1
|
Yang Z, Ping YQ, Wang MW, Zhang C, Zhou SH, Xi YT, Zhu KK, Ding W, Zhang QY, Song ZC, Zhao RJ, He ZL, Wang MX, Qi L, Ullmann C, Ricken A, Schöneberg T, Gan ZJ, Yu X, Xiao P, Yi F, Liebscher I, Sun JP. Identification, structure, and agonist design of an androgen membrane receptor. Cell 2025; 188:1589-1604.e24. [PMID: 39884271 DOI: 10.1016/j.cell.2025.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 10/29/2024] [Accepted: 01/03/2025] [Indexed: 02/01/2025]
Abstract
Androgens, such as 5α-dihydrotestosterone (5α-DHT), regulate numerous functions by binding to nuclear androgen receptors (ARs) and potential unknown membrane receptors. Here, we report that the androgen 5α-DHT activates membrane receptor GPR133 in muscle cells, thereby increasing intracellular cyclic AMP (cAMP) levels and enhancing muscle strength. Further cryoelectron microscopy (cryo-EM) structural analysis of GPR133-Gs in complex with 5α-DHT or its derivative methenolone (MET) reveals the structural basis for androgen recognition. Notably, the presence of the "Φ(F/L)2.64-F3.40-W6.53" and the "F7.42××N/D7.46" motifs, which recognize the hydrophobic steroid core and polar groups, respectively, are common in adhesion GPCRs (aGPCRs), suggesting that many aGPCRs may recognize different steroid hormones. Finally, we exploited in silico screening methods to identify a small molecule, AP503, which activates GPR133 and separates the beneficial muscle-strengthening effects from side effects mediated by AR. Thus, GPR133 represents an androgen membrane receptor that contributes to normal androgen physiology and has important therapeutic potentials.
Collapse
Affiliation(s)
- Zhao Yang
- Key Laboratory Experimental Teratology of the Ministry of Education, New Cornerstone Science Laboratory, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, and Advanced Medical Research Institute, NHC Key Laboratory of Otorhinolaryngology, Qilu hospital, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Yu-Qi Ping
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250117, China
| | - Ming-Wei Wang
- Key Laboratory Experimental Teratology of the Ministry of Education, New Cornerstone Science Laboratory, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, and Advanced Medical Research Institute, NHC Key Laboratory of Otorhinolaryngology, Qilu hospital, Cheeloo College of Medicine, Shandong University, Jinan 250012, China; Department of Clinical Laboratory, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Chao Zhang
- Key Laboratory Experimental Teratology of the Ministry of Education, New Cornerstone Science Laboratory, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, and Advanced Medical Research Institute, NHC Key Laboratory of Otorhinolaryngology, Qilu hospital, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Shu-Hua Zhou
- Key Laboratory Experimental Teratology of the Ministry of Education, New Cornerstone Science Laboratory, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, and Advanced Medical Research Institute, NHC Key Laboratory of Otorhinolaryngology, Qilu hospital, Cheeloo College of Medicine, Shandong University, Jinan 250012, China; Department of Physiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Yue-Tong Xi
- Key Laboratory Experimental Teratology of the Ministry of Education, New Cornerstone Science Laboratory, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, and Advanced Medical Research Institute, NHC Key Laboratory of Otorhinolaryngology, Qilu hospital, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Kong-Kai Zhu
- Key Laboratory Experimental Teratology of the Ministry of Education, New Cornerstone Science Laboratory, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, and Advanced Medical Research Institute, NHC Key Laboratory of Otorhinolaryngology, Qilu hospital, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Wei Ding
- Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, China
| | - Qi-Yue Zhang
- Key Laboratory Experimental Teratology of the Ministry of Education, New Cornerstone Science Laboratory, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, and Advanced Medical Research Institute, NHC Key Laboratory of Otorhinolaryngology, Qilu hospital, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Zhi-Chen Song
- Department of Physiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Ru-Jia Zhao
- Department of Physiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Zi-Lu He
- Key Laboratory Experimental Teratology of the Ministry of Education, New Cornerstone Science Laboratory, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, and Advanced Medical Research Institute, NHC Key Laboratory of Otorhinolaryngology, Qilu hospital, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Meng-Xin Wang
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250117, China
| | - Lei Qi
- Biomedical Research Center for Structural Analysis, Shandong University, Jinan 250012, Shandong, China
| | - Christian Ullmann
- Rudolf Schönheimer Institute of Biochemistry, Medical Faculty, Leipzig University, 04103 Leipzig, Germany
| | - Albert Ricken
- Institute of Anatomy, Medical Faculty, Leipzig University, 04103 Leipzig, Germany
| | - Torsten Schöneberg
- Rudolf Schönheimer Institute of Biochemistry, Medical Faculty, Leipzig University, 04103 Leipzig, Germany
| | - Zhen-Ji Gan
- Medical School of Nanjing University, Nanjing University, Nanjing 210061, China
| | - Xiao Yu
- Department of Physiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China.
| | - Peng Xiao
- Key Laboratory Experimental Teratology of the Ministry of Education, New Cornerstone Science Laboratory, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, and Advanced Medical Research Institute, NHC Key Laboratory of Otorhinolaryngology, Qilu hospital, Cheeloo College of Medicine, Shandong University, Jinan 250012, China; Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250117, China.
