1
|
Tran T, Worth GA, Robb MA. Coherent Excitation of the CH Stretching Vibrations in C 2H 4 +: The Role of the Derivative Coupling Studied by the Quantum Ehrenfest Method. J Comput Chem 2025; 46:e70028. [PMID: 39797603 PMCID: PMC11724349 DOI: 10.1002/jcc.70028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Revised: 12/16/2024] [Accepted: 12/17/2024] [Indexed: 01/13/2025]
Abstract
We report nonadiabatic dynamics computations on C2H4 + initiated on a coherent superposition of the five lowest cationic states, employing the Quantum Ehrenfest method. In addition to the totally symmetric carbon-carbon double bond stretch and carbon-hydrogen stretches, we see that the three non-totally symmetric modes become stimulated; torsion and three different CH stretching patterns. Thus, a coherent superposition of states, of the type involved in an attochemistry experiment, leads to the stimulation of specific non-totally symmetric motions. The computations were also performed on the specific combination of the A and C states. In each case normal mode 9 (cis-asymmetric H2CCH2 stretch), out of the set of non-totally-symmetric normal modes, dominates. Thus, we can steer the nuclear motion along specific non-totally symmetric normal modes using a defined coherent superposition.
Collapse
Affiliation(s)
- Thierry Tran
- Nantes University, CNRS, CEISAM UMR 6230NantesFrance
| | | | - Michael A. Robb
- Department of ChemistryMolecular Sciences Research Hub, Imperial College LondonLondonUK
| |
Collapse
|
2
|
Deumal M, Ribas-Ariño J, Roncero C, Robb MA. Real-Time CASSCF (Ehrenfest) Modeling of Electron Dynamics in Organic Semiconductors. Dynamics Reaction Paths Driven by Quantum Coherences. Application to a Radical Organic Semiconductor. J Phys Chem A 2024; 128:10555-10567. [PMID: 39601303 DOI: 10.1021/acs.jpca.4c06466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
We present a strategy for the modeling of charge carrier dynamics in organic semiconductors using conventional quantum chemistry methods, including the analytic gradient for nuclear motion. The theoretical approach uses real-time CASSCF (Ehrenfest) all-electron dynamics coupled to classical nuclear dynamics for the special case of a small number (4-8) of molecular units. The objective is to obtain mechanistic/atomistic insight at the electronic structure level, relating to spin density dynamics, to the effect of crystal structure (e.g., slippage between spin/charge carriers), and to ferromagnetic and antiferromagnetic effects. The initial conditions for our simulations use the equilibrium structures of all the molecular units. At this geometry, a localized hole on one of the units corresponds to a coherent superposition of adiabatic states. We thus generate a dynamics reaction path driven by quantum coherences. Our aim is to inform experiment and to compare with parametrized theoretical models. The methodology is demonstrated for a perfectly π-stacked ethylene model (up to 8 eclipsed molecular units) for both hole transfer and localized exciton transfer. An application for hole transfer is presented for bisdithiazolyl (S,S) and bisdiselenazolyl (Se,Se) radicals for the special case of ferromagnetic coupling. For these examples, the embedded pyridine radical model organic chromophore (up to 6 eclipsed π-stacked molecular units) has been studied on its own as well as the target bisdithiazolyl (S,S) and bisdiselenazolyl (Se,Se) systems. A significant difference between these systems and the ethylene and pyridine stacks is that the (S,S) and (Se,Se) systems exhibit molecular slippage rather than being perfectly eclipsed. This slippage may result from crystal defects or intermolecular vibrations. For the model systems, the electron dynamics is dominated by the initial and final molecular units, irrespective of the length of the chain. The intervening units act as a "superexchange bridge". Our simulations reveal that, in the presence of slippage, charge migration cannot propagate across the entire system; instead, the coherence length is limited to 3 molecular units. The results also suggest that the mechanism of charge transport is different for bisdiselenazolyl (Se,Se) (superexchange-like A -[B]→ C) and bisdithiazolyl (S,S) (direct A → C). An analysis of the spin density suggests that, in the charge carrier dynamics, the additional charge carried by the Se versus S in the "scaffold" is small. Since we use a small number of molecular units, the coupled nuclear dynamics is seen to be complementary to the electron dynamics (i.e., creating a hole causes bond length contraction while filling a hole with an electron lengthens the bond). In all the cases studied, the mechanism of charge mobility is wave-like, rather than hopping, because we use the time dependent Schrödinger equation to propagate the electronic wave function.
