1
|
Rovigatti L, Sciortino F. Designing Enhanced Entropy Binding in Single-Chain Nanoparticles. PHYSICAL REVIEW LETTERS 2022; 129:047801. [PMID: 35939033 DOI: 10.1103/physrevlett.129.047801] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 06/24/2022] [Accepted: 07/01/2022] [Indexed: 06/15/2023]
Abstract
Single-chain nanoparticles (SCNPs) are a new class of bio- and soft-matter polymeric objects in which a fraction of the monomers are able to form equivalently intra- or interpolymer bonds. Here we numerically show that a fully entropic gas-liquid phase separation can take place in SCNP systems. Control over the discontinuous (first-order) change-from a phase of independent diluted (fully-bonded) polymers to a phase in which polymers entropically bind to each other to form a (fully-bonded) polymer network-can be achieved by a judicious design of the patterns of reactive monomers along the polymer chain. Such a sensitivity arises from a delicate balance between the distinct entropic contributions controlling the binding.
Collapse
Affiliation(s)
- Lorenzo Rovigatti
- Department of Physics, Sapienza Università di Roma, Piazzale A. Moro 2, IT-00185 Roma, Italy and CNR-ISC Uos Sapienza, Piazzale A. Moro 2, IT-00185 Roma, Italy
| | - Francesco Sciortino
- Department of Physics, Sapienza Università di Roma, Piazzale A. Moro 2, IT-00185 Roma, Italy
| |
Collapse
|
2
|
Malhotra I, Oyarzún B, Mognetti BM. Unfolding of the chromatin fiber driven by overexpression of noninteracting bridging factors. Biophys J 2021; 120:1247-1256. [PMID: 33453272 PMCID: PMC8059093 DOI: 10.1016/j.bpj.2020.12.027] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 11/29/2020] [Accepted: 12/30/2020] [Indexed: 02/05/2023] Open
Abstract
Nuclear molecules control the functional properties of the chromatin fiber by shaping its morphological properties. The biophysical mechanisms controlling how bridging molecules compactify chromatin are a matter of debate. On the one side, bridging molecules could cross-link faraway sites and fold the fiber through the formation of loops. Interacting bridging molecules could also mediate long-range attractions by first tagging different locations of the fiber and then undergoing microphase separation. Using a coarse-grained model and Monte Carlo simulations, we study the conditions leading to compact configurations both for interacting and noninteracting bridging molecules. In the second case, we report on an unfolding transition at high densities of the bridging molecules. We clarify how this transition, which disappears for interacting bridging molecules, is universal and controlled by entropic terms. In general, chains are more compact in the case of interacting bridging molecules because interactions are not valence limited. However, this result is conditional on the ability of our simulation methodology to relax the system toward its ground state. In particular, we clarify how, unless using reaction dynamics that change the length of a loop in a single step, the system is prone to remain trapped in metastable, compact configurations featuring long loops.
Collapse
Affiliation(s)
- Isha Malhotra
- Université Libre de Bruxelles, Interdisciplinary Center for Nonlinear Phenomena and Complex Systems, Brussels, Belgium.
| | - Bernardo Oyarzún
- Université Libre de Bruxelles, Interdisciplinary Center for Nonlinear Phenomena and Complex Systems, Brussels, Belgium
| | - Bortolo Matteo Mognetti
- Université Libre de Bruxelles, Interdisciplinary Center for Nonlinear Phenomena and Complex Systems, Brussels, Belgium.
| |
Collapse
|
3
|
Blazquez-Martín A, Verde-Sesto E, Moreno AJ, Arbe A, Colmenero J, Pomposo JA. Advances in the Multi-Orthogonal Folding of Single Polymer Chains into Single-Chain Nanoparticles. Polymers (Basel) 2021; 13:293. [PMID: 33477597 PMCID: PMC7831314 DOI: 10.3390/polym13020293] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/11/2021] [Accepted: 01/14/2021] [Indexed: 11/16/2022] Open
Abstract
The folding of certain proteins (e.g., enzymes) into perfectly defined 3D conformations via multi-orthogonal interactions is critical to their function. Concerning synthetic polymers chains, the "folding" of individual polymer chains at high dilution via intra-chain interactions leads to so-called single-chain nanoparticles (SCNPs). This review article describes the advances carried out in recent years in the folding of single polymer chains into discrete SCNPs via multi-orthogonal interactions using different reactive chemical species where intra-chain bonding only occurs between groups of the same species. First, we summarize results from computer simulations of multi-orthogonally folded SCNPs. Next, we comprehensively review multi-orthogonally folded SCNPs synthesized via either non-covalent bonds or covalent interactions. Finally, we conclude by summarizing recent research about multi-orthogonally folded SCNPs prepared through both reversible (dynamic) and permanent bonds.
