1
|
Emerson JR, Scott MW, van Schaik P, Butcher N, Kenny RPW, Eaves DL. A neural signature for combined action observation and motor imagery? An fNIRS study into prefrontal activation, automatic imitation, and self-other perceptions. Brain Behav 2022; 12:e2407. [PMID: 34994997 PMCID: PMC8865155 DOI: 10.1002/brb3.2407] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 09/06/2021] [Accepted: 10/12/2021] [Indexed: 02/05/2023] Open
Abstract
INTRODUCTION Research indicates that both observed and imagined actions can be represented in the brain as two parallel sensorimotor representations. One proposal is that higher order cognitive processes would align these two hypothetical action simulations. METHODS We investigated this hypothesis using an automatic imitation paradigm, with functional near-infrared spectroscopy recordings over the prefrontal cortex during different motor simulation states. On each trial, participants (n = 14) observed a picture of a rhythmical action (instructed action) followed by a distractor movie showing the same or different action. Participants then executed the instructed action. Distractor actions were manipulated to be fast or slow, and instructions were manipulated during distractor presentation: action observation (AO), combined action observation and motor imagery (AO+MI) and observe to imitate (intentional imitation). A pure motor imagery (MI) condition was also included. RESULTS Kinematic analyses showed that although distractor speed effects were significant under all instructions (shorter mean cycle times in execution for fast compared to slow trials), this imitation bias was significantly stronger for combined AO+MI than both AO and MI, and stronger for intentional imitation than the other three automatic imitation conditions. In the left prefrontal cortex, cerebral oxygenation was significantly greater for combined AO+MI than all other instructions. Participants reported that their representation of the self overlapped with the observed model significantly more during AO+MI than AO. CONCLUSION Left prefrontal activation may therefore be a neural signature of AO+MI, supporting attentional switching between concurrent representations of self (MI, top-down) and other (AO, bottom-up) to increase imitation and perceived closeness.
Collapse
Affiliation(s)
- Jonathan R Emerson
- School of Health and Life Sciences, Teesside University, Middlesbrough, UK
| | - Matthew W Scott
- School of Health and Life Sciences, Teesside University, Middlesbrough, UK.,Department of Psychology, Faculty of Health, Psychology and Social Care, Manchester Metropolitan University, Manchester, UK
| | - Paul van Schaik
- Department of Psychology, School of Social Sciences, Humanities & Law, Teesside University, Middlesbrough, UK
| | - Natalie Butcher
- Department of Psychology, School of Social Sciences, Humanities & Law, Teesside University, Middlesbrough, UK
| | - Ryan P W Kenny
- Population Health Sciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle, UK
| | - Daniel L Eaves
- School of Health and Life Sciences, Teesside University, Middlesbrough, UK.,Population Health Sciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle, UK
| |
Collapse
|
2
|
Miguel HO, Condy EE, Nguyen T, Zeytinoglu S, Blick E, Bress K, Khaksari K, Dashtestani H, Millerhagen J, Shahmohammadi S, Fox NA, Gandjbakhche A. Cerebral hemodynamic response during a live action-observation and action-execution task: A fNIRS study. PLoS One 2021; 16:e0253788. [PMID: 34388157 PMCID: PMC8362964 DOI: 10.1371/journal.pone.0253788] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 06/14/2021] [Indexed: 11/25/2022] Open
Abstract
Although many studies have examined the location of the action observation network (AON) in human adults, the shared neural correlates of action-observation and action-execution are still unclear partially due to lack of ecologically valid neuroimaging measures. In this study, we aim to demonstrate the feasibility of using functional near infrared spectroscopy (fNIRS) to measure the neural correlates of action-observation and action execution regions during a live task. Thirty adults reached for objects or observed an experimenter reaching for objects while their cerebral hemodynamic responses including oxy-hemoglobin (HbO) and deoxy-hemoglobin (HbR) were recorded in the sensorimotor and parietal regions. Our results indicated that the parietal regions, including bilateral superior parietal lobule (SPL), bilateral inferior parietal lobule (IPL), right supra-marginal region (SMG) and right angular gyrus (AG) share neural activity during action-observation and action-execution. Our findings confirm the applicability of fNIRS for the study of the AON and lay the foundation for future work with developmental and clinical populations.
