1
|
Wang Q, Menzi Sydney B, Guo Y, Liu Y, Ren Y, Chen Y, Xu Y, Gao J, Liu Z. Preparation of nanofiber membrane based on recycled keratin from chicken eggshell and its preliminary application in membrane distillation. ENVIRONMENTAL TECHNOLOGY 2025:1-11. [PMID: 40186859 DOI: 10.1080/09593330.2025.2485355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 03/22/2025] [Indexed: 04/07/2025]
Abstract
The inner eggshell membrane (ESM) sanctions the unfettered conveyance of air across the membrane, ensuring the air provision for embryonic development. As such, the electrostatic spinning technique was availed to fabricate large-scale and flat-sheet 'artificial' eggshell membranes by extracting keratin from waste egg membranes. Keratin within eggshell membranes was initially extracted via the chemical reduction method. Subsequently, diverse electrospinning conditions encompassing the type and concentration of additives as well as the electrospinning voltage were utilised to explore their impact on membrane morphology, wetting, and mechanical attributes. Experimental outcomes demonstrated that the ESM-based nanofiber membrane with salubrious morphology, anti-wetting, and mechanical properties could be procured by adding 12 wt% PVA into the keratin solution at 10.5 kV. Eventually, DCMD experiments for the ESM-based nanofiber membrane evinced that a stable water flux (10 LMH) and salt rejection rate could be discerned throughout the 150-min operational tenure, yet its efficacy lags behind other reported membranes. In light of the lofty porosity (>70%) and meager thermal conductivity of ESM (0.04 W/m·K), ESM nanofiber was coalesced with commercial PTFE membrane to fashion a dual-layer porous composite MD membrane utilised in VMD. Experimental findings divulged that the ESM-PTFE hybrid membrane possesses a relatively elevated water flux (30.21 LMH), being commensurate with the reported PTFE-based MD membranes. Accordingly, this research can provide the theoretical underpinning for the fabrication of ESM-based nanofiber membranes by means of the electrostatic spinning approach, and is conducive to the highly efficient and highly valuable exploitation of waste eggshells.
Collapse
Affiliation(s)
- Qun Wang
- College of Chemical and Biological Engineering, Shandong University of Science and Technology, Qingdao, People's Republic of China
- Shandong Haihua Group Co., Ltd, Weifang, People's Republic of China
| | - Buthelezi Menzi Sydney
- College of Chemical and Biological Engineering, Shandong University of Science and Technology, Qingdao, People's Republic of China
| | - Yanyan Guo
- College of Chemical and Biological Engineering, Shandong University of Science and Technology, Qingdao, People's Republic of China
| | - Ying Liu
- College of Chemical and Biological Engineering, Shandong University of Science and Technology, Qingdao, People's Republic of China
| | - Yangguang Ren
- College of Chemical and Biological Engineering, Shandong University of Science and Technology, Qingdao, People's Republic of China
| | - Yuzhao Chen
- College of Chemical and Biological Engineering, Shandong University of Science and Technology, Qingdao, People's Republic of China
| | - Yuan Xu
- Qingdao Pansi Technology Co., Ltd, Qingdao, People's Republic of China
| | - Jun Gao
- College of Chemical and Biological Engineering, Shandong University of Science and Technology, Qingdao, People's Republic of China
| | - Zhaofeng Liu
- State Key Laboratory of Water Resource Protection and Utilization in Coal Mining, Beijing, People's Republic of China
| |
Collapse
|
2
|
Cuahuizo-Huitzil G, Olivares-Xometl O, Arellanes-Lozada P, Laguna Cortés JO, Arriola Morales J, Santacruz-Vázquez C, Santacruz-Vázquez V. Estimation of Digital Porosity of Electrospun Veils by Image Analysis. Polymers (Basel) 2024; 16:300. [PMID: 38276707 PMCID: PMC10820155 DOI: 10.3390/polym16020300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 01/17/2024] [Accepted: 01/19/2024] [Indexed: 01/27/2024] Open
Abstract
The present work reports on an empirical mathematical expression for predicting the digital porosity (DP) of electrospun nanofiber veils, employing emulsions of poly(vinyl alcohol) (PVOH) and olive and orange oils. The electrospun nanofibers were analyzed by scanning electron microscopy (SEM), observing orientation and digital porosity (DP) in the electrospun veils. To determine the DP of the veils, the SEM micrographs were transformed into a binary system, and then the threshold was established, and the nanofiber solid surfaces were emphasized. The relationship between the experimental results and those obtained with the empirical mathematical expression displayed a correlation coefficient (R2) of 0.97 by employing threshold II. The mathematical expression took into account experimental variables such as the nanofiber humidity and emulsion conductivity prior to electrospinning, in addition to the corresponding operation conditions. The results produced with the proposed expression showed that the prediction of the DP of the electrospun veils was feasible with the considered thresholds.
