1
|
ElSawy KM. Utility of Brownian dynamics simulations in chemistry and biology: A comprehensive review. Biochim Biophys Acta Gen Subj 2025; 1869:130740. [PMID: 39694298 DOI: 10.1016/j.bbagen.2024.130740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 12/09/2024] [Accepted: 12/10/2024] [Indexed: 12/20/2024]
Abstract
Brownian dynamics (BD) simulations, a powerful computer simulation tool that has gained significant attraction in investigating the intricate dynamics of chemical and biological systems. By meticulously modeling the diffusive motion of molecules and their intricate interactions, BD simulations offer invaluable insights into a diverse array of phenomena, including reaction kinetics, molecular transport, and biomolecular association. This comprehensive review delves into the utility of BD simulations within the realms of chemistry and biology. We meticulously explore the theoretical underpinnings of the technique, critically analyze its strengths and limitations, and showcase its diverse applications across various scientific domains. By providing a comprehensive analysis of the existing literature, we aim to illuminate the potential of BD simulations to significantly advance our understanding of complex chemical and biological systems, ultimately contributing to the development of innovative therapeutic solutions serving a broad range of biomedical applications.
Collapse
Affiliation(s)
- Karim M ElSawy
- Department of Chemistry, College of Science, Qassim University, Mulaidah 52571, Saudi Arabia.
| |
Collapse
|
2
|
Grassmann G, Miotto M, Desantis F, Di Rienzo L, Tartaglia GG, Pastore A, Ruocco G, Monti M, Milanetti E. Computational Approaches to Predict Protein-Protein Interactions in Crowded Cellular Environments. Chem Rev 2024; 124:3932-3977. [PMID: 38535831 PMCID: PMC11009965 DOI: 10.1021/acs.chemrev.3c00550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 02/20/2024] [Accepted: 02/21/2024] [Indexed: 04/11/2024]
Abstract
Investigating protein-protein interactions is crucial for understanding cellular biological processes because proteins often function within molecular complexes rather than in isolation. While experimental and computational methods have provided valuable insights into these interactions, they often overlook a critical factor: the crowded cellular environment. This environment significantly impacts protein behavior, including structural stability, diffusion, and ultimately the nature of binding. In this review, we discuss theoretical and computational approaches that allow the modeling of biological systems to guide and complement experiments and can thus significantly advance the investigation, and possibly the predictions, of protein-protein interactions in the crowded environment of cell cytoplasm. We explore topics such as statistical mechanics for lattice simulations, hydrodynamic interactions, diffusion processes in high-viscosity environments, and several methods based on molecular dynamics simulations. By synergistically leveraging methods from biophysics and computational biology, we review the state of the art of computational methods to study the impact of molecular crowding on protein-protein interactions and discuss its potential revolutionizing effects on the characterization of the human interactome.