Collapse
Affiliation(s)
- Mercè Deumal
- Departament de Ciència de Materials i Química Física & IQTCUB, Facultat de Química, Universitat de Barcelona, Martí i Franquès 1, Barcelona E-08820, Spain
| | - Jordi Ribas-Ariño
- Departament de Ciència de Materials i Química Física & IQTCUB, Facultat de Química, Universitat de Barcelona, Martí i Franquès 1, Barcelona E-08820, Spain
| | - Cristina Roncero
- Departament de Ciència de Materials i Química Física & IQTCUB, Facultat de Química, Universitat de Barcelona, Martí i Franquès 1, Barcelona E-08820, Spain
| | - Michael A Robb
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, White City Campus 80 Wood Lane, W12 0BZ London, United Kingdom
| |
Collapse
|
3
|
Folorunso AS, Mauger F, Hamer KA, Jayasinghe DD, Wahyutama IS, Ragains JR, Jones RR, DiMauro LF, Gaarde MB, Schafer KJ, Lopata K. Attochemistry Regulation of Charge Migration. J Phys Chem A 2023; 127:1894-1900. [PMID: 36791088 PMCID: PMC9986869 DOI: 10.1021/acs.jpca.3c00568] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
Charge migration (CM) is a coherent attosecond process that involves the movement of localized holes across a molecule. To determine the relationship between a molecule's structure and the CM dynamics it exhibits, we perform systematic studies of para-functionalized bromobenzene molecules (X-C6H4-R) using real-time time-dependent density functional theory. We initiate valence-electron dynamics by emulating rapid strong-field ionization leading to a localized hole on the bromine atom. The resulting CM, which takes on the order of 1 fs, occurs via an X localized → C6H4 delocalized → R localized mechanism. Interestingly, the hole contrast on the acceptor functional group increases with increasing electron-donating strength. This trend is well-described by the Hammett σ value of the group, which is a commonly used metric for quantifying the effect of functionalization on the chemical reactivity of benzene derivatives. These results suggest that simple attochemistry principles and a density-based picture can be used to predict and understand CM.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Robert R Jones
- Department of Physics, University of Virginia, Charlottesville, Virginia 22904, United States
| | - Louis F DiMauro
- Department of Physics, The Ohio State University, Columbus, Ohio 43210, United States
| | | | | | | |
Collapse
|
4
|
Ruberti M, Patchkovskii S, Averbukh V. Quantum coherence in molecular photoionization. Phys Chem Chem Phys 2022; 24:19673-19686. [PMID: 35946491 DOI: 10.1039/d2cp01562e] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The study of onset and decay, as well as control of ultrafast quantum coherence in many-electron systems is in the focus of interest of attosecond physics. Interpretation of attosecond experiments detecting the ultrafast quantum coherence requires application of advanced theoretical and computational tools combining many-electron theory, description of the electronic continuum, including in the strong laser field scenario, as well as nuclear dynamics theory. This perspective reviews the recent theoretical advances in understanding the attosecond dynamics of quantum coherence in photoionized molecular systems and outlines possible future directions of theoretical and experimental study of coherence and entanglement in the attosecond regime.
Collapse
Affiliation(s)
- Marco Ruberti
- Imperial College London, Department of Physics, South Kensington Campus, London SW7 2AZ, UK.
| | | | - Vitali Averbukh
- Imperial College London, Department of Physics, South Kensington Campus, London SW7 2AZ, UK.