Collapse
Affiliation(s)
- Agustín Blazquez-Martín
- Centro de Física de Materiales (CSIC, UPV/EHU) and Materials Physics Center MPC, Paseo Manuel de Lardizabal 5, E-20018 San Sebastián, Spain; (A.B.-M.); (E.V.-S.); (A.J.M.); (A.A.); (J.C.)
| | - Ester Verde-Sesto
- Centro de Física de Materiales (CSIC, UPV/EHU) and Materials Physics Center MPC, Paseo Manuel de Lardizabal 5, E-20018 San Sebastián, Spain; (A.B.-M.); (E.V.-S.); (A.J.M.); (A.A.); (J.C.)
| | - Angel J. Moreno
- Centro de Física de Materiales (CSIC, UPV/EHU) and Materials Physics Center MPC, Paseo Manuel de Lardizabal 5, E-20018 San Sebastián, Spain; (A.B.-M.); (E.V.-S.); (A.J.M.); (A.A.); (J.C.)
- Donostia International Physics Center (DIPC), Paseo Manuel de Lardizabal 4, E-20018 San Sebastián, Spain
| | - Arantxa Arbe
- Centro de Física de Materiales (CSIC, UPV/EHU) and Materials Physics Center MPC, Paseo Manuel de Lardizabal 5, E-20018 San Sebastián, Spain; (A.B.-M.); (E.V.-S.); (A.J.M.); (A.A.); (J.C.)
- Donostia International Physics Center (DIPC), Paseo Manuel de Lardizabal 4, E-20018 San Sebastián, Spain
| | - Juan Colmenero
- Centro de Física de Materiales (CSIC, UPV/EHU) and Materials Physics Center MPC, Paseo Manuel de Lardizabal 5, E-20018 San Sebastián, Spain; (A.B.-M.); (E.V.-S.); (A.J.M.); (A.A.); (J.C.)
- Donostia International Physics Center (DIPC), Paseo Manuel de Lardizabal 4, E-20018 San Sebastián, Spain
- Departamento de Polímeros y Materiales Avanzados: Física, Química y Tecnología, University of the Basque Country (UPV/EHU), PO Box 1072, E-20800 San Sebastián, Spain
| | - José A. Pomposo
- Centro de Física de Materiales (CSIC, UPV/EHU) and Materials Physics Center MPC, Paseo Manuel de Lardizabal 5, E-20018 San Sebastián, Spain; (A.B.-M.); (E.V.-S.); (A.J.M.); (A.A.); (J.C.)
- Departamento de Polímeros y Materiales Avanzados: Física, Química y Tecnología, University of the Basque Country (UPV/EHU), PO Box 1072, E-20800 San Sebastián, Spain
- IKERBASQUE—Basque Foundation for Science, Plaza Euskadi 5, E-48009 Bilbao, Spain
| |
Collapse
|
4
|
Sciortino F, Zhang Y, Gang O, Kumar SK. Combinatorial-Entropy-Driven Aggregation in DNA-Grafted Nanoparticles. ACS NANO 2020; 14:5628-5635. [PMID: 32374987 DOI: 10.1021/acsnano.9b10123] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
We use computer simulations and experiments to study the interactions between nanoparticles (NPs) grafted with self-complementary DNA strands. Each strand ends with a sticky palindromic single-stranded sequence, allowing it to associate equally favorably with strands grafted on the same particle or on different NPs. Surprisingly we find an attractive interaction between a pair of NPs, and we demonstrate that at low temperature it arises purely from a combinatorial-entropy contribution. We evaluate theoretically and verify numerically this entropic contribution originating from the number of distinct bonding patterns associated with intra- and interparticle binding. This entropic attraction becomes more favorable with decreasing inter-NP distance because more sticky ends can participate in making this choice.
