1
|
Giovannini T, Scavino M, Koch H. Time-Dependent Multilevel Density Functional Theory. J Chem Theory Comput 2024; 20:3601-3612. [PMID: 38648031 DOI: 10.1021/acs.jctc.4c00041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
We present a novel three-layer approach based on multilevel density functional theory (MLDFT) and polarizable molecular mechanics to simulate the electronic excitations of chemical systems embedded in an external environment within the time-dependent DFT formalism. In our method, the electronic structure of a target system, the chromophore, is determined in the field of an embedded inactive layer, which is treated as frozen. Long-range interactions are described by employing the polarizable fluctuating charge (FQ) force field. The resulting MLDFT/FQ thus accurately describes both electrostatics (and polarization) and non-electrostatic target-environment interactions. The robustness and reliability of the approach are demonstrated by comparing our results with experimental data reported for various organic molecules in solution.
Collapse
Affiliation(s)
| | - Marco Scavino
- Scuola Normale Superiore, Piazza dei Cavalieri 7, 56126 Pisa, Italy
| | - Henrik Koch
- Department of Chemistry, Norwegian University of Science and Technology, 7491 Trondheim, Norway
| |
Collapse
|
2
|
Sethio D, Azzopardi E, Fdez. Galván I, Lindh R. A Story of Three Levels of Sophistication in SCF/KS-DFT Orbital Optimization Procedures. J Phys Chem A 2024; 128:2472-2486. [PMID: 38483190 PMCID: PMC10983011 DOI: 10.1021/acs.jpca.3c07647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 02/23/2024] [Accepted: 02/23/2024] [Indexed: 04/04/2024]
Abstract
In this work, three versions of self-consistent field/Kohn-Sham density functional theory (SCF/KS-DFT) orbital optimization are described and benchmarked. The methods are a modified version of the geometry version of the direct inversion in the iterative subspace approach (which we call r-GDIIS), the modified restricted step rational function optimization method (RS-RFO), and the novel subspace gradient-enhanced Kriging method combined with restricted variance optimization (S-GEK/RVO). The modifications introduced are aimed at improving the robustness and computational scaling of the procedures. In particular, the subspace approach in S-GEK/RVO allows the application to SCF/KS-DFT optimization of a machine learning technique that has proven to be successful in geometry optimizations. The performance of the three methods is benchmarked for a large number of small- to medium-sized organic molecules, at equilibrium structures and close to a transition state, and a second set of molecules containing closed- and open-shell transition metals. The results indicate the importance of the resetting technique in boosting the performance of the r-GDIIS procedure. Moreover, it is demonstrated that already at the inception of the subspace version of GEK to optimize SCF wave functions, it displays superior and robust convergence properties as compared to those of the standard state-of-the-art SCF/KS-DFT optimization methods.
Collapse
Affiliation(s)
- Daniel Sethio
- Department
of Chemistry—BMC, Uppsala University, P.O. Box 576, SE-75123 Uppsala, Sweden
- Department
of Chemistry—Ångström, Uppsala University, P.O. Box 538, SE-75121 Uppsala, Sweden
| | - Emily Azzopardi
- Department
of Chemistry—BMC, Uppsala University, P.O. Box 576, SE-75123 Uppsala, Sweden
| | - Ignacio Fdez. Galván
- Department
of Chemistry—BMC, Uppsala University, P.O. Box 576, SE-75123 Uppsala, Sweden
| | - Roland Lindh
- Department
of Chemistry—BMC, Uppsala University, P.O. Box 576, SE-75123 Uppsala, Sweden
- Uppsala
Center for Computational Chemistry (UC3), Uppsala University, P.O. Box 576, SE-751 23 Uppsala, Sweden
| |
Collapse
|
3
|
Giovannini T, Marrazzini G, Scavino M, Koch H, Cappelli C. Integrated Multiscale Multilevel Approach to Open Shell Molecular Systems. J Chem Theory Comput 2023; 19:1446-1456. [PMID: 36780359 PMCID: PMC10018740 DOI: 10.1021/acs.jctc.2c00805] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/14/2023]
Abstract
We present a novel multiscale approach to study the electronic structure of open shell molecular systems embedded in an external environment. The method is based on the coupling of multilevel Hartree-Fock (MLHF) and Density Functional Theory (MLDFT), suitably extended to the unrestricted formalism, to Molecular Mechanics (MM) force fields (FF). Within the ML region, the system is divided into active and inactive parts, thus describing the most relevant interactions (electrostatic, polarization, and Pauli repulsion) at the quantum level. The surrounding MM part, which is formulated in terms of nonpolarizable or polarizable FFs, permits a physically consistent treatment of long-range electrostatics and polarization effects. The approach is extended to the calculation of hyperfine coupling constants and applied to selected nitroxyl radicals in an aqueous solution.