| |
Collapse
|
5
|
Danilov D, Tran T, Bearpark MJ, Marangos JP, Worth GA, Robb MA. How electronic superpositions drive nuclear motion following the creation of a localized hole in the glycine radical cation. J Chem Phys 2022; 156:244114. [DOI: 10.1063/5.0093780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
In this work, we have studied the nuclear and electron dynamics in the glycine cation starting from localized hole states using the quantum Ehrenfest method. The nuclear dynamics is controlled both by the initial gradient and by the instantaneous gradient that results from the oscillatory electron dynamics (charge migration). We have used the Fourier transform (FT) of the spin densities to identify the “normal modes” of the electron dynamics. We observe an isomorphic relationship between the electron dynamics normal modes and the nuclear dynamics, seen in the vibrational normal modes. The FT spectra obtained this way show bands that are characteristic of the energy differences between the adiabatic hole states. These bands contain individual peaks that are in one-to-one correspondence with atom pair (+·) ↔ (·+) resonances, which, in turn, stimulate nuclear motion involving the atom pair. With such understanding, we anticipate “designer” coherent superpositions that can drive nuclear motion in a particular direction.
Collapse
Affiliation(s)
- Don Danilov
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub, 82 Wood Lane, W12 0BZ London, United Kingdom
| | - Thierry Tran
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub, 82 Wood Lane, W12 0BZ London, United Kingdom
- Department of Chemistry, University College London, 20 Gordon St., WC1H 0AJ London, United Kingdom
| | - Michael J. Bearpark
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub, 82 Wood Lane, W12 0BZ London, United Kingdom
| | - Jon P. Marangos
- Department of Physics, Imperial College London, Blackett Lab, Prince Consort Road, SW7 2BW London, United Kingdom
| | - Graham A. Worth
- Department of Chemistry, University College London, 20 Gordon St., WC1H 0AJ London, United Kingdom
| | - Michael A. Robb
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub, 82 Wood Lane, W12 0BZ London, United Kingdom
| |
Collapse
|
6
|
Bag S, Chandra S, Ghosh J, Bera A, Bernstein ER, Bhattacharya A. The attochemistry of chemical bonding. INT REV PHYS CHEM 2021. [DOI: 10.1080/0144235x.2021.1976499] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Sampad Bag
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore, India
| | - Sankhabrata Chandra
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore, India
| | - Jayanta Ghosh
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore, India
| | - Anupam Bera
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore, India
| | | | - Atanu Bhattacharya
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore, India
| |
Collapse
|
7
|
Ruberti M. Quantum electronic coherences by attosecond transient absorption spectroscopy: ab initio B-spline RCS-ADC study. Faraday Discuss 2021; 228:286-311. [PMID: 33575690 DOI: 10.1039/d0fd00104j] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Here I present a fully ab initio time-resolved study of X-ray attosecond transient absorption spectroscopy (ATAS) in a prototypical polyatomic molecule, pyrazine, and demonstrate the possibility of retrieving the many-electron quantum ionic coherences arising in attosecond molecular photoionisation and pre-determining the subsequent charge-directed photochemical reactivity. Advanced first-principles many-electron simulations are performed, within a hybrid XUV pump/X-ray probe setup, to describe the interaction of pyrazine with both XUV pump and X-ray probe pulses, and study the triggered correlated many-electron dynamics. The calculations are carried out by means of the recently-developed ab initio method for many-electron dynamics in polyatomic molecules, the time-dependent (TD) B-spline Restricted Correlation Space-Algebraic Diagrammatic Construction (RCS-ADC). RCS-ADC simulates molecular ionisation from first principles, combining the accurate description of electron correlation of quantum chemistry with the full account of the continuum dynamics of the photoelectron. Complete theoretical characterisation of the atto-ionised many-electron state and photo-induced attosecond charge dynamics is achieved by calculating the reduced ionic density matrix (R-IDM) of the bipartite ion-photoelectron system, with full inclusion of the correlated shakeup states. Deviations from the sudden approximation picture of photoionisation, in the low-photon-energy limit, are presented. The effect of the multi-channel interaction between the parent-ion and the emitted photoelectron on the onset of the quantum electronic coherences is analysed. Moreover, I show how the Schmidt decomposition of the R-IDM unravels the many-electron dynamics triggered by the pump, allowing for the identification of the key channels involved. Finally, I calculate the X-ray attosecond transient absorption spectra of XUV-ionised pyrazine. The results unveil the mapping of the ATAS measurement onto the quantum electronic coherences, and related non-zero R-IDM matrix elements, produced upon ionisation by the XUV pump laser pulse.