Collapse
Affiliation(s)
- Greta Grassmann
- Department
of Biochemical Sciences “Alessandro Rossi Fanelli”, Sapienza University of Rome, Rome 00185, Italy
- Center
for Life Nano & Neuro Science, Istituto
Italiano di Tecnologia, Rome 00161, Italy
| | - Mattia Miotto
- Center
for Life Nano & Neuro Science, Istituto
Italiano di Tecnologia, Rome 00161, Italy
| | - Fausta Desantis
- Center
for Life Nano & Neuro Science, Istituto
Italiano di Tecnologia, Rome 00161, Italy
- The
Open University Affiliated Research Centre at Istituto Italiano di
Tecnologia, Genoa 16163, Italy
| | - Lorenzo Di Rienzo
- Center
for Life Nano & Neuro Science, Istituto
Italiano di Tecnologia, Rome 00161, Italy
| | - Gian Gaetano Tartaglia
- Center
for Life Nano & Neuro Science, Istituto
Italiano di Tecnologia, Rome 00161, Italy
- Department
of Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia, Genoa 16163, Italy
- Center
for Human Technologies, Genoa 16152, Italy
| | - Annalisa Pastore
- Experiment
Division, European Synchrotron Radiation
Facility, Grenoble 38043, France
| | - Giancarlo Ruocco
- Center
for Life Nano & Neuro Science, Istituto
Italiano di Tecnologia, Rome 00161, Italy
- Department
of Physics, Sapienza University, Rome 00185, Italy
| | - Michele Monti
- RNA
System Biology Lab, Department of Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia, Genoa 16163, Italy
| | - Edoardo Milanetti
- Center
for Life Nano & Neuro Science, Istituto
Italiano di Tecnologia, Rome 00161, Italy
- Department
of Physics, Sapienza University, Rome 00185, Italy
| |
Collapse
|
3
|
Jonas HJ, Schall P, Bolhuis PG. Activity affects the stability, deformation and breakage dynamics of colloidal architectures. SOFT MATTER 2024; 20:2162-2177. [PMID: 38351836 DOI: 10.1039/d3sm01255g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/29/2024]
Abstract
Living network architectures, such as the cytoskeleton, are characterized by continuous energy injection, leading to rich but poorly understood non-equilibrium physics. There is a need for a well-controlled (experimental) model system that allows basic insight into such non-equilibrium processes. Activated self-assembled colloidal architectures can fulfill this role, as colloidal patchy particles can self-assemble into colloidal architectures such as chains, rings and networks, while self-propelled colloidal particles can simultaneously inject energy into the architecture, alter the dynamical behavior of the system, and cause the self-assembled structures to deform and break. To gain insight, we conduct a numerical investigation into the effect of introducing self-propelled colloids modeled as active Brownian particles, into self-assembling colloidal dispersions of dipatch and tripatch particles. For the interaction potential, we use a previously designed model that accurately can reproduce experimental colloidal self-assembly via the critical Casimir force [Jonas et al., J. Chem. Phys., 2021, 135, 034902]. Here, we focus primarily on the breakage dynamics of three archetypal substructures, namely, dimers, chains, and rings. We find a rich response behavior to the introduction of self-propelled particles, in which the activity can enhance as well as reduce the stability of the architecture, deform the intact structures and alter the mechanisms of fragmentation. We rationalize these findings in terms of the rate and mechanisms of breakage as a function of the direction and magnitude of the active force by separating the bond breakage process into two stages: escaping the potential well and separation of the particles. The results set the stage for investigating more complex architectures.
Collapse
Affiliation(s)
- H J Jonas
- van 't Hoff Institute for Molecular Sciences, University of Amsterdam, PO Box 94157, 1090 GD Amsterdam, The Netherlands.
| | - P Schall
- van der Waals-Zeeman Institute, Institute of Physics, University of Amsterdam, PO Box 94485, 1090 GL Amsterdam, The Netherlands
| | - P G Bolhuis
- van 't Hoff Institute for Molecular Sciences, University of Amsterdam, PO Box 94157, 1090 GD Amsterdam, The Netherlands.