Collapse
Affiliation(s)
- Guadalupe Cuahuizo-Huitzil
- Facultad de Ingeniería Química, Benemérita Universidad Autónoma de Puebla, Av. San Claudio y 18 Sur, Puebla 72570, Mexico; (G.C.-H.); (O.O.-X.); (P.A.-L.); (J.A.M.)
| | - Octavio Olivares-Xometl
- Facultad de Ingeniería Química, Benemérita Universidad Autónoma de Puebla, Av. San Claudio y 18 Sur, Puebla 72570, Mexico; (G.C.-H.); (O.O.-X.); (P.A.-L.); (J.A.M.)
| | - Paulina Arellanes-Lozada
- Facultad de Ingeniería Química, Benemérita Universidad Autónoma de Puebla, Av. San Claudio y 18 Sur, Puebla 72570, Mexico; (G.C.-H.); (O.O.-X.); (P.A.-L.); (J.A.M.)
| | - José Oscar Laguna Cortés
- Departamento de Ciencias Básicas, Tecnológico Nacional de México—Instituto Tecnológico de Puebla, Av. Tecnológico 420, Puebla 72220, Mexico;
| | - Janette Arriola Morales
- Facultad de Ingeniería Química, Benemérita Universidad Autónoma de Puebla, Av. San Claudio y 18 Sur, Puebla 72570, Mexico; (G.C.-H.); (O.O.-X.); (P.A.-L.); (J.A.M.)
| | - Claudia Santacruz-Vázquez
- Facultad de Ingeniería Química, Benemérita Universidad Autónoma de Puebla, Av. San Claudio y 18 Sur, Puebla 72570, Mexico; (G.C.-H.); (O.O.-X.); (P.A.-L.); (J.A.M.)
| | - Verónica Santacruz-Vázquez
- Facultad de Ingeniería Química, Benemérita Universidad Autónoma de Puebla, Av. San Claudio y 18 Sur, Puebla 72570, Mexico; (G.C.-H.); (O.O.-X.); (P.A.-L.); (J.A.M.)
| |
Collapse
|
3
|
Atighi M, Hasanzadeh M, Sadatalhosseini AA, Azimzadeh HR. Metal–Organic Framework@Graphene Oxide Composite-Incorporated Polyacrylonitrile Nanofibrous Filters for Highly Efficient Particulate Matter Removal and Breath Monitoring. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c03825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Milad Atighi
- Department of Textile Engineering, Yazd University, P.O. Box 89195-741, Yazd89195-741, Iran
| | - Mahdi Hasanzadeh
- Department of Textile Engineering, Yazd University, P.O. Box 89195-741, Yazd89195-741, Iran
| | | | | |
Collapse
|
4
|
Shi S, Si Y, Han Y, Wu T, Iqbal MI, Fei B, Li RKY, Hu J, Qu J. Recent Progress in Protective Membranes Fabricated via Electrospinning: Advanced Materials, Biomimetic Structures, and Functional Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2107938. [PMID: 34969155 DOI: 10.1002/adma.202107938] [Citation(s) in RCA: 123] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 12/17/2021] [Indexed: 02/05/2023]
Abstract
Electrospinning is a significant micro/nanofiber processing technology and has been rapidly developing in the past 2 decades. It has several applications, including advanced sensing, intelligent manufacturing, and high-efficiency catalysis. Here, multifunctional protective membranes fabricated via electrospinning in terms of novel material design, construction of novel structures, and various protection requirements in different environments are reviewed. To achieve excellent comprehensive properties, such as, high water vapor transmission, high hydrostatic pressure, optimal mechanical property, and air permeability, combinations of novel materials containing nondegradable/degradable materials and functional structures inspired by nature have been investigated for decades. Currently, research is mainly focused on conventional protective membranes with multifunctional properties, such as, anti-UV, antibacterial, and electromagnetic-shielding functions. However, important aspects, such as, the properties of electrospun monofilaments, development of "green electrospinning solutions" with high solid content, and approaches for enhancing adhesion between hydrophilic and hydrophobic layers are not considered. Based on this systematic review, the development of electrospinning for protective membranes is discussed, the existing gaps in research are discussed, and solutions for the development of technology are proposed. This review will assist in promoting the diversified development of protective membranes and is of great significance for fabricating advanced materials for intelligent protection.