Collapse
Affiliation(s)
- Francesco Sciortino
- Department of Physics, Sapienza Universita' di Roma, Piazzale Aldo Moro, 2, 00185 Rome, Italy
| | - Yugang Zhang
- Center for Functional Nanomaterials, Brookhaven National Laboratories, Upton, New York 11973, United States
| | - Oleg Gang
- Center for Functional Nanomaterials, Brookhaven National Laboratories, Upton, New York 11973, United States
- Department of Applied Physics and Applied Mathematics, Columbia University, New York New York 10027, United States
- Department of Chemical Engineering, Columbia University, New York, New York 10027, United States
| | - Sanat K Kumar
- Department of Chemical Engineering, Columbia University, New York, New York 10027, United States
| |
Collapse
|
5
|
Zumbro E, Alexander-Katz A. Influence of Binding Site Affinity Patterns on Binding of Multivalent Polymers. ACS OMEGA 2020; 5:10774-10781. [PMID: 32455197 PMCID: PMC7240832 DOI: 10.1021/acsomega.0c00334] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 04/16/2020] [Indexed: 05/09/2023]
Abstract
Using inspiration from biology, we can leverage multivalent binding interactions to enhance weak, monovalent binding between molecules. While most previous studies have focused on multivalent binders with uniform binding sites, new synthetic polymers might find it desirable to have multiple binding moieties along the chain. Here, we probe how patterning of heterogeneous binding sites along a polymer chain controls the binding affinity of a polymer using a reactive Brownian dynamics scheme. Unlike monovalent binders that are pattern-agnostic, we find that divalent binding is dependent on both the polymer pattern and binding target concentration. For dilute targets, blocky polymers provide high local concentrations of high-affinity sites, but at high target concentrations, competition for binding sites makes alternating polymers the strongest binders. Subsequently, we show that random copolymers are robust to target concentration fluctuations. These results will assist in the rational design of multivalent polymer therapeutics and materials.
Collapse
Affiliation(s)
- Emiko Zumbro
- Department of Materials Science
and Engineering, Massachusetts Institute
of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Alfredo Alexander-Katz
- Department of Materials Science
and Engineering, Massachusetts Institute
of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
6
|
Wu JB, Liu H, Lu ZY. Simulation Study of Process-Controlled Supramolecular Block Copolymer Phase Separation with Reversible Reaction Algorithm. Polymers (Basel) 2020; 12:E528. [PMID: 32121599 PMCID: PMC7182871 DOI: 10.3390/polym12030528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 02/24/2020] [Accepted: 02/24/2020] [Indexed: 11/30/2022] Open
Abstract
A supramolecular diblock copolymer formed by reversible bonds between the two blocks shows a rich microphase separation behavior and has great application potential in stimuli-responsive materials. We propose a novel method to describe supramolecular reactions in dissipative particle dynamics, which includes a reversible reaction to accurately reproduce the strength, saturation, and dynamic properties of the reversible bonds in the simulations. The thermodynamic properties and dynamic processes of the supramolecular diblock copolymer melts in both equilibrium and non-equilibrium states were studied using this method. The simulation results show that the method can faithfully characterize phase behaviors and dynamic properties of supramolecular diblock copolymer melts, especially in a non-equilibrium state, which provides a novel tool to unveil self-assembly mechanism and describe the properties of supramolecular block copolymers.
Collapse
Affiliation(s)
- Jian-Bo Wu
- State Key Laboratory of Supramolecular Structure and Materials, Institute of Theoretical Chemistry, Jilin University, Changchun 130023, China;
- State Key Laboratory of High-Efficiency Coal Utilization and Green Chemical Engineering, College of Chemistry and Chemical Engineering, Ningxia University, Yinchuan 750021, China
| | - Hong Liu
- Key Laboratory of Theoretical Chemistry of Environment Ministry of Education, School of Chemistry, South China Normal University, Guangzhou 510631, China
| | - Zhong-Yuan Lu
- State Key Laboratory of Supramolecular Structure and Materials, Institute of Theoretical Chemistry, Jilin University, Changchun 130023, China;
| |
Collapse
|