1
|
Zobač V, Kuisma M, Larsen AH, Rossi T, Susi T. Ehrenfest dynamics with localized atomic-orbital basis sets within the projector augmented-wave method. J Chem Phys 2025; 162:124117. [PMID: 40162541 DOI: 10.1063/5.0252559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Accepted: 03/10/2025] [Indexed: 04/02/2025] Open
Abstract
Density functional theory with linear combination of atomic orbitals (LCAO) basis sets is useful for studying large atomic systems, especially when it comes to computationally highly demanding time-dependent dynamics. We have implemented the Ehrenfest molecular dynamics (ED) method with the approximate approach of Tomfohr and Sankey within the projector augmented-wave code GPAW. We apply this method to small molecules as well as larger periodic systems and elucidate its limits, advantages, and disadvantages in comparison with the existing implementation of Ehrenfest dynamics with a real-space grid representation. For modest atomic velocities, LCAO-ED shows satisfactory accuracy at a much reduced computational cost. This method will be particularly useful for modeling ion irradiation processes that require large amounts of vacuum in the simulation cell.
Collapse
Affiliation(s)
- Vladimír Zobač
- University of Vienna, Faculty of Physics, Boltzmanngasse 5, 1090 Vienna, Austria
| | - Mikael Kuisma
- CAMD, Department of Physics, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Ask Hjorth Larsen
- CAMD, Department of Physics, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Tuomas Rossi
- Department of Applied Physics, Aalto University, P.O. Box 11100, FI-00076 Aalto, Finland
- CSC-IT Center for Science Ltd., P.O. Box 405, FI-02101 Espoo, Finland
| | - Toma Susi
- University of Vienna, Faculty of Physics, Boltzmanngasse 5, 1090 Vienna, Austria
| |
Collapse
|
2
|
Díaz Mirón G, Lien-Medrano CR, Banerjee D, Monti M, Aradi B, Sentef MA, Niehaus TA, Hassanali A. Non-adiabatic Couplings in Surface Hopping with Tight Binding Density Functional Theory: The Case of Molecular Motors. J Chem Theory Comput 2024; 20:10602-10614. [PMID: 39564804 DOI: 10.1021/acs.jctc.4c01263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2024]
Abstract
Nonadiabatic molecular dynamics (NAMD) has become an essential computational technique for studying the photophysical relaxation of molecular systems after light absorption. These phenomena require approximations that go beyond the Born-Oppenheimer approximation, and the accuracy of the results heavily depends on the electronic structure theory employed. Sophisticated electronic methods, however, make these techniques computationally expensive, even for medium size systems. Consequently, simulations are often performed on simplified models to interpret the experimental results. In this context, a variety of techniques have been developed to perform NAMD using approximate methods, particularly density functional tight binding (DFTB). Despite the use of these techniques on large systems, where ab initio methods are computationally prohibitive, a comprehensive validation has been lacking. In this work, we present a new implementation of trajectory surface hopping combined with DFTB, utilizing nonadiabatic coupling vectors. We selected the methaniminium cation and furan systems for validation, providing an exhaustive comparison with the higher-level electronic structure methods. As a case study, we simulated a system from the class of molecular motors, which has been extensively studied experimentally but remains challenging to simulate with ab initio methods due to its inherent complexity. Our approach effectively captures the key photophysical mechanism of dihedral rotation after the absorption of light. Additionally, we successfully reproduced the transition from the bright to dark states observed in the time-dependent fluorescence experiments, providing valuable insights into this critical part of the photophysical behavior in molecular motors.
Collapse
Affiliation(s)
- Gonzalo Díaz Mirón
- Condensed Matter and Statistical Physics, The Abdus Salam International Centre for Theoretical Physics, 34151 Trieste, Italy
| | - Carlos R Lien-Medrano
- Institute for Theoretical Physics and Bremen Center for Computational Materials Science, University of Bremen, 28359 Bremen, Germany
| | - Debarshi Banerjee
- Condensed Matter and Statistical Physics, The Abdus Salam International Centre for Theoretical Physics, 34151 Trieste, Italy
- Scuola Internazionale Superiore di Studi Avanzati (SISSA), 34136 Trieste, Italy
| | - Marta Monti
- Condensed Matter and Statistical Physics, The Abdus Salam International Centre for Theoretical Physics, 34151 Trieste, Italy
| | - Bálint Aradi
- Institute for Theoretical Physics and Bremen Center for Computational Materials Science, University of Bremen, 28359 Bremen, Germany
| | - Michael A Sentef
- Institute for Theoretical Physics and Bremen Center for Computational Materials Science, University of Bremen, 28359 Bremen, Germany
- Center for Free-Electron Laser Science (CFEL), Max Planck Institute for the Structure and Dynamics of Matter, 22761 Hamburg, Germany
| | - Thomas A Niehaus
- CNRS, Institut Lumière Matière, Univ Lyon, Université Claude Bernard Lyon 1, F-69622 Villeurbanne, France
| | - Ali Hassanali
- Condensed Matter and Statistical Physics, The Abdus Salam International Centre for Theoretical Physics, 34151 Trieste, Italy
| |
Collapse
|
3
|
Mausenberger S, Müller C, Tkatchenko A, Marquetand P, González L, Westermayr J. SpaiNN: equivariant message passing for excited-state nonadiabatic molecular dynamics. Chem Sci 2024:d4sc04164j. [PMID: 39282652 PMCID: PMC11391904 DOI: 10.1039/d4sc04164j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 09/01/2024] [Indexed: 09/19/2024] Open
Abstract
Excited-state molecular dynamics simulations are crucial for understanding processes like photosynthesis, vision, and radiation damage. However, the computational complexity of quantum chemical calculations restricts their scope. Machine learning offers a solution by delivering high-accuracy properties at lower computational costs. We present SpaiNN, an open-source Python software for ML-driven surface hopping nonadiabatic molecular dynamics simulations. SpaiNN combines the invariant and equivariant neural network architectures of SchNetPack with SHARC for surface hopping dynamics. Its modular design allows users to implement and adapt modules easily. We compare rotationally-invariant and equivariant representations in fitting potential energy surfaces of multiple electronic states and properties arising from the interaction of two electronic states. Simulations of the methyleneimmonium cation and various alkenes demonstrate the superior performance of equivariant SpaiNN models, improving accuracy, generalization, and efficiency in both training and inference.