| |
Collapse
|
4
|
Bila H, Paloja K, Caroprese V, Kononenko A, Bastings MM. Multivalent Pattern Recognition through Control of Nano-Spacing in Low-Valency Super-Selective Materials. J Am Chem Soc 2022; 144:21576-21586. [DOI: 10.1021/jacs.2c08529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Affiliation(s)
- Hale Bila
- Programmable Biomaterials Laboratory (PBL), Institute of Materials (IMX), Interfaculty Bioengineering Institute (IBI), School of Engineering (STI), Ecole Polytechnique Fédérale Lausanne (EPFL), Lausanne 1015, Switzerland
| | - Kaltrina Paloja
- Programmable Biomaterials Laboratory (PBL), Institute of Materials (IMX), Interfaculty Bioengineering Institute (IBI), School of Engineering (STI), Ecole Polytechnique Fédérale Lausanne (EPFL), Lausanne 1015, Switzerland
| | - Vincenzo Caroprese
- Programmable Biomaterials Laboratory (PBL), Institute of Materials (IMX), Interfaculty Bioengineering Institute (IBI), School of Engineering (STI), Ecole Polytechnique Fédérale Lausanne (EPFL), Lausanne 1015, Switzerland
| | - Artem Kononenko
- Programmable Biomaterials Laboratory (PBL), Institute of Materials (IMX), Interfaculty Bioengineering Institute (IBI), School of Engineering (STI), Ecole Polytechnique Fédérale Lausanne (EPFL), Lausanne 1015, Switzerland
| | - Maartje M.C. Bastings
- Programmable Biomaterials Laboratory (PBL), Institute of Materials (IMX), Interfaculty Bioengineering Institute (IBI), School of Engineering (STI), Ecole Polytechnique Fédérale Lausanne (EPFL), Lausanne 1015, Switzerland
| |
Collapse
|
5
|
Mishra B, Johnson ME. Speed limits of protein assembly with reversible membrane localization. J Chem Phys 2021; 154:194101. [PMID: 34240891 PMCID: PMC8131109 DOI: 10.1063/5.0045867] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 04/26/2021] [Indexed: 12/15/2022] Open
Abstract
Protein assembly is often studied in a three-dimensional solution, but a significant fraction of binding events involve proteins that can reversibly bind and diffuse along a two-dimensional surface. In a recent study, we quantified how proteins can exploit the reduced dimensionality of the membrane to trigger complex formation. Here, we derive a single expression for the characteristic timescale of this multi-step assembly process, where the change in dimensionality renders rates and concentrations effectively time-dependent. We find that proteins can accelerate dimer formation due to an increase in relative concentration, driving more frequent collisions, which often win out over slow-downs due to diffusion. Our model contains two protein populations that dimerize with one another and use a distinct site to bind membrane lipids, creating a complex reaction network. However, by identifying two major rate-limiting pathways to reach an equilibrium steady-state, we derive an excellent approximation for the mean first passage time when lipids are in abundant supply. Our theory highlights how the "sticking rate" or effective adsorption coefficient of the membrane is central in controlling timescales. We also derive a corrected localization rate to quantify how the geometry of the system and diffusion can reduce rates of membrane localization. We validate and test our results using kinetic and particle-based reaction-diffusion simulations. Our results establish how the speed of key assembly steps can shift by orders-of-magnitude when membrane localization is possible, which is critical to understanding mechanisms used in cells.
Collapse
Affiliation(s)
- Bhavya Mishra
- TC Jenkins Department of Biophysics, Johns Hopkins University, 3400 N Charles St., Baltimore, Maryland 21218, USA
| | - Margaret E. Johnson
- TC Jenkins Department of Biophysics, Johns Hopkins University, 3400 N Charles St., Baltimore, Maryland 21218, USA
| |
Collapse
|
6
|
A quantitative view on multivalent nanomedicine targeting. Adv Drug Deliv Rev 2021; 169:1-21. [PMID: 33264593 DOI: 10.1016/j.addr.2020.11.010] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 11/11/2020] [Accepted: 11/21/2020] [Indexed: 12/17/2022]
Abstract
Although the concept of selective delivery has been postulated over 100 years ago, no targeted nanomedicine has been clinically approved so far. Nanoparticles modified with targeting ligands to promote the selective delivery of therapeutics towards a specific cell population have been extensively reported. However, the rational design of selective particles is still challenging. One of the main reasons for this is the lack of quantitative theoretical and experimental understanding of the interactions involved in cell targeting. In this review, we discuss new theoretical models and experimental methods that provide a quantitative view of targeting. We show the new advancements in multivalency theory enabling the rational design of super-selective nanoparticles. Furthermore, we present the innovative approaches to obtain key targeting parameters at the single-cell and single molecule level and their role in the design of targeting nanoparticles. We believe that the combination of new theoretical multivalent design and experimental methods to quantify receptors and ligands aids in the rational design and clinical translation of targeted nanomedicines.