Collapse
Affiliation(s)
| | - Gioia Marrazzini
- Scuola Normale Superiore, Piazza dei Cavalieri 7, 56126 Pisa, Italy
| | - Marco Scavino
- Scuola Normale Superiore, Piazza dei Cavalieri 7, 56126 Pisa, Italy
| | - Henrik Koch
- Scuola Normale Superiore, Piazza dei Cavalieri 7, 56126 Pisa, Italy.,Department of Chemistry, Norwegian University of Science and Technology, 7491 Trondheim, Norway
| | - Chiara Cappelli
- Scuola Normale Superiore, Piazza dei Cavalieri 7, 56126 Pisa, Italy
| |
Collapse
|
4
|
Treß RS, Liu J, Hättig C, Höfener S. Pushing the limits: Efficient wavefunction methods for excited states in complex systems using frozen-density embedding. J Chem Phys 2022; 157:204101. [DOI: 10.1063/5.0100393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Frozen density embedding (FDE) is an embedding method for complex environments that is simple for users to set up. It reduces the computation time by dividing the total system into small subsystems and approximating the interaction by a functional of their densities. Its combination with wavefunction methods is, however, limited to small- or medium-sized molecules because of the steep scaling in computation time of these methods. To mitigate this limitation, we present a combination of the FDE approach with pair natural orbitals (PNOs) in the TURBOMOLE software package. It combines the uncoupled FDE (FDEu) approach for excitation energy calculations with efficient implementations of second-order correlation methods in the ricc2 and pnoccsd programs. The performance of this combination is tested for tetraazaperopyrene (TAPP) molecular crystals. It is shown that the PNO truncation error on environment-induced shifts is significantly smaller than the shifts themselves and, thus, that the local approximations of PNO-based wavefunction methods can without the loss of relevant digits be combined with the FDE method. Computational wall times are presented for two TAPP systems. The scaling of the wall times is compared to conventional supermolecular calculations and demonstrates large computational savings for the combination of FDE- and PNO-based methods. Additionally, the behavior of excitation energies with the system size is investigated. It is found that the excitation energies converge quickly with the size of the embedding environment for the TAPPs investigated in the current study.
Collapse
Affiliation(s)
- Robert S. Treß
- Department of Theoretical Chemistry, Ruhr University Bochum, 44801 Bochum, Germany
| | - Jing Liu
- Institute of Physical Chemistry, Karlsruhe Institute of Technology (KIT), 76131 Karlsruhe, Germany
| | - Christof Hättig
- Department of Theoretical Chemistry, Ruhr University Bochum, 44801 Bochum, Germany
| | - Sebastian Höfener
- Institute of Physical Chemistry, Karlsruhe Institute of Technology (KIT), 76131 Karlsruhe, Germany
| |
Collapse
|
5
|
Goletto L, Kjønstad EF, Folkestad SD, Høyvik IM, Koch H. Linear-Scaling Implementation of Multilevel Hartree-Fock Theory. J Chem Theory Comput 2021; 17:7416-7427. [PMID: 34747179 PMCID: PMC8675138 DOI: 10.1021/acs.jctc.1c00299] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We introduce a new algorithm for the construction of the two-electron contributions to the Fock matrix in multilevel Hartree-Fock (MLHF) theory. In MLHF, the density of an active molecular region is optimized, while the density of an inactive region is fixed. The MLHF equations are solved in a reduced molecular orbital (MO) basis localized to the active region. The locality of the MOs can be exploited to reduce the computational cost of the Fock matrix: the cost related to the inactive density becomes linear scaling, while the iterative cost related to the active density is independent of the system size. We demonstrate the performance of this new algorithm on a variety of systems, including amino acid chains, water clusters, and solvated systems.
Collapse
Affiliation(s)
- Linda Goletto
- Department of Chemistry, Norwegian University of Science and Technology, Trondheim 7491, Norway
| | - Eirik F Kjønstad
- Department of Chemistry, Norwegian University of Science and Technology, Trondheim 7491, Norway
| | - Sarai D Folkestad
- Department of Chemistry, Norwegian University of Science and Technology, Trondheim 7491, Norway
| | - Ida-Marie Høyvik
- Department of Chemistry, Norwegian University of Science and Technology, Trondheim 7491, Norway
| | - Henrik Koch
- Department of Chemistry, Norwegian University of Science and Technology, Trondheim 7491, Norway.,Scuola Normale Superiore, Pisa 56126, Italy
| |
Collapse
|
6
|
Egidi F, Angelico S, Lafiosca P, Giovannini T, Cappelli C. A polarizable three-layer frozen density embedding/molecular mechanics approach. J Chem Phys 2021; 154:164107. [PMID: 33940798 DOI: 10.1063/5.0045574] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
We present a novel multilayer polarizable embedding approach in which the system is divided into three portions, two of which are treated using density functional theory and their interaction is based on frozen density embedding (FDE) theory, and both also mutually interact with a polarizable classical layer described using an atomistic model based on fluctuating charges (FQ). The efficacy of the model is demonstrated by extending the formalism to linear response properties and applying it to the simulation of the excitation energies of organic molecules in aqueous solution, where the solute and the first solvation shell are treated using FDE, while the rest of the solvent is modeled using FQ charges.