Collapse
Affiliation(s)
- Sascha Mausenberger
- Faculty of Chemistry, Institute of Theoretical Chemistry, University of Vienna Währinger Str. 17 1090 Vienna Austria
- Vienna Doctoral School in Chemistry (DosChem), University of Vienna Währinger Straße 42 1090 Vienna Austria
| | - Carolin Müller
- Department Chemistry and Pharmacy, Computer-Chemistry-Center, Friedrich-Alexander-Universität Erlangen-Nürnberg Nägelsbachstraße 25 91052 Erlangen Germany
- Department of Physics and Materials Science, University of Luxembourg 162 A, Avenue de la Faïencerie L-1511 Luxembourg Luxembourg
| | - Alexandre Tkatchenko
- Department of Physics and Materials Science, University of Luxembourg 162 A, Avenue de la Faïencerie L-1511 Luxembourg Luxembourg
| | - Philipp Marquetand
- Faculty of Chemistry, Institute of Theoretical Chemistry, University of Vienna Währinger Str. 17 1090 Vienna Austria
| | - Leticia González
- Faculty of Chemistry, Institute of Theoretical Chemistry, University of Vienna Währinger Str. 17 1090 Vienna Austria
| | - Julia Westermayr
- Wilhelm Ostwald Institute for Physical and Theoretical Chemistry, Leipzig University Linnéstraße 2 04103 Leipzig Germany
- Center for Scalable Data Analytics and Artificial Intelligence (ScaDS.AI) Dresden/Leipzig Germany
| |
Collapse
|
4
|
Sanz García J, Maskri R, Mitrushchenkov A, Joubert-Doriol L. Optimizing Conical Intersections without Explicit Use of Non-Adiabatic Couplings. J Chem Theory Comput 2024; 20:5643-5654. [PMID: 38888629 DOI: 10.1021/acs.jctc.4c00326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
We present two alternative methods for optimizing minimum energy conical intersection (MECI) molecular geometries without knowledge of the derivative coupling (DC). These methods are based on the utilization of Lagrange multipliers: (i) one method uses an approximate calculation of the DC, while the other (ii) do not require the DC. Both methods use the fact that information on the DC is contained in the Hessian of the squared energy difference. Tests done on a set of small molecular systems, in comparison with other methods, show the ability of the proposed methods to optimize MECIs. Finally, we apply the methods to the furimamide molecule, to optimize and characterize its S1/S2 MECI, and to optimizing the S0/S1 MECI of the silver trimer.
Collapse
Affiliation(s)
- Juan Sanz García
- Univ Gustave Eiffel, Univ Paris Est Creteil, CNRS, UMR 8208, MSME, F-77454 Marne-la-Vallée, France
| | - Rosa Maskri
- Univ Gustave Eiffel, Univ Paris Est Creteil, CNRS, UMR 8208, MSME, F-77454 Marne-la-Vallée, France
| | - Alexander Mitrushchenkov
- Univ Gustave Eiffel, Univ Paris Est Creteil, CNRS, UMR 8208, MSME, F-77454 Marne-la-Vallée, France
| | - Loïc Joubert-Doriol
- Univ Gustave Eiffel, Univ Paris Est Creteil, CNRS, UMR 8208, MSME, F-77454 Marne-la-Vallée, France
| |
Collapse
|
5
|
Shu Y, Akher FB, Guo H, Truhlar DG. Parametrically Managed Activation Functions for Improved Global Potential Energy Surfaces for Six Coupled 5A' States and Fourteen Coupled 3A' States of O + O 2. J Phys Chem A 2024; 128:1207-1217. [PMID: 38349764 DOI: 10.1021/acs.jpca.3c06823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2024]
Abstract
We report new potential energy surfaces for six coupled 5A' states and 14 coupled 3A' states of O3. The new surfaces are created by parametrically managed diabatization by deep neural network (PM-DDNN). The PM-DDNN method uses calculated adiabatic potential energy surfaces to discover and fit an underlying adiabatic-equivalent set of diabatic surfaces and their couplings and obtains the fit to the adiabatic surfaces by diagonalization of the diabatic potential energy matrix (DPEM). The procedure yields the adiabatic surfaces and their gradients, as well as the DPEM and its gradient. If desired one can also compute the nonadiabatic coupling due to the transformation. The present work improves on previous work by using a new coordinate to guide the decay of the neural network contribution to the many-body fit to the whole DPEM. The main objective was to obtain smoother potentials than the previous ones with better suitability for dynamics calculations, and this was achieved. Furthermore, we obtained suitably small deviations from the input reference data. For the six coupled 5A' surfaces, the 60,366 data below 10 eV are fit with a mean unsigned error (MUE) of 49 meV, and for the 14 coupled 3A' surfaces, the 76,733 data below 10 eV are fit with an MUE of 28 meV. The data below 5 eV fit even more accurately with MUEs of 37 meV (5A') and 20 meV (3A').
Collapse
Affiliation(s)
- Yinan Shu
- Department of Chemistry, Chemical Theory Center and Minnesota Supercomputing Institute, University of Minnesota, Minneapolis, Minnesota 55455-0431, United States
| | - Farideh Badichi Akher
- Department of Chemistry, Chemical Theory Center and Minnesota Supercomputing Institute, University of Minnesota, Minneapolis, Minnesota 55455-0431, United States
| | - Hua Guo
- Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, New Mexico 87131, United States
| | - Donald G Truhlar
- Department of Chemistry, Chemical Theory Center and Minnesota Supercomputing Institute, University of Minnesota, Minneapolis, Minnesota 55455-0431, United States
| |
Collapse
|
6
|
Taylor JT, Tozer DJ, Curchod BFE. On the description of conical intersections between excited electronic states with LR-TDDFT and ADC(2). J Chem Phys 2023; 159:214115. [PMID: 38059547 DOI: 10.1063/5.0176140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 11/14/2023] [Indexed: 12/08/2023] Open
Abstract
Conical intersections constitute the conceptual bedrock of our working understanding of ultrafast, nonadiabatic processes within photochemistry (and photophysics). Accurate calculation of potential energy surfaces within the vicinity of conical intersections, however, still poses a serious challenge to many popular electronic structure methods. Multiple works have reported on the deficiency of methods like linear-response time-dependent density functional theory within the adiabatic approximation (AA LR-TDDFT) or algebraic diagrammatic construction to second-order [ADC(2)]-approaches often used in excited-state molecular dynamics simulations-to describe conical intersections between the ground and excited electronic states. In the present study, we focus our attention on conical intersections between excited electronic states and probe the ability of AA LR-TDDFT and ADC(2) to describe their topology and topography, using protonated formaldimine and pyrazine as two exemplar molecules. We also take the opportunity to revisit the performance of these methods in describing conical intersections involving the ground electronic state in protonated formaldimine-highlighting in particular how the intersection ring exhibited by AA LR-TDDFT can be perceived either as a (near-to-linear) seam of intersection or two interpenetrating cones, depending on the magnitude of molecular distortions within the branching space.
