Papp D, Szidarovszky T, Császár AG. A general variational approach for computing rovibrational resonances of polyatomic molecules. Application to the weakly bound H
2He
+ and H
2⋅CO systems.
J Chem Phys 2018;
147:094106. [PMID:
28886650 DOI:
10.1063/1.5000680]
[Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The quasi-variational quantum chemical protocol and code GENIUSH [E. Mátyus et al., J. Chem. Phys. 130, 134112 (2009) and C. Fábri et al., J. Chem. Phys. 134, 074105 (2011)] has been augmented with the complex absorbing potential (CAP) technique, yielding a method for the determination of rovibrational resonance states. Due to the effective implementation of the CAP technique within GENIUSH, the GENIUSH-CAP code is a powerful tool for the study of important dynamical features of arbitrary-sized molecular systems with arbitrary composition above their first dissociation limit. The GENIUSH-CAP code has been tested and validated on the H2He+ cation: the computed resonance energies and lifetimes are compared to those obtained with a previously developed triatomic rovibrational resonance-computing code, D2FOPI-CCS [T. Szidarovszky and A. G. Császár Mol. Phys. 111, 2131 (2013)], utilizing the complex coordinate scaling method. A unique feature of the GENIUSH-CAP protocol is that it allows the simple implementation of reduced-dimensional dynamical models. To prove this, resonance energies and lifetimes of the H2⋅CO van der Waals complex have been computed utilizing a four-dimensional model (freezing the two monomer stretches), and a related potential energy surface, of the complex.
Collapse