1
|
Tonti L, García Daza FA, Romero-Enrique JM, Patti A. Structural and dynamical equilibrium properties of hard board-like particles in parallel confinement. J Chem Phys 2024; 160:124903. [PMID: 38533886 DOI: 10.1063/5.0193126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 03/10/2024] [Indexed: 03/28/2024] Open
Abstract
We performed Monte Carlo and dynamic Monte Carlo simulations to model the diffusion of monodispersed suspensions composed of impenetrable cuboidal particles, specifically hard board-like particles (HBPs), in the presence of parallel hard walls. The impact of the walls was investigated by adjusting the size of the simulation box while maintaining constant packing fractions, fixed at η = 0.150, for systems consisting of HBPs with prolate, dual-shaped, and oblate geometries. We observed that increasing the distance between the walls led to the recovery of an isotropic bulk phase, while local particle organization near the walls remained stable. Due to their shape, oblate HBPs exhibit more efficient anchoring at wall surfaces compared to prolate shapes. The formation of nematic-like particle assemblies near the walls, confirmed by theoretical calculations based on density functional theory, significantly influenced local particle dynamics. This effect was particularly pronounced to the extent that a modest portion of cuboids near the walls tended to diffuse exclusively in planes parallel to the confinement, even more efficiently than observed in the bulk regions.
Collapse
Affiliation(s)
- Luca Tonti
- Department of Chemical Engineering, The University of Manchester, Manchester M13 9PL, United Kingdom
| | - Fabián A García Daza
- Department of Physical, Chemical and Natural Systems, Pablo de Olavide University, 41013 Sevilla, Spain
| | - José Manuel Romero-Enrique
- Departamento de Física Atómica, Molecular y Nuclear, Área de Física Teórica, Universidad de Sevilla, Avenida de Reina Mercedes s/n, 41012 Sevilla, Spain
- Carlos I Institute of Theoretical and Computational Physics, Fuente Nueva s/n, 18071 Granada, Spain
| | - Alessandro Patti
- Department of Chemical Engineering, The University of Manchester, Manchester M13 9PL, United Kingdom
- Carlos I Institute of Theoretical and Computational Physics, Fuente Nueva s/n, 18071 Granada, Spain
- Department of Applied Physics, University of Granada, Fuente Nueva s/n, 18071 Granada, Spain
| |
Collapse
|
2
|
Aliabadi R, Nasirimoghadam S, Wensink HH. Evidence of T-type structures of hard square boards in capillary confinement. Phys Rev E 2023; 107:054117. [PMID: 37329060 DOI: 10.1103/physreve.107.054117] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 04/05/2023] [Indexed: 06/18/2023]
Abstract
We employ Onsager's second virial density functional theory combined with the Parsons-Lee theory within the restricted orientation (Zwanzig) approximation to examine the phase structure of hard square boards of dimensions (L×D×D) uniaxially confined in narrow slabs. Depending on the wall-to-wall separation (H), we predict a number of distinctly different capillary nematic phases, including a monolayer uniaxial or biaxial planar nematic, homeotropic with a variable number of layers, and a T-type structure. We determine that the favored phase is homotropic, and we observe first-order transitions from the homeotropic structure with n layers to n+1 layers as well as from homeotropic surface anchoring to a monolayer planar or T-type structure involving both planar and homeotropic anchoring at the pore surface. By increasing the packing fraction, we further demonstrate a reentrant homeotropic-planar-homeotropic phase sequence in a particular range (i.e., H/D=1.1 and 0.25≤L/D<0.26). We find that the T-type structure is more stable when the pore is wide enough with respect to the planar phase. The enhanced stability of the mixed-anchoring T-structure is unique for square boards and becomes manifest at pore width exceeding L+D. More specifically, the biaxial T-type structure emerges directly from the homeotropic state without intervention of a planar layer structure as observed for other convex particle shapes.