Collapse
Affiliation(s)
- Jack T Taylor
- Department of Chemistry, Durham University, South Road, Durham DH1 3LE, United Kingdom
| | - David J Tozer
- Department of Chemistry, Durham University, South Road, Durham DH1 3LE, United Kingdom
| | - Basile F E Curchod
- Centre for Computational Chemistry, School of Chemistry, University of Bristol, Cantock's Close, Bristol BS8 1TS, United Kingdom
| |
Collapse
|
7
|
Lu CY, Lee TY, Chou CC. Moving boundary truncated grid method for electronic nonadiabatic dynamics. J Chem Phys 2022; 156:044107. [DOI: 10.1063/5.0078909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Chun-Yaung Lu
- Texas Advanced Computing Center, The University of Texas at Austin, Austin, Texas 78758, USA
| | - Tsung-Yen Lee
- Department of Chemistry, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Chia-Chun Chou
- Department of Chemistry, National Tsing Hua University, Hsinchu 30013, Taiwan
| |
Collapse
|
8
|
Baudin P, Mouvet F, Rothlisberger U. A multiple time step algorithm for trajectory surface hopping simulations. J Chem Phys 2022; 156:034107. [DOI: 10.1063/5.0065728] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Affiliation(s)
- Pablo Baudin
- Laboratory of Computational Chemistry and Biochemistry, Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - François Mouvet
- Laboratory of Computational Chemistry and Biochemistry, Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Ursula Rothlisberger
- Laboratory of Computational Chemistry and Biochemistry, Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| |
Collapse
|
9
|
Westermayr J, Marquetand P. Machine Learning for Electronically Excited States of Molecules. Chem Rev 2021; 121:9873-9926. [PMID: 33211478 PMCID: PMC8391943 DOI: 10.1021/acs.chemrev.0c00749] [Citation(s) in RCA: 191] [Impact Index Per Article: 47.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Indexed: 12/11/2022]
Abstract
Electronically excited states of molecules are at the heart of photochemistry, photophysics, as well as photobiology and also play a role in material science. Their theoretical description requires highly accurate quantum chemical calculations, which are computationally expensive. In this review, we focus on not only how machine learning is employed to speed up such excited-state simulations but also how this branch of artificial intelligence can be used to advance this exciting research field in all its aspects. Discussed applications of machine learning for excited states include excited-state dynamics simulations, static calculations of absorption spectra, as well as many others. In order to put these studies into context, we discuss the promises and pitfalls of the involved machine learning techniques. Since the latter are mostly based on quantum chemistry calculations, we also provide a short introduction into excited-state electronic structure methods and approaches for nonadiabatic dynamics simulations and describe tricks and problems when using them in machine learning for excited states of molecules.
Collapse
Affiliation(s)
- Julia Westermayr
- Institute
of Theoretical Chemistry, Faculty of Chemistry, University of Vienna, Währinger Strasse 17, 1090 Vienna, Austria
| | - Philipp Marquetand
- Institute
of Theoretical Chemistry, Faculty of Chemistry, University of Vienna, Währinger Strasse 17, 1090 Vienna, Austria
- Vienna
Research Platform on Accelerating Photoreaction Discovery, University of Vienna, Währinger Strasse 17, 1090 Vienna, Austria
- Data
Science @ Uni Vienna, University of Vienna, Währinger Strasse 29, 1090 Vienna, Austria
| |
Collapse
|
10
|
Abstract
Electronically excited states of molecules are at the heart of photochemistry, photophysics, as well as photobiology and also play a role in material science. Their theoretical description requires highly accurate quantum chemical calculations, which are computationally expensive. In this review, we focus on not only how machine learning is employed to speed up such excited-state simulations but also how this branch of artificial intelligence can be used to advance this exciting research field in all its aspects. Discussed applications of machine learning for excited states include excited-state dynamics simulations, static calculations of absorption spectra, as well as many others. In order to put these studies into context, we discuss the promises and pitfalls of the involved machine learning techniques. Since the latter are mostly based on quantum chemistry calculations, we also provide a short introduction into excited-state electronic structure methods and approaches for nonadiabatic dynamics simulations and describe tricks and problems when using them in machine learning for excited states of molecules.
Collapse
Affiliation(s)
- Julia Westermayr
- Institute of Theoretical Chemistry, Faculty of Chemistry, University of Vienna, Währinger Strasse 17, 1090 Vienna, Austria
| | - Philipp Marquetand
- Institute of Theoretical Chemistry, Faculty of Chemistry, University of Vienna, Währinger Strasse 17, 1090 Vienna, Austria
- Vienna Research Platform on Accelerating Photoreaction Discovery, University of Vienna, Währinger Strasse 17, 1090 Vienna, Austria
- Data Science @ Uni Vienna, University of Vienna, Währinger Strasse 29, 1090 Vienna, Austria
| |
Collapse
|
11
|
Hu D, Xie Y, Peng J, Lan Z. On-the-Fly Symmetrical Quasi-Classical Dynamics with Meyer-Miller Mapping Hamiltonian for the Treatment of Nonadiabatic Dynamics at Conical Intersections. J Chem Theory Comput 2021; 17:3267-3279. [PMID: 34028268 DOI: 10.1021/acs.jctc.0c01249] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The on-the-fly version of the symmetrical quasi-classical dynamics method based on the Meyer-Miller mapping Hamiltonian (SQC/MM) is implemented to study the nonadiabatic dynamics at conical intersections of polyatomic systems. The current on-the-fly implementation of the SQC/MM method is based on the adiabatic representation and the dressed momentum. To include the zero-point energy (ZPE) correction of the electronic mapping variables, we employ both the γ-adjusted and γ-fixed approaches. Nonadiabatic dynamics of the methaniminium cation (CH2NH2+) and azomethane are simulated using the on-the-fly SQC/MM method. For CH2NH2+, both ZPE correction approaches give reasonable and consistent results. However, for azomethane, the γ-adjusted version of the SQC/MM dynamics behaves much better than the γ-fixed version. Further analysis indicates that it is always recommended to use the γ-adjusted SQC/MM dynamics in the on-the-fly simulation of photoinduced dynamics of polyatomic systems, particularly when the excited state is well separated from the ground state in the Franck-Condon region. This work indicates that the on-the-fly SQC/MM method is a powerful simulation protocol to deal with the nonadiabatic dynamics of realistic polyatomic systems.