Collapse
|
7
|
Wang H, Huang N, Dangerfield T, Johnson KA, Gao J, Elber R. Exploring the Reaction Mechanism of HIV Reverse Transcriptase with a Nucleotide Substrate. J Phys Chem B 2020; 124:4270-4283. [PMID: 32364738 PMCID: PMC7260111 DOI: 10.1021/acs.jpcb.0c02632] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Enzymatic reactions consist of several steps: (i) a weak binding event of the substrate to the enzyme, (ii) an induced fit or a protein conformational transition upon ligand binding, (iii) the chemical reaction, and (iv) the release of the product. Here we focus on step iii of the reaction of a DNA polymerase, HIV RT, with a nucleotide. We determine the rate and the free energy profile for the addition of a nucleotide to a DNA strand using a combination of a QM/MM model, the string method, and exact Milestoning. The barrier height and the time scale of the reaction are consistent with experiment. We show that the observables (free energies and mean first passage time) converge rapidly, as a function of the Milestoning iteration number. We also consider the substitution of an oxygen of the incoming nucleotide by a nonbridging sulfur atom and its impact on the enzymatic reaction. This substitution has been suggested in the past as a tool to examine the influence of the chemical step on the overall rate. Our joint computational and experimental study suggests that the impact of the substitution is small. Computationally, the differences between the two are within the estimated error bars. Experiments suggest a small difference. Finally, we examine step i, the weak binding of the nucleotide to the protein surface. We suggest that this step has only a small contribution to the selectivity of the enzyme. Comments are made on the impact of these steps on the overall mechanism.
Collapse
Affiliation(s)
- Hao Wang
- Oden Institute for Computational Engineering and Sciences, University of Texas at Austin, Austin TX 78712
| | - Nathan Huang
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712
| | - Tyler Dangerfield
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712
| | - Kenneth A. Johnson
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712
| | - Jiali Gao
- Department of Chemistry, University of Minnesota, Minneapolis, MN, 55455-0431
| | - Ron Elber
- Oden Institute for Computational Engineering and Sciences, University of Texas at Austin, Austin TX 78712
- Department of Chemistry, University of Texas at Austin, Austin, TX 78712
| |
Collapse
|
8
|
Curk T, Tito NB. First-order 'hyper-selective' binding transition of multivalent particles under force. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2020; 32:214002. [PMID: 31952055 DOI: 10.1088/1361-648x/ab6d12] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Multivalent particles bind to targets via many independent ligand-receptor bonding interactions. This microscopic design spans length scales in both synthetic and biological systems. Classic examples include interactions between cells, virus binding, synthetic ligand-coated micrometer-scale vesicles or smaller nano-particles, functionalised polymers, and toxins. Equilibrium multivalent binding is a continuous yet super-selective transition with respect to the number of ligands and receptors involved in the interaction. Increasing the ligand or receptor density on the two particles leads to sharp growth in the number of bound particles at equilibrium. Here we present a theory and Monte Carlo simulations to show that applying mechanical force to multivalent particles causes their adsorption/desorption isotherm on a surface to become sharper and more selective, with respect to variation in the number of ligands and receptors on the two objects. When the force is only applied to particles bound to the surface by one or more ligands, then the transition can become infinitely sharp and first-order-a new binding regime which we term 'hyper-selective'. Force may be imposed by, e.g. flow of solvent around the particles, a magnetic field, chemical gradients, or triggered uncoiling of inert oligomers/polymers tethered to the particles to provide a steric repulsion to the surface. This physical principle is a step towards 'all or nothing' binding selectivity in the design of multivalent constructs.
Collapse
Affiliation(s)
- Tine Curk
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL 60208, United States of America
| | | |
Collapse
|
9
|
Tito NB. Multivalent “attacker and guard” strategy for targeting surfaces with low receptor density. J Chem Phys 2019; 150:184907. [DOI: 10.1063/1.5086277] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Affiliation(s)
- Nicholas B. Tito
- Department of Applied Physics, Eindhoven University of Technology, P.O. Box 513, 5600 MB, Eindhoven, The Netherlands and Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, 5600 MB, Eindhoven, The Netherlands
| |
Collapse
|