Collapse
Affiliation(s)
- M Ruberti
- Department of Physics, Imperial College London, Prince Consort Road, London SW7 2AZ, UK.
| |
Collapse
|
8
|
Månsson EP, Latini S, Covito F, Wanie V, Galli M, Perfetto E, Stefanucci G, Hübener H, De Giovannini U, Castrovilli MC, Trabattoni A, Frassetto F, Poletto L, Greenwood JB, Légaré F, Nisoli M, Rubio A, Calegari F. Real-time observation of a correlation-driven sub 3 fs charge migration in ionised adenine. Commun Chem 2021; 4:73. [PMID: 36697766 PMCID: PMC9814501 DOI: 10.1038/s42004-021-00510-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 04/19/2021] [Indexed: 01/28/2023] Open
Abstract
Sudden ionisation of a relatively large molecule can initiate a correlation-driven process dubbed charge migration, where the electron density distribution is expected to rapidly move along the molecular backbone. Capturing this few-femtosecond or attosecond charge redistribution would represent the real-time observation of electron correlation in a molecule with the enticing prospect of following the energy flow from a single excited electron to the other coupled electrons in the system. Here, we report a time-resolved study of the correlation-driven charge migration process occurring in the nucleic-acid base adenine after ionisation with a 15-35 eV attosecond pulse. We find that the production of intact doubly charged adenine - via a shortly-delayed laser-induced second ionisation event - represents the signature of a charge inflation mechanism resulting from many-body excitation. This conclusion is supported by first-principles time-dependent simulations. These findings may contribute to the control of molecular reactivity at the electronic, few-femtosecond time scale.
Collapse
Affiliation(s)
- Erik P. Månsson
- grid.7683.a0000 0004 0492 0453Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany ,Institute for Photonics and Nanotechnologies CNR-IFN, Milano, Italy
| | - Simone Latini
- grid.469852.40000 0004 1796 3508Max Planck Institute for the Structure and Dynamics of Matter and Center for Free Electron Laser Science, Hamburg, Germany
| | - Fabio Covito
- grid.469852.40000 0004 1796 3508Max Planck Institute for the Structure and Dynamics of Matter and Center for Free Electron Laser Science, Hamburg, Germany
| | - Vincent Wanie
- grid.7683.a0000 0004 0492 0453Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany ,Institute for Photonics and Nanotechnologies CNR-IFN, Milano, Italy ,INRS-EMT, Varennes, QC Canada
| | - Mara Galli
- grid.7683.a0000 0004 0492 0453Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany ,grid.4643.50000 0004 1937 0327Department of Physics, Politecnico di Milano, Milano, Italy
| | - Enrico Perfetto
- grid.472712.5CNR-ISM, Division of Ultrafast Processes in Materials (FLASHit), Monterotondo Scalo, Italy ,grid.6530.00000 0001 2300 0941Dipartimento di Fisica, Università di Roma Tor Vergata, Roma, Italy
| | - Gianluca Stefanucci
- grid.6530.00000 0001 2300 0941Dipartimento di Fisica, Università di Roma Tor Vergata, Roma, Italy ,grid.470219.9INFN, Sezione di Roma Tor Vergata, Roma, Italy
| | - Hannes Hübener
- grid.469852.40000 0004 1796 3508Max Planck Institute for the Structure and Dynamics of Matter and Center for Free Electron Laser Science, Hamburg, Germany
| | - Umberto De Giovannini
- grid.469852.40000 0004 1796 3508Max Planck Institute for the Structure and Dynamics of Matter and Center for Free Electron Laser Science, Hamburg, Germany ,grid.10776.370000 0004 1762 5517Dipartimento di Fisica e Chimica, Università degli Studi di Palermo, Palermo, Italy
| | - Mattea C. Castrovilli
- Institute for Photonics and Nanotechnologies CNR-IFN, Milano, Italy ,Institute for the Structure of Matter CNR-ISM, Monterotondo Scalo, Italy
| | - Andrea Trabattoni
- grid.7683.a0000 0004 0492 0453Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany
| | - Fabio Frassetto
- Institute for Photonics and Nanotechnologies CNR-IFN, Padova, Italy
| | - Luca Poletto
- Institute for Photonics and Nanotechnologies CNR-IFN, Padova, Italy
| | - Jason B. Greenwood
- grid.4777.30000 0004 0374 7521Centre for Plasma Physics, School of Maths and Physics, Queen’s University Belfast, Belfast, UK
| | | | - Mauro Nisoli
- Institute for Photonics and Nanotechnologies CNR-IFN, Milano, Italy ,grid.4643.50000 0004 1937 0327Department of Physics, Politecnico di Milano, Milano, Italy
| | - Angel Rubio