Collapse
Affiliation(s)
- Deping Hu
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Environmental Theoretical Chemistry, South China Normal University, Guangzhou 510006, China.,School of Environment, South China Normal University, Guangzhou 510006, China
| | - Yu Xie
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Environmental Theoretical Chemistry, South China Normal University, Guangzhou 510006, China.,School of Environment, South China Normal University, Guangzhou 510006, China
| | - Jiawei Peng
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Environmental Theoretical Chemistry, South China Normal University, Guangzhou 510006, China.,School of Environment, South China Normal University, Guangzhou 510006, China
| | - Zhenggang Lan
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Environmental Theoretical Chemistry, South China Normal University, Guangzhou 510006, China.,School of Environment, South China Normal University, Guangzhou 510006, China
| |
Collapse
|
12
|
Westermayr J, Marquetand P. Deep learning for UV absorption spectra with SchNarc: First steps toward transferability in chemical compound space. J Chem Phys 2020; 153:154112. [DOI: 10.1063/5.0021915] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Affiliation(s)
- J. Westermayr
- Faculty of Chemistry, Institute of Theoretical Chemistry, University of Vienna, Währinger Str. 17, 1090 Vienna, Austria
| | - P. Marquetand
- Faculty of Chemistry, Institute of Theoretical Chemistry, University of Vienna, Währinger Str. 17, 1090 Vienna, Austria
- Vienna Research Platform on Accelerating Photoreaction Discovery, University of Vienna, Währinger Str. 17, 1090 Vienna, Austria
- Faculty of Chemistry, Data Science @ Uni Vienna, University of Vienna, Währinger Str. 29, 1090 Vienna, Austria
| |
Collapse
|
13
|
Mai S, González L. Molecular Photochemistry: Recent Developments in Theory. Angew Chem Int Ed Engl 2020; 59:16832-16846. [PMID: 32052547 PMCID: PMC7540682 DOI: 10.1002/anie.201916381] [Citation(s) in RCA: 108] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 02/12/2020] [Indexed: 12/16/2022]
Abstract
Photochemistry is a fascinating branch of chemistry that is concerned with molecules and light. However, the importance of simulating light-induced processes is reflected also in fields as diverse as biology, material science, and medicine. This Minireview highlights recent progress achieved in theoretical chemistry to calculate electronically excited states of molecules and simulate their photoinduced dynamics, with the aim of reaching experimental accuracy. We focus on emergent methods and give selected examples that illustrate the progress in recent years towards predicting complex electronic structures with strong correlation, calculations on large molecules, describing multichromophoric systems, and simulating non-adiabatic molecular dynamics over long time scales, for molecules in the gas phase or in complex biological environments.
Collapse
Affiliation(s)
- Sebastian Mai
- Photonics InstituteVienna University of TechnologyGusshausstrasse 27–291040ViennaAustria
| | - Leticia González
- Institute of Theoretical ChemistryFaculty of ChemistryUniversity of ViennaWähringer Strasse 171090ViennaAustria
| |
Collapse
|
14
|
Westermayr J, Marquetand P. Machine learning and excited-state molecular dynamics. MACHINE LEARNING-SCIENCE AND TECHNOLOGY 2020. [DOI: 10.1088/2632-2153/ab9c3e] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
15
|
Suchan J, Janoš J, Slavíček P. Pragmatic Approach to Photodynamics: Mixed Landau–Zener Surface Hopping with Intersystem Crossing. J Chem Theory Comput 2020; 16:5809-5820. [DOI: 10.1021/acs.jctc.0c00512] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Jiří Suchan
- Department of Physical Chemistry, University of Chemistry and Technology, Prague, Technická 5, 16628 Prague, Czech Republic
| | - Jiří Janoš
- Department of Physical Chemistry, University of Chemistry and Technology, Prague, Technická 5, 16628 Prague, Czech Republic
| | - Petr Slavíček
- Department of Physical Chemistry, University of Chemistry and Technology, Prague, Technická 5, 16628 Prague, Czech Republic
| |
Collapse
|
16
|
Curchod BFE, Glover WJ, Martínez TJ. SSAIMS-Stochastic-Selection Ab Initio Multiple Spawning for Efficient Nonadiabatic Molecular Dynamics. J Phys Chem A 2020; 124:6133-6143. [PMID: 32580552 DOI: 10.1021/acs.jpca.0c04113] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Ab initio multiple spawning provides a powerful and accurate way of describing the excited-state dynamics of molecular systems, whose strength resides in the proper description of coherence effects during nonadiabatic processes thanks to the coupling of trajectory basis functions. However, the simultaneous propagation of a large number of trajectory basis functions can be numerically inconvenient. We propose here an elegant and simple solution to this issue, which consists of (i) detecting uncoupled groups of coupled trajectory basis functions and (ii) selecting stochastically one of these groups to continue the ab initio multiple spawning dynamics. We show that this procedure can reproduce the results of full ab initio multiple spawning dynamics in cases where the uncoupled groups of trajectory basis functions stay uncoupled throughout the dynamics (which is often the case in high-dimensional problems). We present and discuss the aforementioned idea in detail and provide simple numerical applications on indole, ethylene, and protonated formaldimine, highlighting the potential of stochastic-selection ab initio multiple spawning.
Collapse
Affiliation(s)
- Basile F E Curchod
- Department of Chemistry, Durham University, South Road, Durham DH1 3LE, United Kingdom
| | - William J Glover
- NYU Shanghai, 1555 Century Ave., Shanghai 200122, China.,NYU-ECNU Center for Computational Chemistry at NYU Shanghai, 3663 Zhongshan Road North, Shanghai 200062, China.,Department of Chemistry, New York University, New York, New York 10003, United States
| | - Todd J Martínez
- Department of Chemistry and the PULSE Institute, Stanford University, Stanford, California 94305, United States.,SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| |
Collapse
|
17
|
Mai S, González L. Molekulare Photochemie: Moderne Entwicklungen in der theoretischen Chemie. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201916381] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Sebastian Mai
- Institut für Photonik Technische Universität Wien Gußhausstraße 27–29 1040 Wien Österreich
| | - Leticia González
- Institut für theoretische Chemie Fakultät für Chemie Universität Wien Währinger Straße 17 1090 Wien Österreich
| |
Collapse
|
18
|
Westermayr J, Gastegger M, Marquetand P. Combining SchNet and SHARC: The SchNarc Machine Learning Approach for Excited-State Dynamics. J Phys Chem Lett 2020; 11:3828-3834. [PMID: 32311258 PMCID: PMC7246974 DOI: 10.1021/acs.jpclett.0c00527] [Citation(s) in RCA: 106] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 04/20/2020] [Indexed: 05/26/2023]
Abstract
In recent years, deep learning has become a part of our everyday life and is revolutionizing quantum chemistry as well. In this work, we show how deep learning can be used to advance the research field of photochemistry by learning all important properties-multiple energies, forces, and different couplings-for photodynamics simulations. We simplify such simulations substantially by (i) a phase-free training skipping costly preprocessing of raw quantum chemistry data; (ii) rotationally covariant nonadiabatic couplings, which can either be trained or (iii) alternatively be approximated from only ML potentials, their gradients, and Hessians; and (iv) incorporating spin-orbit couplings. As the deep-learning method, we employ SchNet with its automatically determined representation of molecular structures and extend it for multiple electronic states. In combination with the molecular dynamics program SHARC, our approach termed SchNarc is tested on two polyatomic molecules and paves the way toward efficient photodynamics simulations of complex systems.