Collapse
Affiliation(s)
- Shuo Shi
- Department of Biomedical Engineering City University of Hong Kong Kowloon Hong Kong SAR 999077 China
| | - Yifan Si
- Department of Biomedical Engineering City University of Hong Kong Kowloon Hong Kong SAR 999077 China
| | - Yanting Han
- West China School of Nursing/West China Hospital Sichuan University Chengdu 610065 China
| | - Ting Wu
- School of Chemistry and Chemical Engineering Huazhong University of Science & Technology Wuhan Hubei 430074 China
| | - Mohammad Irfan Iqbal
- School of Energy and Environment City University of Hong Kong Kowloon Hong Kong SAR 999077 China
| | - Bin Fei
- Institute of Textiles and Clothing The Hong Kong Polytechnic University Kowloon Hong Kong SAR 999077 China
| | - Robert K. Y. Li
- Department of Materials Science and Engineering City University of Hong Kong Kowloon Hong Kong SAR 999077 China
| | - Jinlian Hu
- Department of Biomedical Engineering City University of Hong Kong Kowloon Hong Kong SAR 999077 China
| | - Jinping Qu
- School of Chemistry and Chemical Engineering Huazhong University of Science & Technology Wuhan Hubei 430074 China
| |
Collapse
|
5
|
Gao H, Zhong Z, Xia H, Hu Q, Ye Q, Wang Y, Chen L, Du Y, Shi X, Zhang L. Construction of cellulose nanofibers/quaternized chitin/organic rectorite composites and their application as wound dressing materials. Biomater Sci 2019; 7:2571-2581. [PMID: 30977470 DOI: 10.1039/c9bm00288j] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Traumatic injury is a major cause of mortality, and poor wound healing affects millions of people. Thus, the development of effective wound dressings is essential for speeding up wound healing and decreasing mortality. In this study, a suspension of carboxylated brown algae cellulose nanofibers (BACNFs) with a high aspect ratio was freeze dried to prepare a sponge. The sponge showed high porosity and water absorption capacity; thus, it can absorb wound exudates when used as a wound dressing. In addition, quaternized β-chitin (QC) with antibacterial properties was intercalated into the interlayer space of the organic rectorite (OREC) via electrostatic interactions to obtain composite suspensions (QCRs) with improved antimicrobial activity compared to that of QC alone. Subsequently, the BACNF sponge was soaked in the QCR suspension to absorb QCRs via electrostatic interactions and hydrogen bonding from which cellulose nanofiber/quaternized chitin/organic rectorite composite (BACNF/QCR) sponges were constructed via freeze-drying. The in vivo animal tests demonstrated that the BACNF/QCR sponges rapidly induced hemostasis in a rat tail amputation test, making them superior to the traditional hemostatic materials. Furthermore, BACNFs/QCRs could substantially promote collagen synthesis and neovascularization, thereby accelerating wound healing 3 days earlier than gauze. This multi-functional biomedical material, fabricated using natural substances, shows great potential to be used for wound healing.