Collapse
Affiliation(s)
| | | | - Henricus Herman Wensink
- Laboratoire de Physique des Solides - UMR 8502, CNRS, Université Paris-Saclay, 91405 Orsay, France
| |
Collapse
|
3
|
Kabata D, Ryoki A, Kitamura S, Terao K. Chain Alignment of a Rigid Ring Polymer in the Lyotropic Liquid Crystal Phase: Cyclic Amylose Tris( n-butylcarbamate) in Tetrahydrofuran and Ethyl Lactate. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c01783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Daigo Kabata
- Department of Macromolecular Science, Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka 560-0043, Japan
| | - Akiyuki Ryoki
- Department of Macromolecular Science, Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka 560-0043, Japan
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Kyoto 615-8510, Japan
| | - Shinichi Kitamura
- Center for Research and Development of Bioresources, Organization for Research Promotion, Osaka Prefecture University, 1-2, Gakuen-cho, Naka-ku, Sakai 599-8570, Japan
| | - Ken Terao
- Department of Macromolecular Science, Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka 560-0043, Japan
| |
Collapse
|
4
|
Kaur J, Deb D. Pressure-tensor method evaluation of the interfacial tension between Gay-Berne isotropic fluid and a smooth repulsive wall. SOFT MATTER 2021; 17:10566-10579. [PMID: 34779475 DOI: 10.1039/d1sm01293b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The interfacial properties of a confined thermotropic liquid crystalline material are investigated using a molecular dynamics simulation technique. The pairwise interaction among the soft ellipsoidal particles is modeled by the Gay-Berne (GB) potential. The GB ellipsoids are confined by two soft, smooth, repulsive walls defined by the Weeks-Chandler-Andersen (WCA) potential. The aperiodic confinement due to walls makes the system mechanically anisotropic. Hence using the pressure-tensor method, the interfacial tension of an interface between the bulk isotropic (I) phase and WCA wall at various number densities (ρ) is calculated. From the pressure tensor and orientational order profiles, the arrangement of ellipsoids in the bulk and the vicinity of the wall is determined. The effect of system size and the wall-particle interaction strength (εW) on is also analyzed by varying the system size and εW.
Collapse
Affiliation(s)
- Jagroop Kaur
- School of Physics and Materials Science, Thapar Institute of Engineering and Technology, Bhadson Road, Patiala, Punjab - 147004, India.
| | - Debabrata Deb
- School of Physics and Materials Science, Thapar Institute of Engineering and Technology, Bhadson Road, Patiala, Punjab - 147004, India.
| |
Collapse
|
5
|
Quintela Matos I, Escobedo F. Congruent phase behavior of a binary compound crystal of colloidal spheres and dimpled cubes. J Chem Phys 2020; 153:214503. [DOI: 10.1063/5.0030174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Isabela Quintela Matos
- School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York 14853, USA
| | - Fernando Escobedo
- School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York 14853, USA
| |
Collapse
|
6
|
Anquetil-Deck C, Cleaver DJ, Teixeira PIC. Ordering of Oblate Hard Particles between Hybrid Penetrable Walls. J Phys Chem B 2020; 124:7709-7716. [PMID: 32790402 PMCID: PMC7476035 DOI: 10.1021/acs.jpcb.0c05027] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 07/30/2020] [Indexed: 11/29/2022]
Abstract
We report a Monte Carlo (MC) simulation study of a model discotic liquid crystal (DLC) confined between hybrid walls with controllable penetrability. The model consists of oblate hard Gaussian overlap (HGO) particles. Particle-substrate interactions are modeled as follows: each substrate sees a particle as a disc of zero thickness and diameter D less than or equal to that of the actual particle, σ0, embedded inside the particle and located halfway along, and perpendicular to, its minor axis. This allows us to control the anchoring properties of the substrates, from planar (edge-on) for D ≈ 0 to homeotropic (face-on) for D ≈ σ0, which can be done independently at either substrate. Depending on the values of Ds ≡ D/σ0 at the top (Dst) and bottom (Dsb) substrates, we find domains in (Dsb, Dst) space in which particle alignment is uniform planar (UP), is uniform homeotropic (UH), or varies linearly from planar at one substrate to homeotropic at the other (Lin). These domains are separated by regions of bistability (P-Lin and H-Lin), which appear to be wider than for prolate HGOs, and there may be also a small tristable (P-H-Lin) region. Results are compared with the predictions of density functional theory, implemented at the level of Onsager's second-virial approximation with Parsons-Lee rescaling. As in the case of symmetric confinement studied previously, the agreement between theory and simulation is substantially less good than for prolate HGOs: in particular, for the investigated substrate separation L = 6σ0, the Lin configuration is never predicted. These discrepancies are likely a consequence of the fact that Onsager's theory is less accurate for discs than for rods.