Collapse
Affiliation(s)
- Julia Westermayr
- Institute
of Theoretical Chemistry, Faculty of Chemistry, University of Vienna, Währinger Str. 17, 1090 Vienna, Austria
| | - Michael Gastegger
- Machine
Learning Group, Technical University of
Berlin, 10587 Berlin, Germany
| | - Philipp Marquetand
- Institute
of Theoretical Chemistry, Faculty of Chemistry, University of Vienna, Währinger Str. 17, 1090 Vienna, Austria
- Vienna
Research Platform on Accelerating Photoreaction Discovery, University of Vienna, Währinger Str. 17, 1090 Vienna, Austria
- Data
Science @ Uni Vienna, University of Vienna, Währinger Str. 29, 1090 Vienna, Austria
| |
Collapse
|
19
|
Westermayr J, Faber FA, Christensen AS, von Lilienfeld OA, Marquetand P. Neural networks and kernel ridge regression for excited states dynamics of CH2NH$_2^+$: From single-state to multi-state representations and multi-property machine learning models. MACHINE LEARNING-SCIENCE AND TECHNOLOGY 2020. [DOI: 10.1088/2632-2153/ab88d0] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
20
|
Ibele LM, Curchod BFE. A molecular perspective on Tully models for nonadiabatic dynamics. Phys Chem Chem Phys 2020; 22:15183-15196. [DOI: 10.1039/d0cp01353f] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
We present a series of standardized molecular tests for nonadiabatic dynamics, reminiscent of the one-dimensional Tully models proposed in 1990.
Collapse
Affiliation(s)
- Lea M. Ibele
- Department of Chemistry
- Durham University
- Durham DH1 3LE
- UK
| | | |
Collapse
|
21
|
Westermayr J, Gastegger M, Menger MFSJ, Mai S, González L, Marquetand P. Machine learning enables long time scale molecular photodynamics simulations. Chem Sci 2019; 10:8100-8107. [PMID: 31857878 PMCID: PMC6849489 DOI: 10.1039/c9sc01742a] [Citation(s) in RCA: 126] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 08/02/2019] [Indexed: 02/04/2023] Open
Abstract
Photo-induced processes are fundamental in nature but accurate simulations of their dynamics are seriously limited by the cost of the underlying quantum chemical calculations, hampering their application for long time scales. Here we introduce a method based on machine learning to overcome this bottleneck and enable accurate photodynamics on nanosecond time scales, which are otherwise out of reach with contemporary approaches. Instead of expensive quantum chemistry during molecular dynamics simulations, we use deep neural networks to learn the relationship between a molecular geometry and its high-dimensional electronic properties. As an example, the time evolution of the methylenimmonium cation for one nanosecond is used to demonstrate that machine learning algorithms can outperform standard excited-state molecular dynamics approaches in their computational efficiency while delivering the same accuracy.
Collapse
Affiliation(s)
- Julia Westermayr
- Institute of Theoretical Chemistry , Faculty of Chemistry , University of Vienna , 1090 Vienna , Austria .
| | - Michael Gastegger
- Machine Learning Group , Technical University of Berlin , 10587 Berlin , Germany
| | - Maximilian F S J Menger
- Institute of Theoretical Chemistry , Faculty of Chemistry , University of Vienna , 1090 Vienna , Austria .
- Dipartimento di Chimica e Chimica Industriale , University of Pisa , Via G. Moruzzi 13 , 56124 Pisa , Italy
| | - Sebastian Mai
- Institute of Theoretical Chemistry , Faculty of Chemistry , University of Vienna , 1090 Vienna , Austria .
| | - Leticia González
- Institute of Theoretical Chemistry , Faculty of Chemistry , University of Vienna , 1090 Vienna , Austria .
| | - Philipp Marquetand
- Institute of Theoretical Chemistry , Faculty of Chemistry , University of Vienna , 1090 Vienna , Austria .
| |
Collapse
|
22
|
Li X, Hu D, Xie Y, Lan Z. Analysis of trajectory similarity and configuration similarity in on-the-fly surface-hopping simulation on multi-channel nonadiabatic photoisomerization dynamics. J Chem Phys 2018; 149:244104. [DOI: 10.1063/1.5048049] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Affiliation(s)
- Xusong Li
- CAS Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
- Sino-Danish Center for Education and Research/Sino-Danish College, University of Chinese Academy of Sciences, Beijing 100049, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Deping Hu
- CAS Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yu Xie
- The Environmental Research Institute, MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China
| | - Zhenggang Lan
- CAS Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
- Sino-Danish Center for Education and Research/Sino-Danish College, University of Chinese Academy of Sciences, Beijing 100049, China
- The Environmental Research Institute, MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China
| |
Collapse
|
23
|
Ha JK, Lee IS, Min SK. Surface Hopping Dynamics beyond Nonadiabatic Couplings for Quantum Coherence. J Phys Chem Lett 2018; 9:1097-1104. [PMID: 29439572 DOI: 10.1021/acs.jpclett.8b00060] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Description of correct electron-nuclear couplings is crucial in modeling of nonadiabatic dynamics. Within traditional semiclassical or mixed quantum-classical dynamics, the coupling between quantum electronic states and classical nuclear trajectories is governed by nonadiabatic coupling vectors coupled to classical nuclear momenta. This enables us to develop a very powerful nonadiabatic dynamics algorithm, namely, surface hopping dynamics, which can describe the splitting of nuclear wave packets and detailed balance. Despite its efficiency and practicality, it suffers from the lack of quantum decoherence due to incorrect accounts for the electron-nuclear coupling. Here we present a new surface hopping algorithm based on the exact electron-nuclear correlation from the exact factorization of molecular wave functions. This algorithm demands comparable computational costs to existing surface hopping methods. Numerical simulations with two-state models and a multidimensional multistate realistic molecule show that the electron-nuclear coupling beyond the nonadiabatic coupling terms can describe the quantum coherence properly.
