie tool use in humans and nonhuman animals? (3) Which of these psychological processes are exclusive to tool use? (4) Which psychological processes involved in tool use are exclusive to Homo sapiens? To help advance a multidisciplinary scientific understanding of tool use, six author groups representing different academic disciplines (e.g., anthropology, psychology, neuroscience) and different theoretical perspectives respond to each of these questions, and then point to the direction of future work on tool use. We find that while there are marked differences among the responses of the respective author groups to each question, there is a surprising degree of agreement about many essential concepts and questions. We believe that this interdisciplinary and intertheoretical discussion will foster a more comprehensive understanding of tool use than any one of these perspectives (or any one of these author groups) would (or could) on their own.
Collapse
Affiliation(s)
- Madhur Mangalam
- Department of Physical Therapy, Movement and Rehabilitation Science, Northeastern University, Boston, Massachusetts 02115, USA.
| | | | - Jeffrey B Wagman
- Department of Psychology, Illinois State University, Normal, IL 61761, USA
| | - Brian M Day
- Department of Psychology, Butler University, Indianapolis, IN 46208, USA
| | | | - Raoul M Bongers
- Department of Human Movement Sciences, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, Netherlands
| | - Dietrich W Stout
- Department of Anthropology, Emory University, Atlanta, GA 30322, USA
| | - François Osiurak
- Laboratoire d'Etude des Mécanismes Cognitifs, Université de Lyon, Lyon 69361, France; Institut Universitaire de France, Paris 75231, France
| |
Collapse
|
4
|
Olivieri E, Barresi G, Caldwell DG, Mattos LS, Olivieri E, Barresi G, Caldwell DG, Mattos LS, Olivieri E, Caldwell DG, Barresi G, Mattos LS. Haptic Feedback for Control and Active Constraints in Contactless Laser Surgery: Concept, Implementation, and Evaluation. IEEE TRANSACTIONS ON HAPTICS 2018; 11:241-254. [PMID: 29911981 DOI: 10.1109/toh.2017.2786243] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Haptics has proven to be highly beneficial in surgical robotics, bringing enhanced safety and precision by complementing the surgeon's visual channel. However, most of the research body in this context is dedicated to applications involving traditional "cold steel" surgical instruments. This paper proposes to bring the benefits of haptics to contactless surgeries, and presents a novel method to achieve this. The specific case of robot-assisted laser microsurgery is investigated. Here, a fictitious force feedback is created through stereoscopic visualization and 3D reconstruction, allowing the surgeon to sense the surgical area haptically while controlling a non-contact surgical laser. This is shown to significantly improve system usability and the accuracy of laser incisions, especially in applications involving several passes of the laser over the same incision line. Validation of the system is performed through two series of experiments involving both naive users and expert surgeons. The obtained results demonstrate that haptics can indeed be introduced in contactless laser surgery, allowing the exploitation of active constraints and guidance techniques that significantly enhance laser control accuracy both in static and dynamic environments. Furthermore, the proposed haptic technology shows good acceptance and high usability, indicating it has great potential to positively impact real surgeries.
Collapse
|