Collapse
Affiliation(s)
- Candy Anquetil-Deck
- Department
of Chemical Engineering, Norwegian University
of Sciene and Technology, Sem Sælandsvei 4, NO-7491 Trondheim, Norway
| | - Douglas J. Cleaver
- Materials
and Engineering Researh Institute, Sheffield
Hallam University Pond Street, Sheffield S1 1WB, United Kingdom
| | - Paulo I. C. Teixeira
- ISEL−Instituto
Superior de Engenharia de Lisboa, Instituto Politécnico de
Lisboa, Rua Conselheiro
Emídio Navarro 1, 1959-007 Lisboa, Portugal
- Centro
de Física Teórica e Computacional, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal
| |
Collapse
|
7
|
Mizani S, Aliabadi R, Salehi H, Varga S. Orientational ordering and layering of hard plates in narrow slitlike pores. Phys Rev E 2019; 100:032704. [PMID: 31639981 DOI: 10.1103/physreve.100.032704] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Indexed: 11/07/2022]
Abstract
We examine the ordering behavior of hard platelike particles in a very narrow, slitlike pore using the Parsons-Lee density functional theory and the restricted orientation approximation. We observe that the plates are orientationally ordered and align perpendicularly (face-on) to the walls at low densities, a first-order layering transition occurs between uniaxial nematic structures having n and n+1 layers at intermediate densities, and even a phase transition between a monolayer with parallel (edge-on) orientational order and n layers with a perpendicular one can be detected at high densities. In addition to this, the edge-on monolayer is usually biaxial nematic, and a uniaxial-biaxial nematic phase transition can be also seen at very high densities.
Collapse
Affiliation(s)
- Sakine Mizani
- Department of Physics, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Roohollah Aliabadi
- Department of Physics, Faculty of Science, Fasa University, 74617-81189 Fasa, Iran
| | - Hamdollah Salehi
- Department of Physics, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Szabolcs Varga
- Institute of Physics and Mechatronics, University of Pannonia, P.O. Box 158, Veszprém H-8201, Hungary
| |
Collapse
|
8
|
Kim D, Ryoki A, Kabata D, Kitamura S, Terao K. Lyotropic Liquid Crystallinity of Linear and Cyclic Amylose Derivatives: Amylose Tris( n-octadecylcarbamate) in Tetrahydrofuran and 2-Octanone. Macromolecules 2019. [DOI: 10.1021/acs.macromol.9b01917] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- DongChan Kim
- Department of Macromolecular Science, Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka 560-0043, Japan
| | - Akiyuki Ryoki
- Department of Macromolecular Science, Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka 560-0043, Japan
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Kyoto 615-8510, Japan
| | - Daigo Kabata
- Department of Macromolecular Science, Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka 560-0043, Japan
| | - Shinichi Kitamura
- Center for Research and Development of Bioresources, Organization for Research Promotion, Osaka Prefecture University, 1-2, Gakuen-cho, Naka-ku, Sakai 599-8570, Japan
| | - Ken Terao
- Department of Macromolecular Science, Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka 560-0043, Japan
| |
Collapse
|