Collapse
Affiliation(s)
- Helga O. Miguel
- National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Emma E. Condy
- National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Thien Nguyen
- National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Selin Zeytinoglu
- Department of Human Development and Quantitative Methodology, University of Maryland, College Park, Maryland, United States of America
| | - Emily Blick
- National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Kimberly Bress
- National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Kosar Khaksari
- National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Hadis Dashtestani
- National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, United States of America
| | - John Millerhagen
- National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Sheida Shahmohammadi
- National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Nathan A. Fox
- Department of Human Development and Quantitative Methodology, University of Maryland, College Park, Maryland, United States of America
| | - Amir Gandjbakhche
- National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, United States of America
- * E-mail:
| |
Collapse
|
3
|
Condy EE, Miguel HO, Millerhagen J, Harrison D, Khaksari K, Fox N, Gandjbakhche A. Characterizing the Action-Observation Network Through Functional Near-Infrared Spectroscopy: A Review. Front Hum Neurosci 2021; 15:627983. [PMID: 33679349 PMCID: PMC7930074 DOI: 10.3389/fnhum.2021.627983] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 01/18/2021] [Indexed: 12/19/2022] Open
Abstract
Functional near-infrared spectroscopy (fNIRS) is a neuroimaging technique that has undergone tremendous growth over the last decade due to methodological advantages over other measures of brain activation. The action-observation network (AON), a system of brain structures proposed to have “mirroring” abilities (e.g., active when an individual completes an action or when they observe another complete that action), has been studied in humans through neural measures such as fMRI and electroencephalogram (EEG); however, limitations of these methods are problematic for AON paradigms. For this reason, fNIRS is proposed as a solution to investigating the AON in humans. The present review article briefly summarizes previous neural findings in the AON and examines the state of AON research using fNIRS in adults. A total of 14 fNIRS articles are discussed, paying particular attention to methodological choices and considerations while summarizing the general findings to aid in developing better protocols to study the AON through fNIRS. Additionally, future directions of this work are discussed, specifically in relation to researching AON development and potential multimodal imaging applications.
Collapse
Affiliation(s)
- Emma E Condy
- Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health, Bethesda, MD, United States
| | - Helga O Miguel
- Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health, Bethesda, MD, United States
| | - John Millerhagen
- Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health, Bethesda, MD, United States
| | - Doug Harrison
- Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health, Bethesda, MD, United States
| | - Kosar Khaksari
- Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health, Bethesda, MD, United States
| | - Nathan Fox
- Department of Human Development and Quantitative Methodology, University of Maryland, College Park, MD, United States
| | - Amir Gandjbakhche
- Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
4
|
Fronda G, Balconi M. The effect of interbrain synchronization in gesture observation: A fNIRS study. Brain Behav 2020; 10:e01663. [PMID: 32469153 PMCID: PMC7375069 DOI: 10.1002/brb3.1663] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 02/23/2020] [Accepted: 04/20/2020] [Indexed: 12/24/2022] Open
Abstract
INTRODUCTION Gestures characterize individuals' nonverbal communicative exchanges, taking on different functions. Several types of research in the neuroscientific field have been interested in the investigation of the neural correlates underlying the observation and implementation of different gestures categories. In particular, different studies have focused on the neural correlates underlying gestures observation, emphasizing the presence of mirroring mechanisms in specific brain areas, which appear to be involved in gesture observation and planning mechanisms. MATERIALS AND METHODS Specifically, the present study aimed to investigate the neural mechanisms, through the use of functional Near-Infrared Spectroscopy (fNIRS), underlying the observation of affective, social, and informative gestures with positive and negative valence in individuals' dyads composed by encoder and decoder. The variations of oxygenated (O2Hb) and deoxygenated (HHb) hemoglobin concentrations of both individuals were collected simultaneously through the use of hyperscanning paradigm, allowing the recording of brain responsiveness and interbrain connectivity. RESULTS The results showed a different brain activation and an increase of interbrain connectivity according to the type of gestures observed, with a significant increase of O2Hb brain responsiveness and interbrain connectivity and a decrease of HHb brain responsiveness for affective gestures in the dorsolateral prefrontal cortex (DLPFC) and for social gestures in the superior frontal gyrus (SFG). Furthermore, concerning the valence of the observed gestures, an increase of O2Hb brain activity and interbrain connectivity was observed in the left DLPFC for positive affective gestures compared to negative ones. CONCLUSION In conclusion, the present study showed different brain responses underlying the observation of different types of positive and negative gestures. Moreover, interbrain connectivity calculation allowed us to underline the presence of mirroring mechanisms involved in gesture-specific frontal regions during gestures observation and action planning.