- grid.469852.40000 0004 1796 3508Max Planck Institute for the Structure and Dynamics of Matter and Center for Free Electron Laser Science, Hamburg, Germany ,Center for Computational Quantum Physics (CCQ), The Flatiron Institute, New York, NY USA
| | - Francesca Calegari
- grid.7683.a0000 0004 0492 0453Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany ,Institute for Photonics and Nanotechnologies CNR-IFN, Milano, Italy ,grid.9026.d0000 0001 2287 2617Institut fur Experimentalphysik, Universität Hamburg, Hamburg, Germany
| |
Collapse
|
9
|
Omar KA, Hasnaoui K, de la Lande A. First-Principles Simulations of Biological Molecules Subjected to Ionizing Radiation. Annu Rev Phys Chem 2021; 72:445-465. [PMID: 33878897 DOI: 10.1146/annurev-physchem-101419-013639] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Ionizing rays cause damage to genomes, proteins, and signaling pathways that normally regulate cell activity, with harmful consequences such as accelerated aging, tumors, and cancers but also with beneficial effects in the context of radiotherapies. While the great pace of research in the twentieth century led to the identification of the molecular mechanisms for chemical lesions on the building blocks of biomacromolecules, the last two decades have brought renewed questions, for example, regarding the formation of clustered damage or the rich chemistry involving the secondary electrons produced by radiolysis. Radiation chemistry is now meeting attosecond science, providing extraordinary opportunities to unravel the very first stages of biological matter radiolysis. This review provides an overview of the recent progress made in this direction, focusing mainly on the atto- to femto- to picosecond timescales. We review promising applications of time-dependent density functional theory in this context.
Collapse
Affiliation(s)
- Karwan Ali Omar
- Institut de Chimie Physique, CNRS UMR 8000, Université Paris-Saclay, 91405 Orsay, France; .,Department of Chemistry, College of Education, University of Sulaimani, 41005 Kurdistan, Iraq
| | - Karim Hasnaoui
- High Performance Computing User Support Team, Institut du Développement et des Ressources en Informatique Scientifique (IDRIS), 91403 Orsay, France.,Maison de la Simulation, CNRS, Commissariat à l'Energie Atomique et aux Énergies Alternatives (CEA), Université Paris-Saclay, 91191 Gif-sur-Yvette, France
| | - Aurélien de la Lande
- Institut de Chimie Physique, CNRS UMR 8000, Université Paris-Saclay, 91405 Orsay, France;
| |
Collapse
|
10
|
Yang L, Reimers JR, Kobayashi R, Hush NS. Competition between charge migration and charge transfer induced by nuclear motion following core ionization: Model systems and application to Li 2. J Chem Phys 2019; 151:124108. [PMID: 31575213 DOI: 10.1063/1.5117246] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Attosecond and femtosecond spectroscopies present opportunities for the control of chemical reaction dynamics and products, as well as for quantum information processing; we address the somewhat unique situation of core-ionization spectroscopy which, for dimeric chromophores, leads to strong valence charge localization and hence tightly paired potential-energy surfaces of very similar shape. Application is made to the quantum dynamics of core-ionized Li2 +. This system is chosen as Li2 is the simplest stable molecule facilitating both core ionization and valence ionization. First, the quantum dynamics of some model surfaces are considered, with the surprising result that subtle differences in shape between core-ionization paired surfaces can lead to dramatic differences in the interplay between electronic charge migration and charge transfer induced by nuclear motion. Then, equation-of-motion coupled-cluster calculations are applied to determine potential-energy surfaces for 8 core-excited state pairs, calculations believed to be the first of their type for other than the lowest-energy core-ionized molecular pair. While known results for the lowest-energy pair suggest that Li2 + is unsuitable for studying charge migration, higher-energy pairs are predicted to yield results showing competition between charge migration and charge transfer. Central is a focus on the application of Hush's 1975 theory for core-ionized X-ray photoelectron spectroscopy to understand the shapes of the potential-energy surfaces and hence predict key features of charge migration.