Collapse
Affiliation(s)
- Jong-Kwon Ha
- Department of Chemistry, School of Natural Science, Ulsan National Institute of Science and Technology (UNIST) , 50 UNIST-gil, Ulsan 44919, Republic of Korea
| | - In Seong Lee
- Department of Chemistry, School of Natural Science, Ulsan National Institute of Science and Technology (UNIST) , 50 UNIST-gil, Ulsan 44919, Republic of Korea
| | - Seung Kyu Min
- Department of Chemistry, School of Natural Science, Ulsan National Institute of Science and Technology (UNIST) , 50 UNIST-gil, Ulsan 44919, Republic of Korea
| |
Collapse
|
24
|
Hollas D, Šištík L, Hohenstein EG, Martínez TJ, Slavíček P. Nonadiabatic Ab Initio Molecular Dynamics with the Floating Occupation Molecular Orbital-Complete Active Space Configuration Interaction Method. J Chem Theory Comput 2017; 14:339-350. [DOI: 10.1021/acs.jctc.7b00958] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Daniel Hollas
- Department
of Physical Chemistry, University of Chemistry and Technology, Prague, Technická 5, 16628 Prague 6, Czech Republic
| | - Lukáš Šištík
- Department
of Physical Chemistry, University of Chemistry and Technology, Prague, Technická 5, 16628 Prague 6, Czech Republic
| | - Edward G. Hohenstein
- Department
of Chemistry and Biochemistry, The City College of New York, New York, New York 10031, United States
- PhD
Program in Chemistry, The Graduate Center of the City University of New York, New York, New York 10016, United States
| | - Todd J. Martínez
- Department
of Chemistry and the PULSE Institute, Stanford University, Stanford, California 94305, United States
- SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Petr Slavíček
- Department
of Physical Chemistry, University of Chemistry and Technology, Prague, Technická 5, 16628 Prague 6, Czech Republic
- J. Heyrovský Institute of Physical Chemistry, Dolejškova 3, 18223 Prague 8, Czech Republic
| |
Collapse
|
25
|
Li X, Xie Y, Hu D, Lan Z. Analysis of the Geometrical Evolution in On-the-Fly Surface-Hopping Nonadiabatic Dynamics with Machine Learning Dimensionality Reduction Approaches: Classical Multidimensional Scaling and Isometric Feature Mapping. J Chem Theory Comput 2017; 13:4611-4623. [DOI: 10.1021/acs.jctc.7b00394] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Xusong Li
- CAS
Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy
and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
- Sino-Danish
Center for Education and Research/Sino-Danish College, University of Chinese Academy of Sciences, Beijing 100049, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Department
of Chemistry, Technical University of Denmark, Kemitorvet 207, 2800, Kgs. Lyngby, Denmark
| | - Yu Xie
- CAS
Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy
and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
| | - Deping Hu
- CAS
Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy
and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhenggang Lan
- CAS
Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy
and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
- Sino-Danish
Center for Education and Research/Sino-Danish College, University of Chinese Academy of Sciences, Beijing 100049, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
26
|
Pijeau S, Hohenstein EG. Improved Complete Active Space Configuration Interaction Energies with a Simple Correction from Density Functional Theory. J Chem Theory Comput 2017; 13:1130-1146. [DOI: 10.1021/acs.jctc.6b00893] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Shiela Pijeau
- Department
of Chemistry and Biochemistry, The City College of New York, New York, New York 10031, United States
| | - Edward G. Hohenstein
- Department
of Chemistry and Biochemistry, The City College of New York, New York, New York 10031, United States
- Ph.D.
Program in Chemistry, The City University of New York, New York, New York 10016, United States
| |
Collapse
|
27
|
Du L, Lan Z. An On-the-Fly Surface-Hopping Program JADE for Nonadiabatic Molecular Dynamics of Polyatomic Systems: Implementation and Applications. J Chem Theory Comput 2016; 11:1360-74. [PMID: 26574348 DOI: 10.1021/ct501106d] [Citation(s) in RCA: 102] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Nonadiabatic dynamics simulations have rapidly become an indispensable tool for understanding ultrafast photochemical processes in complex systems. Here, we present our recently developed on-the-fly nonadiabatic dynamics package, JADE, which allows researchers to perform nonadiabatic excited-state dynamics simulations of polyatomic systems at an all-atomic level. The nonadiabatic dynamics is based on Tully's surface-hopping approach. Currently, several electronic structure methods (CIS, TDHF, TDDFT(RPA/TDA), and ADC(2)) are supported, especially TDDFT, aiming at performing nonadiabatic dynamics on medium- to large-sized molecules. The JADE package has been interfaced with several quantum chemistry codes, including Turbomole, Gaussian, and Gamess (US). To consider environmental effects, the Langevin dynamics was introduced as an easy-to-use scheme into the standard surface-hopping dynamics. The JADE package is mainly written in Fortran for greater numerical performance and Python for flexible interface construction, with the intent of providing open-source, easy-to-use, well-modularized, and intuitive software in the field of simulations of photochemical and photophysical processes. To illustrate the possible applications of the JADE package, we present a few applications of excited-state dynamics for various polyatomic systems, such as the methaniminium cation, fullerene (C20), p-dimethylaminobenzonitrile (DMABN) and its primary amino derivative aminobenzonitrile (ABN), and 10-hydroxybenzo[h]quinoline (10-HBQ).
Collapse
Affiliation(s)
- Likai Du
- Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences , Qingdao, 266101 Shandong, People's Republic of China.,University of Chinese Academy of Sciences , Beijing 100049, People's Republic of China.,The Qingdao Key Lab of Solar Energy Utilization and Energy Storage Technology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences , Qingdao, 266101 Shandong, People's Republic of China
| | - Zhenggang Lan
- Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences , Qingdao, 266101 Shandong, People's Republic of China.,University of Chinese Academy of Sciences , Beijing 100049, People's Republic of China.,The Qingdao Key Lab of Solar Energy Utilization and Energy Storage Technology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences , Qingdao, 266101 Shandong, People's Republic of China
| |
Collapse
|
28
|
Fdez. Galván I, Delcey MG, Pedersen TB, Aquilante F, Lindh R. Analytical State-Average Complete-Active-Space Self-Consistent Field Nonadiabatic Coupling Vectors: Implementation with Density-Fitted Two-Electron Integrals and Application to Conical Intersections. J Chem Theory Comput 2016; 12:3636-53. [DOI: 10.1021/acs.jctc.6b00384] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
| | - Mickaël G. Delcey
- Chemical
Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- Kenneth
S. Pitzer Center for Theoretical Chemistry, Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Thomas Bondo Pedersen
- Centre
for Theoretical and Computational Chemistry, Department of Chemistry, University of Oslo, P.O.