Collapse
Affiliation(s)
- Giulia Fronda
- Department of Psychology, Catholic University of Milan, Milan, Italy.,Research Unit in Affective and Social Neuroscience, Catholic University of Milan, Milan, Italy
| | - Michela Balconi
- Department of Psychology, Catholic University of Milan, Milan, Italy.,Research Unit in Affective and Social Neuroscience, Catholic University of Milan, Milan, Italy
| |
Collapse
|
5
|
Balconi M, Fronda G, Bartolo A. Affective, Social, and Informative Gestures Reproduction in Human Interaction: Hyperscanning and Brain Connectivity. J Mot Behav 2020; 53:296-315. [PMID: 32525458 DOI: 10.1080/00222895.2020.1774490] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Gestural communication characterizes daily individuals' interactions in order to share information and to modify others' behavior. Social neuroscience has investigated the neural bases which support recognizing of different gestures. The present research, through the use of the hyperscanning approach, that allows the simultaneously recording of the activity of two or more individuals involved in a joint action, aims to investigate the neural bases of gestural communication. Moreover, by using hyperscanning paradigm we explore the inter-brain connectivity between two inter-agents, the one who performed the gesture (encoder) and the one who received it (decoder), with functional Near-infrared Spectroscopy (fNIRS) during the reproduction of affective, social and informative gestures with positive and negative valence. Result showed an increase in oxygenated hemoglobin concentration (O2Hb) and inter-brain connectivity in the dorsolateral prefrontal cortex (DLPFC) for affective gestures, in the superior frontal gyrus (SFG) for social gestures and the frontal eye fields (FEF) for informative gestures, for both encoder and decoder. Furthermore, it emerged that positive gestures activate more the left DLPFC, with an increase in inter-brain connectivity in DLPFC and SFG. The present study revealed the relevant function of the type and valence of gestures in affecting intra- and inter-brain connectivity.
Collapse
Affiliation(s)
- Michela Balconi
- Research Unit in Affective and Social Neuroscience, Catholic University of the Sacred Heart, Milan, Italy.,Department of Psychology, Catholic University of the Sacred Heart, Milan, Italy
| | - Giulia Fronda
- Research Unit in Affective and Social Neuroscience, Catholic University of the Sacred Heart, Milan, Italy.,Department of Psychology, Catholic University of the Sacred Heart, Milan, Italy
| | - Angela Bartolo
- Univ. Lille, CNRS, CHU Lille, UMR 9193 - SCALab - Sciences Cognitives et Sciences Affectives, F-59000 Lille, France.,Institut Universitaire de France (IUF), France
| |
Collapse
|
6
|
Inagaki Y, Seki K, Makino H, Matsuo Y, Miyamoto T, Ikoma K. Exploring Hemodynamic Responses Using Mirror Visual Feedback With Electromyogram-Triggered Stimulation and Functional Near-Infrared Spectroscopy. Front Hum Neurosci 2019; 13:60. [PMID: 30863295 PMCID: PMC6399579 DOI: 10.3389/fnhum.2019.00060] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 02/04/2019] [Indexed: 11/13/2022] Open
Abstract
In recent years, mirror visual feedback (MVF) therapy combined with electrical stimulation (ES) have been proposed for patients with hemiparesis. However, the neurophysiological effect remains unknown. We investigated the effects of MVF by itself and along with electromyogram-triggered ES (ETES) on hemodynamic responses using functional near-infrared spectroscopy (NIRS). Eighteen healthy subjects participated in this study. We measured changes in brain oxygenation using 48 NIRS channels. We investigated the effects of three main factors of visual feedback (observation of a mark, right hand, and hand movements via mirror) with or without ES on bilateral precentral gyrus (PrG), postcentral gyrus (PoG), supplementary motor area (SMA), supramarginal gyrus area (SMG), and angular gyrus (AG) to determine the contribution of each factor. The results showed that the left PoG was significantly more activated when performing mirrored tasks (MT) than when performing circle or Right-hand Tasks (RTs). In addition, the right PoG and right SMA in MT were significantly more activated than in MT + ES cases. Our findings suggested that observation of movements through the mirror caused activation of the postcentral gyrus rather than the PrG, and MVF along with ETES decreased cortical activation.