Collapse
Affiliation(s)
- Likun Yang
- International Centre for Quantum and Molecular Structures and Department of Physics, Shanghai University, Shanghai 200444, China
| | - Jeffrey R Reimers
- School of Mathematical and Physical Sciences, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Rika Kobayashi
- International Centre for Quantum and Molecular Structures and Department of Physics, Shanghai University, Shanghai 200444, China
| | - Noel S Hush
- School of Molecular Biosciences, The University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|
11
|
Ruberti M. Onset of ionic coherence and ultrafast charge dynamics in attosecond molecular ionisation. Phys Chem Chem Phys 2019; 21:17584-17604. [PMID: 31372608 DOI: 10.1039/c9cp03074c] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Here is presented a fully ab initio theoretical framework for simulating the correlated many-electron dynamics occurring during and emerging from molecular ionisation by attosecond laser pulses. This is based on the time-dependent (TD) version of the B-spline restricted correlation space (RCS)-algebraic diagrammatic construction (ADC) method, with the full description of the photoelectron and inclusion of electron correlation effects, such as shakeup processes and inter-channel couplings. The nature of the ultrafast charge dynamics in the molecular ion is elucidated by quantitatively predicting the degree of electronic coherence and eigenstate content of the prepared molecular cationic state, beyond the commonly used sudden approximation. The results presented here for the acetylene and ethylene molecules show that even in the high photon energy regime the simulated hole dynamics is quantitatively different from the prediction of the sudden approximation. Moreover, for high-bandwidth ionising pulse, the residual interaction between the cation, in highly-excited shake-up states, and the emitted slow photoelectron gives rise to a loss of coherence in the ionic system which can persist for the first few femtoseconds after ionisation.
Collapse
Affiliation(s)
- M Ruberti
- Department of Physics, Imperial College London, Prince Consort Road, London SW7 2AZ, UK.
| |
Collapse
|
12
|
Jenkins AJ, Robb MA. The damped Ehrenfest (D-Eh) method: Application to non-adiabatic reaction paths. COMPUT THEOR CHEM 2019. [DOI: 10.1016/j.comptc.2019.02.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
13
|
Jenkins AJ, Spinlove KE, Vacher M, Worth GA, Robb MA. The Ehrenfest method with fully quantum nuclear motion (Qu-Eh): Application to charge migration in radical cations. J Chem Phys 2018; 149:094108. [PMID: 30195291 DOI: 10.1063/1.5038428] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
An algorithm is described for quantum dynamics where an Ehrenfest potential is combined with fully quantum nuclear motion (Quantum-Ehrenfest, Qu-Eh). The method is related to the single-set variational multi-configuration Gaussian approach (vMCG) but has the advantage that only a single quantum chemistry computation is required at each time step since there is only a single time-dependent potential surface. Also shown is the close relationship to the "exact factorization method." The quantum Ehrenfest method is compared with vMCG for study of electron dynamics in a modified bismethylene-adamantane cation system. Illustrative examples of electron-nuclear dynamics are presented for a distorted allene system and for HCCI+ where one has a degenerate Π system.
Collapse
Affiliation(s)
- Andrew J Jenkins
- Department of Chemistry, University of Washington, Seattle, Washington 98195, USA
| | - K Eryn Spinlove
- Department of Chemistry, University College London, 20, Gordon St., WC1H 0AJ London, United Kingdom
| | - Morgane Vacher
- Department of Chemistry-Ångström, Uppsala University, Lägerhyddsvägen 1, 751 21 Uppsala, Sweden
| | - Graham A Worth
- Department of Chemistry, University College London, 20, Gordon St., WC1H 0AJ London, United Kingdom
| | - Michael A Robb
- Department of Chemistry, Imperial College London, London SW7 2AZ, United Kingdom
| |
Collapse
|