Box 1033 Blindern, 0315 Oslo, Norway
| | - Francesco Aquilante
- Dipartimento
di Chimica “G. Ciamician”, Università di Bologna, Via F. Selmi 2, IT-40126 Bologna, Italy
| | | |
Collapse
|
29
|
Electron wavepacket approaches to non-adiabatic transition processes in the internal rotational motion of H2CNH2+ – Charge oscillation due to electronic coherence. Chem Phys Lett 2015. [DOI: 10.1016/j.cplett.2015.06.081] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
30
|
Hohenstein EG, Bouduban MEF, Song C, Luehr N, Ufimtsev IS, Martínez TJ. Analytic first derivatives of floating occupation molecular orbital-complete active space configuration interaction on graphical processing units. J Chem Phys 2015; 143:014111. [DOI: 10.1063/1.4923259] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Edward G. Hohenstein
- Department of Chemistry and the PULSE Institute,
Stanford University, Stanford, California 94305,
USA
- SLAC National Accelerator Laboratory, Menlo Park, California 94025,
USA
| | - Marine E. F. Bouduban
- Department of Chemistry and the PULSE Institute,
Stanford University, Stanford, California 94305,
USA
- SLAC National Accelerator Laboratory, Menlo Park, California 94025,
USA
- Group for Photochemical Dynamics, Institute of Chemical
Sciences and Engineering, École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | - Chenchen Song
- Department of Chemistry and the PULSE Institute,
Stanford University, Stanford, California 94305,
USA
- SLAC National Accelerator Laboratory, Menlo Park, California 94025,
USA
| | - Nathan Luehr
- Department of Chemistry and the PULSE Institute,
Stanford University, Stanford, California 94305,
USA
- SLAC National Accelerator Laboratory, Menlo Park, California 94025,
USA
| | - Ivan S. Ufimtsev
- Department of Chemistry and the PULSE Institute,
Stanford University, Stanford, California 94305,
USA
- SLAC National Accelerator Laboratory, Menlo Park, California 94025,
USA
| | - Todd J. Martínez
- Department of Chemistry and the PULSE Institute,
Stanford University, Stanford, California 94305,
USA
- SLAC National Accelerator Laboratory, Menlo Park, California 94025,
USA
| |
Collapse
|
31
|
Nonadiabatic dynamics study of methaniminium with ORMAS: Challenges of incomplete active spaces in dynamics simulations. COMPUT THEOR CHEM 2014. [DOI: 10.1016/j.comptc.2014.03.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
32
|
Barbatti M, Crespo-Otero R. Surface Hopping Dynamics with DFT Excited States. DENSITY-FUNCTIONAL METHODS FOR EXCITED STATES 2014; 368:415-44. [DOI: 10.1007/128_2014_605] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
33
|
Zimmermann T, Vaníček J. Evaluation of the importance of spin-orbit couplings in the nonadiabatic quantum dynamics with quantum fidelity and with its efficient "on-the-fly" ab initio semiclassical approximation. J Chem Phys 2013; 137:22A516. [PMID: 23249053 DOI: 10.1063/1.4738878] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We propose to measure the importance of spin-orbit couplings (SOCs) in the nonadiabatic molecular quantum dynamics rigorously with quantum fidelity. To make the criterion practical, quantum fidelity is estimated efficiently with the multiple-surface dephasing representation (MSDR). The MSDR is a semiclassical method that includes nuclear quantum effects through interference of mixed quantum-classical trajectories without the need for the Hessian of potential energy surfaces. Two variants of the MSDR are studied, in which the nuclei are propagated either with the fewest-switches surface hopping or with the locally mean field dynamics. The fidelity criterion and MSDR are first tested on one-dimensional model systems amenable to numerically exact quantum dynamics. Then, the MSDR is combined with "on-the-fly" computed electronic structure to measure the importance of SOCs and nonadiabatic couplings in the photoisomerization dynamics of CH(2)NH(2)(+) considering 20 electronic states and in the collision of F + H(2) considering six electronic states.
Collapse
Affiliation(s)
- Tomáš Zimmermann
- Laboratory of Theoretical Physical Chemistry, Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | | |
Collapse
|
34
|
Tapavicza E, Bellchambers GD, Vincent JC, Furche F. Ab initio non-adiabatic molecular dynamics. Phys Chem Chem Phys 2013; 15:18336-48. [DOI: 10.1039/c3cp51514a] [Citation(s) in RCA: 117] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
35
|
Plasser F, Barbatti M, Aquino AJA, Lischka H. Electronically excited states and photodynamics: a continuing challenge. Theor Chem Acc 2012. [DOI: 10.1007/s00214-011-1073-y] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
36
|
Szalay PG, Müller T, Gidofalvi G, Lischka H, Shepard R. Multiconfiguration Self-Consistent Field and Multireference Configuration Interaction Methods and Applications. Chem Rev 2011; 112:108-81. [DOI: 10.1021/cr200137a] [Citation(s) in RCA: 470] [Impact Index Per Article: 33.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Péter G. Szalay
- Laboratory for Theoretical Chemistry, Institute of Chemistry, Eötvös Loránd University, P. O. Box 32, H-1518 Budapest, Hungary
| | - Thomas Müller
- Jülich Supercomputer Centre, Institute of Advanced Simulation, Forschungszentrum Jülich, D-52425 Jülich, Germany
| | - Gergely Gidofalvi
- Department of Chemistry and Biochemistry, Gonzaga University, 502 East Boone Avenue, Spokane, Washington 99258-0102, United States
| | - Hans Lischka
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409-1061, United States
- Institute for Theoretical Chemistry, University of Vienna, Waehringerstrasse 17, A-1090 Vienna, Austria
| | - Ron Shepard
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Argonne, Illinois 60439, United States
| |
Collapse
|
37
|
Tavernelli I, Curchod BFE, Laktionov A, Rothlisberger U. Nonadiabatic coupling vectors for excited states within time-dependent density functional theory in the Tamm–Dancoff approximation and beyond. J Chem Phys 2010; 133:194104. [DOI: 10.1063/1.3503765] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
38
|
Ruckenbauer M, Barbatti M, Müller T, Lischka H. Nonadiabatic Excited-State Dynamics with Hybrid ab Initio Quantum-Mechanical/Molecular-Mechanical Methods: Solvation of the Pentadieniminium Cation in Apolar Media. J Phys Chem A 2010; 114:6757-65. [DOI: 10.1021/jp103101t] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Matthias Ruckenbauer
- Institute for Theoretical Chemistry, University of Vienna, Waehringerstrasse 17, A-1090 Vienna, Austria, Institute of Advanced Simulation, Jülich Supercomputer Centre, Research Centre Jülich, D-52425 Jülich, Germany, and Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Flemingovo nam. 2, CZ-16610 Prague 6, Czech Republic
| | - Mario Barbatti
- Institute for Theoretical Chemistry, University of Vienna, Waehringerstrasse 17, A-1090 Vienna, Austria, Institute of Advanced Simulation, Jülich Supercomputer Centre, Research Centre Jülich, D-52425 Jülich, Germany, and Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Flemingovo nam. 2, CZ-16610 Prague 6, Czech Republic
| | - Thomas Müller
- Institute for Theoretical Chemistry, University of Vienna, Waehringerstrasse 17, A-1090 Vienna, Austria, Institute of Advanced Simulation, Jülich Supercomputer Centre, Research Centre Jülich, D-52425 Jülich, Germany, and Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Flemingovo nam. 2, CZ-16610 Prague 6, Czech Republic
| | - Hans Lischka
- Institute for Theoretical Chemistry, University of Vienna, Waehringerstrasse 17, A-1090 Vienna, Austria, Institute of Advanced Simulation, Jülich Supercomputer Centre, Research Centre Jülich, D-52425 Jülich, Germany, and Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Flemingovo nam. 2, CZ-16610 Prague 6, Czech Republic
| |
Collapse
|
39
|
Non-adiabatic dynamics using time-dependent density functional theory: Assessing the coupling strengths. ACTA ACUST UNITED AC 2009. [DOI: 10.1016/j.theochem.2009.04.020] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
40
|
Barbatti M, Aquino AJA, Lischka H, Schriever C, Lochbrunner S, Riedle E. Ultrafast internal conversion pathway and mechanism in 2-(2'-hydroxyphenyl)benzothiazole: a case study for excited-state intramolecular proton transfer systems. Phys Chem Chem Phys 2009; 11:1406-15. [PMID: 19224042 DOI: 10.1039/b814255f] [Citation(s) in RCA: 138] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We study the ultrafast electronic relaxation of the proton transfer compound 2-(2'-hydroxyphenyl)benzothiazole (HBT) in a joint approach of femtosecond pump-probe experiments and dynamics simulations. The measurements show a lifetime of 2.6 ps for the isolated molecule in the gas phase in contrast to approximately 100 ps for cyclohexane solution. This unexpected decrease by a factor of 40 for the gas phase is explained by ultrafast internal conversion to the ground state promoted by an inter-ring torsional mode. The quantum chemical calculations based on multireference configuration interaction clearly demonstrate that a S(0)/S(1) conical intersection at a 90 degrees twisted structure exists and is responsible for the ultrafast decay. The reaction path leading from the keto form of HBT to this intersection is practically barrierless on the S(1) surface. The on-the-fly dynamics simulations using time-dependent density functional theory show that after electronic excitation to the S(1) state and after fast excited-state proton transfer (30-50 fs), HBT reaches the region of the S(1)/S(0) crossing within about 500 fs, which will lead to the observed 2.6 ps deactivation to the ground state. After the internal conversion, HBT branches in two populations, one that rapidly closes the proton transfer cycle and another (trans-keto) that takes approximately 100 ps for that step.