| | - Fan Yi
- Key Laboratory of Infection and Immunity of Shandong Province, Department of Pharmacology, School of Basic Medical Sciences, Shandong University, Jinan 250012, China.
| | - Ines Liebscher
- Rudolf Schönheimer Institute of Biochemistry, Medical Faculty, Leipzig University, 04103 Leipzig, Germany.
| | - Jin-Peng Sun
- Key Laboratory Experimental Teratology of the Ministry of Education, New Cornerstone Science Laboratory, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, and Advanced Medical Research Institute, NHC Key Laboratory of Otorhinolaryngology, Qilu hospital, Cheeloo College of Medicine, Shandong University, Jinan 250012, China; Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Beijing Key Laboratory of Cardiovascular Receptors Research, Peking University, Beijing 100191, China.
| |
Collapse
|
2
|
Hammonds KD, Heyes DM. Shadow Hamiltonian in classical NVE molecular dynamics simulations involving Coulomb interactions. J Chem Phys 2021; 154:174102. [PMID: 34241067 DOI: 10.1063/5.0048194] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Microcanonical ensemble (NVE) Molecular Dynamics (MD) computer simulations are performed with negligible energy drift for systems incorporating Coulomb interactions and complex constraint schemes. In principle, such systems can now be simulated in the NVE ensemble for millisecond time scales, with no requirement for system thermostatting. Numerical tools for assessing drift in MD simulations are outlined, and drift rates of 10-6 K/μs are demonstrated for molten salts, polar liquids, and room temperature ionic liquids. Such drift rates are six orders of magnitude smaller than those typically quoted in the literature. To achieve this, the standard Ewald method is slightly modified so the first four derivatives of the real space terms go smoothly to zero at the truncation distance, rc. New methods for determining standard Ewald errors and the new perturbation errors introduced by the smoothing procedure are developed and applied, these taking charge correlation effects explicitly into account. The shadow Hamiltonian, Es, is shown to be the strictly conserved quantity in these systems, and standard errors in the mean of one part in 1010 are routinely calculated. Expressions for the shadow Hamiltonian are improved over previous work by accounting for O(h4) terms, where h is the MD time step. These improvements are demonstrated by means of extreme out-of-equilibrium simulations. Using the new methodology, the very low diffusion coefficients of room temperature 1-hexyl-3-methyl-imidazolium chloride are determined from long NVE trajectories in which the equations of motion are known to be integrated correctly, with negligible drift.
Collapse
Affiliation(s)
| | - D M Heyes
- Department of Physics, Royal Holloway, University of London, Egham, Surrey TW20 0EX, United Kingdom
| |
Collapse
|
8
|
Ahumada O, Theodorou DN, Triolo A, Arrighi V, Karatasos C, Ryckaert JP. Segmental Dynamics of Atactic Polypropylene As Revealed by Molecular Simulations and Quasielastic Neutron Scattering. Macromolecules 2002. [DOI: 10.1021/ma011807u] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Oscar Ahumada
- Department of Chemical Engineering, University of Patras and ICE/HT-FORTH, GR-26500 Patras, Greece, Chemistry Department, Heriot-Watt University Edinburgh, EH14 4AS, United Kingdom, and Laboratoire de Physique des Polymères, CP223, Université Libre de Bruxelles, Boulevard de Triomphe, B-1050 Bruxelles, Belgique
| | - Doros N. Theodorou
- Department of Chemical Engineering, University of Patras and ICE/HT-FORTH, GR-26500 Patras, Greece, Chemistry Department, Heriot-Watt University Edinburgh, EH14 4AS, United Kingdom, and Laboratoire de Physique des Polymères, CP223, Université Libre de Bruxelles, Boulevard de Triomphe, B-1050 Bruxelles, Belgique
| | - Alessandro Triolo
- Department of Chemical Engineering, University of Patras and ICE/HT-FORTH, GR-26500 Patras, Greece, Chemistry Department, Heriot-Watt University Edinburgh, EH14 4AS, United Kingdom, and Laboratoire de Physique des Polymères, CP223, Université Libre de Bruxelles, Boulevard de Triomphe, B-1050 Bruxelles, Belgique
| | - Valeria Arrighi
- Department of Chemical Engineering, University of Patras and ICE/HT-FORTH, GR-26500 Patras, Greece, Chemistry Department, Heriot-Watt University Edinburgh, EH14 4AS, United Kingdom, and Laboratoire de Physique des Polymères, CP223, Université Libre de Bruxelles, Boulevard de Triomphe, B-1050 Bruxelles, Belgique
| | - Costas Karatasos
- Department of Chemical Engineering, University of Patras and ICE/HT-FORTH, GR-26500 Patras, Greece, Chemistry Department, Heriot-Watt University Edinburgh, EH14 4AS, United Kingdom, and Laboratoire de Physique des Polymères, CP223, Université Libre de Bruxelles, Boulevard de Triomphe, B-1050 Bruxelles, Belgique
| | - Jean-Paul Ryckaert
- Department of Chemical Engineering, University of Patras and ICE/HT-FORTH, GR-26500 Patras, Greece, Chemistry Department, Heriot-Watt University Edinburgh, EH14 4AS, United Kingdom, and Laboratoire de Physique des Polymères, CP223, Université Libre de Bruxelles, Boulevard de Triomphe, B-1050 Bruxelles, Belgique
| |
Collapse
|