Collapse
Affiliation(s)
- Yuji Inagaki
- Department of Rehabilitation Medicine, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | | | - Hitoshi Makino
- Department of Physical Therapy, Hokkaido Bunkyo University, Eniwa, Japan
| | | | - Tamaki Miyamoto
- Department of Psychiatry, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Katsunori Ikoma
- Department of Rehabilitation Medicine, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| |
Collapse
|
7
|
Balconi M, Crivelli D, Cortesi L. Transitive Versus Intransitive Complex Gesture Representation: A Comparison Between Execution, Observation and Imagination by fNIRS. Appl Psychophysiol Biofeedback 2018; 42:179-191. [PMID: 28589287 DOI: 10.1007/s10484-017-9365-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The aim of the present study was to examine cortical correlates of motor execution, motor observation and motor imagery of hand complex gestures, in particular by comparing meaningful gestures implying the use of an object (transitive action) or not (intransitive action). Functional near-infrared spectroscopy (fNIRS) was used to verify the presence of partial overlapping between some cortical areas involved in those different tasks. Participants were instructed to observe videos of transitive vs. intransitive gestures and then to execute or imagine them. Gesture execution was associated to greater brain activity (increased oxygenated hemoglobin levels) with respect to observation and imagination in motor areas (premotor cortex, PMC; primary sensorimotor cortex, SM1). In contrast, the posterior parietal cortex (PPC) was more relevantly involved in both execution and observation tasks compared to gesture imagination. Moreover, execution and observation of transitive gestures seemed primarily supported by similar parietal posterior areas when compared with intransitive gestures, which do not imply the presence on a object.
Collapse
Affiliation(s)
- Michela Balconi
- Research Unit in Affective and Social Neuroscience, Catholic University of the Sacred Heart, Milan, Italy. .,Department of Psychology, Catholic University of the Sacred Heart, Largo Gemelli, 1, 20123, Milan, Italy.
| | - Davide Crivelli
- Research Unit in Affective and Social Neuroscience, Catholic University of the Sacred Heart, Milan, Italy.,Department of Psychology, Catholic University of the Sacred Heart, Largo Gemelli, 1, 20123, Milan, Italy
| | - Livia Cortesi
- Department of Psychology, Catholic University of the Sacred Heart, Largo Gemelli, 1, 20123, Milan, Italy
| |
Collapse
|
8
|
Sun PP, Tan FL, Zhang Z, Jiang YH, Zhao Y, Zhu CZ. Feasibility of Functional Near-Infrared Spectroscopy (fNIRS) to Investigate the Mirror Neuron System: An Experimental Study in a Real-Life Situation. Front Hum Neurosci 2018; 12:86. [PMID: 29556185 PMCID: PMC5845015 DOI: 10.3389/fnhum.2018.00086] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Accepted: 02/19/2018] [Indexed: 01/01/2023] Open
Abstract
The mirror neuron system (MNS), mainly including the premotor cortex (PMC), inferior frontal gyrus (IFG), superior parietal lobule (SPL), and rostral inferior parietal lobule (IPL), has attracted extensive attention as a possible neural mechanism of social interaction. Owing to high ecological validity, functional near-infrared spectroscopy (fNIRS) has become an ideal approach for exploring the MNS. Unfortunately, for the feasibility of fNIRS to detect the MNS, none of the four dominant regions were found in previous studies, implying a very limited capacity of fNIRS to investigate the MNS. Here, we adopted an experimental paradigm in a real-life situation to evaluate whether the MNS activity, including four dominant regions, can be detected by using fNIRS. Specifically, 30 right-handed subjects were asked to complete a table-setting task that included action execution and action observation. A double density probe configuration covered the four regions of the MNS in the left hemisphere. We used a traditional channel-based group analysis and also a ROI-based group analysis to find which regions are activated during both action execution and action observation. The results showed that the IFG, adjacent PMC, SPL, and IPL were involved in both conditions, indicating the feasibility of fNIRS to detect the MNS. Our findings provide a foundation for future research to explore the functional role of the MNS in social interaction and various disorders using fNIRS.
Collapse
Affiliation(s)
- Pei-Pei Sun
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China
| | - Fu-Lun Tan
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China
| | - Zong Zhang
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China
| | - Yi-Han Jiang
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China
| | - Yang Zhao
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China
| | - Chao-Zhe Zhu
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China.,IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China.,Center for Collaboration and Innovation in Brain and Learning Sciences, Beijing Normal University, Beijing, China
| |
Collapse
|
9
|
Balconi M, Cortesi L, Crivelli D. Motor planning and performance in transitive and intransitive gesture execution and imagination: Does EEG (RP) activity predict hemodynamic (fNIRS) response? Neurosci Lett 2017; 648:59-65. [DOI: 10.1016/j.neulet.2017.03.049] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Revised: 03/29/2017] [Accepted: 03/30/2017] [Indexed: 12/01/2022]
|