Collapse
Affiliation(s)
- Huimin Gao
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Wubneh A, Tsekoura EK, Ayranci C, Uludağ H. Current state of fabrication technologies and materials for bone tissue engineering. Acta Biomater 2018; 80:1-30. [PMID: 30248515 DOI: 10.1016/j.actbio.2018.09.031] [Citation(s) in RCA: 313] [Impact Index Per Article: 44.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 09/18/2018] [Accepted: 09/19/2018] [Indexed: 12/15/2022]
Abstract
A range of traditional and free-form fabrication technologies have been investigated and, in numerous occasions, commercialized for use in the field of regenerative tissue engineering (TE). The demand for technologies capable of treating bone defects inherently difficult to repair has been on the rise. This quest, accompanied by the advent of functionally tailored, biocompatible, and biodegradable materials, has garnered an enormous research interest in bone TE. As a result, different materials and fabrication methods have been investigated towards this end, leading to a deeper understanding of the geometrical, mechanical and biological requirements associated with bone scaffolds. As our understanding of the scaffold requirements expands, so do the capability requirements of the fabrication processes. The goal of this review is to provide a broad examination of existing scaffold fabrication processes and highlight future trends in their development. To appreciate the clinical requirements of bone scaffolds, a brief review of the biological process by which bone regenerates itself is presented first. This is followed by a summary and comparisons of commonly used implant techniques to highlight the advantages of TE-based approaches over traditional grafting methods. A detailed discussion on the clinical and mechanical requirements of bone scaffolds then follows. The remainder of the manuscript is dedicated to current scaffold fabrication methods, their unique capabilities and perceived shortcomings. The range of biomaterials employed in each fabrication method is summarized. Selected traditional and non-traditional fabrication methods are discussed with a highlight on their future potential from the authors' perspective. This study is motivated by the rapidly growing demand for effective scaffold fabrication processes capable of economically producing constructs with intricate and precisely controlled internal and external architectures. STATEMENT OF SIGNIFICANCE: The manuscript summarizes the current state of fabrication technologies and materials used for creating scaffolds in bone tissue engineering applications. A comprehensive analysis of different fabrication methods (traditional and free-form) were summarized in this review paper, with emphasis on recent developments in the field. The fabrication techniques suitable for creating scaffolds for tissue engineering was particularly targeted and their use in bone tissue engineering were articulated. Along with the fabrication techniques, we emphasized the choice of materials in these processes. Considering the limitations of each process, we highlighted the materials and the material properties critical in that particular process and provided a brief rational for the choice of the materials. The functional performance for bone tissue engineering are summarized for different fabrication processes and the choice of biomaterials. Finally, we provide a perspective on the future of the field, highlighting the knowledge gaps and promising avenues in pursuit of effective scaffolds for bone tissue engineering. This extensive review of the field will provide research community with a reference source for current approaches to scaffold preparation. We hope to encourage the researchers to generate next generation biomaterials to be used in these fabrication processes. By providing both advantages and disadvantage of each fabrication method in detail, new fabrication techniques might be devised that will overcome the limitations of the current approaches. These studies should facilitate the efforts of researchers interested in generating ideal scaffolds, and should have applications beyond the repair of bone tissue.
Collapse
|
7
|
Dobosz KM, Kuo-Leblanc CA, Martin TJ, Schiffman JD. Ultrafiltration Membranes Enhanced with Electrospun Nanofibers Exhibit Improved Flux and Fouling Resistance. Ind Eng Chem Res 2017; 56:5724-5733. [PMID: 30679885 DOI: 10.1021/acs.iecr.7b00631] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In this study, we have improved membrane performance by enhancing ultrafiltration membranes with electrospun nanofibers. The high-porosity nanofiber layer provides a tailorable platform that does not affect the base membrane structure. To decouple the effects that nanofiber chemistry and morphology have on membrane performance, two polymers commonly used in the membrane industry, cellulose and polysulfone, were electrospun into a layer that was 50 μm thick and consisted of randomly accumulated 1-μm-diameter fibers. Fouling resistance was improved and selectivity was retained by ultrafiltration membranes enhanced with a layer of either cellulose or polysulfone nanofibers. Potentially because of their better mechanical integrity, the polysulfone nanofiber-membranes demonstrated a higher pure-water permeance across a greater range of transmembrane pressures than the cellulose nanofiber-membranes and control membranes. This work demonstrates that nanofiber-enhanced membranes hold potential as versatile materials platforms for improving the performance of ultrafiltration membranes.