Collapse
Affiliation(s)
- Mario Barbatti
- Institute for Theoretical Chemistry, University of Vienna, Waehringerstrasse 17, A-1090, Vienna, Austria.
| | | | | | | | | | | |
Collapse
|
41
|
Abstract
Combined complete active space perturbation theory (CASPT2) and multireference configuration interaction calculations with single and double excitations (MR-CISD) were performed in order to explore possible deactivation pathways of thymine after photoexcitation. Equilibrium geometries are reported together with a total of eight extremes (minima or maxima) on the crossing seam (MXS), through which such radiationless transitions may occur. Furthermore, conformational analysis allows grouping these conical intersections in five distinct types. Reaction paths were calculated connecting the S1 (1)n pi* minimum with the lowest-energy MXS of each group. Two distinct types of paths were observed, both with features that should delay the internal conversion to the ground state. This is shown to provide a possible explanation for the relatively long excited-state lifetime of thymine.
Collapse
Affiliation(s)
- Gunther Zechmann
- Physical and Theoretical Chemistry Laboratory, Oxford University, South Parks Road, Oxford OX1 3QZ, UK.
| | | |
Collapse
|
42
|
|
43
|
Fabiano E, Keal T, Thiel W. Implementation of surface hopping molecular dynamics using semiempirical methods. Chem Phys 2008. [DOI: 10.1016/j.chemphys.2008.01.044] [Citation(s) in RCA: 196] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
44
|
Antol I, Vazdar M, Barbatti M, Eckert-Maksić M. The effect of protonation on the photodissociation processes in formamide – An ab initio surface hopping dynamics study. Chem Phys 2008. [DOI: 10.1016/j.chemphys.2008.01.026] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
45
|
Barbatti M, Belz S, Leibscher M, Lischka H, Manz J. Sensitivity of femtosecond quantum dynamics and control with respect to non-adiabatic couplings: Model simulations for the cis–trans isomerization of the dideuterated methaniminium cation. Chem Phys 2008. [DOI: 10.1016/j.chemphys.2008.01.053] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
46
|
Barbatti M, Lischka H. Nonadiabatic Deactivation of 9H-Adenine: A Comprehensive Picture Based on Mixed Quantum−Classical Dynamics. J Am Chem Soc 2008; 130:6831-9. [DOI: 10.1021/ja800589p] [Citation(s) in RCA: 180] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Mario Barbatti
- Institute for Theoretical Chemistry, University of Vienna, Waehringerstrasse 17, 1090-Vienna, Austria
| | - Hans Lischka
- Institute for Theoretical Chemistry, University of Vienna, Waehringerstrasse 17, 1090-Vienna, Austria
| |
Collapse
|
47
|
Antol I, Eckert-Maksić M, Barbatti M, Lischka H. Simulation of the photodeactivation of formamide in the nO-pi* and pi-pi* states: an ab initio on-the-fly surface-hopping dynamics study. J Chem Phys 2008; 127:234303. [PMID: 18154378 DOI: 10.1063/1.2804862] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The short-time photodynamics (1 ps) of formamide in its low-lying singlet excited n(O)-pi(*) and pi-pi(*) states have been investigated by the direct trajectory surface-hopping method based on multiconfigurational ab initio calculations. The simulations showed that in both states, the primary deactivation process is C-N bond dissociation. In the ground state, the energy is transferred to (a) translational motion of the HCO and NH(2) fragments, (b) additional C-H dissociation from the vibrationally hot HCO fragment, or (c) formation of NH(3) and CO. In addition to the C-N dissociation pathway, C-O bond fission is found to be an additional primary deactivation path in the pi-pi(*) dynamics. From fractional occupations of trajectories, lifetimes of formamide were estimated: tau(S(1))=441 fs and tau(S(2))=66 fs.
Collapse
Affiliation(s)
- Ivana Antol
- Division of Organic Chemistry and Biochemistry, Rudjer Bosković Institute, P.O. Box 180, HR-10002 Zagreb, Croatia
| | | | | | | |
Collapse
|
48
|
Ko C, Malick DK, Braden DA, Friesner RA, Martínez TJ. Pseudospectral time-dependent density functional theory. J Chem Phys 2008; 128:104103. [DOI: 10.1063/1.2834222] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
49
|
Nonadiabatic Excited-State Dynamics of Aromatic Heterocycles: Toward the Time-Resolved Simulation of Nucleobases. ACTA ACUST UNITED AC 2008. [DOI: 10.1007/978-1-4020-8184-2_8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
50
|
Barbatti M, Ruckenbauer M, Szymczak JJ, Aquino AJA, Lischka H. Nonadiabatic excited-state dynamics of polar π-systems and related model compounds of biological relevance. Phys Chem Chem Phys 2008; 10:482-94. [DOI: 10.1039/b709315m] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|