Collapse
Affiliation(s)
- Kerianne M Dobosz
- Department of Chemical Engineering University of Massachusetts Amherst, Amherst, Massachusetts 01003-9303, United States
| | - Christopher A Kuo-Leblanc
- Department of Chemical Engineering University of Massachusetts Amherst, Amherst, Massachusetts 01003-9303, United States
| | - Tyler J Martin
- Department of Chemical Engineering University of Massachusetts Amherst, Amherst, Massachusetts 01003-9303, United States
| | - Jessica D Schiffman
- Department of Chemical Engineering University of Massachusetts Amherst, Amherst, Massachusetts 01003-9303, United States
| |
Collapse
|
8
|
Kolewe KW, Dobosz KM, Rieger KA, Chang CC, Emrick T, Schiffman JD. Antifouling Electrospun Nanofiber Mats Functionalized with Polymer Zwitterions. ACS APPLIED MATERIALS & INTERFACES 2016; 8:27585-27593. [PMID: 27669057 PMCID: PMC5382136 DOI: 10.1021/acsami.6b09839] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
In this study, we exploit the excellent fouling resistance of polymer zwitterions and present electrospun nanofiber mats surface functionalized with poly(2-methacryloyloxyethyl phosphorylcholine) (polyMPC). This zwitterionic polymer coating maximizes the accessibility of the zwitterion to effectively limit biofouling on nanofiber membranes. Two facile, scalable methods yielded a coating on cellulose nanofibers: (i) a two-step sequential deposition featuring dopamine polymerization followed by the physioadsorption of polyMPC, and (ii) a one-step codeposition of polydopamine (PDA) with polyMPC. While the sequential and codeposited nanofiber mat assemblies have an equivalent average fiber diameter, hydrophilic contact angle, surface chemistry, and stability, the topography of nanofibers prepared by codeposition were smoother. Protein and microbial antifouling performance of the zwitterion modified nanofiber mats along with two controls, cellulose (unmodified) and PDA coated nanofiber mats were evaluated by dynamic protein fouling and prolonged bacterial exposure. Following 21 days of exposure to bovine serum albumin, the sequential nanofiber mats significantly resisted protein fouling, as indicated by their 95% flux recovery ratio in a water flux experiment, a 300% improvement over the cellulose nanofiber mats. When challenged with two model microbes Escherichia coli and Staphylococcus aureus for 24 h, both zwitterion modifications demonstrated superior fouling resistance by statistically reducing microbial attachment over the two controls. This study demonstrates that, by decorating the surfaces of chemically and mechanically robust cellulose nanofiber mats with polyMPC, we can generate high performance, free-standing nanofiber mats that hold potential in applications where antifouling materials are imperative, such as tissue engineering scaffolds and water purification technologies.
Collapse
Affiliation(s)
- Kristopher W. Kolewe
- Department of Chemical Engineering, University of Massachusetts Amherst, Amherst, Massachusetts 01003-9303
| | - Kerianne M. Dobosz
- Department of Chemical Engineering, University of Massachusetts Amherst, Amherst, Massachusetts 01003-9303
| | - Katrina A. Rieger
- Department of Chemical Engineering, University of Massachusetts Amherst, Amherst, Massachusetts 01003-9303
| | - Chia-Chih Chang
- Department of Polymer Science and Engineering, University of Massachusetts Amherst, Massachusetts 01003-9303
| | - Todd Emrick
- Department of Polymer Science and Engineering, University of Massachusetts Amherst, Massachusetts 01003-9303
| | - Jessica D. Schiffman
- Department of Chemical Engineering, University of Massachusetts Amherst, Amherst, Massachusetts 01003-9303
| |
Collapse
|