Collapse
Affiliation(s)
- Franco Egidi
- Scuola Normale Superiore, Piazza dei Cavalieri 7, 56126 Pisa, Italy
| | - Sara Angelico
- Scuola Normale Superiore, Piazza dei Cavalieri 7, 56126 Pisa, Italy
| | - Piero Lafiosca
- Scuola Normale Superiore, Piazza dei Cavalieri 7, 56126 Pisa, Italy
| | - Tommaso Giovannini
- Department of Chemistry, Norwegian University of Science and Technology, 7491 Trondheim, Norway
| | - Chiara Cappelli
- Scuola Normale Superiore, Piazza dei Cavalieri 7, 56126 Pisa, Italy
| |
Collapse
|
7
|
Marrazzini G, Giovannini T, Scavino M, Egidi F, Cappelli C, Koch H. Multilevel Density Functional Theory. J Chem Theory Comput 2021; 17:791-803. [PMID: 33449681 PMCID: PMC7880574 DOI: 10.1021/acs.jctc.0c00940] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
![]()
Following recent
developments in multilevel embedding methods,
we introduce a novel density matrix-based multilevel approach within
the framework of density functional theory (DFT). In this multilevel
DFT, the system is partitioned in an active and an inactive fragment,
and all interactions are retained between the two parts. The decomposition
of the total system is performed upon the density matrix. The orthogonality
between the two parts is maintained by solving the Kohn–Sham
equations in the MO basis for the active part only, while keeping
the inactive density matrix frozen. This results in the reduction
of computational cost. We outline the theory and implementation and
discuss the differences and similarities with state-of-the-art DFT
embedding methods. We present applications to aqueous solutions of
methyloxirane and glycidol.
Collapse
Affiliation(s)
- Gioia Marrazzini
- Scuola Normale Superiore, Piazza dei Cavalieri 7, 56126 Pisa, Italy
| | - Tommaso Giovannini
- Department of Chemistry, Norwegian University of Science and Technology, 7491 Trondheim, Norway
| | - Marco Scavino
- Scuola Normale Superiore, Piazza dei Cavalieri 7, 56126 Pisa, Italy
| | - Franco Egidi
- Scuola Normale Superiore, Piazza dei Cavalieri 7, 56126 Pisa, Italy
| | - Chiara Cappelli
- Scuola Normale Superiore, Piazza dei Cavalieri 7, 56126 Pisa, Italy
| | - Henrik Koch
- Scuola Normale Superiore, Piazza dei Cavalieri 7, 56126 Pisa, Italy
| |
Collapse
|
8
|
Giovannini T, Koch H. Energy-Based Molecular Orbital Localization in a Specific Spatial Region. J Chem Theory Comput 2021; 17:139-150. [PMID: 33337150 DOI: 10.1021/acs.jctc.0c00737] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
We present a novel energy-based localization procedure able to localize molecular orbitals into predefined spatial regions. The method is defined in a multiscale framework based on the multilevel Hartree-Fock approach. In particular, the system is partitioned into active and inactive fragments. The localized molecular orbitals are obtained maximizing the repulsion between the two fragments. The method is applied to several cases including both conjugated and non-conjugated systems. Our multiscale approach is compared with reference values for both ground-state properties, such as dipole moments, and local excitation energies. The proposed approach is useful to extend the application range of high-level electron correlation methods. In fact, the reduced number of molecular orbitals can lead to a large reduction in the computational cost of correlated calculations.
Collapse
Affiliation(s)
- Tommaso Giovannini
- Department of Chemistry, Norwegian University of Science and Technology, 7491 Trondheim, Norway
| | - Henrik Koch
- Scuola Normale Superiore, Piazza dei Cavalieri 7, 56126 Pisa, Italy
| |
Collapse
|
9
|
Folkestad SD, Kjønstad EF, Goletto L, Koch H. Multilevel CC2 and CCSD in Reduced Orbital Spaces: Electronic Excitations in Large Molecular Systems. J Chem Theory Comput 2021; 17:714-726. [PMID: 33417769 PMCID: PMC8016205 DOI: 10.1021/acs.jctc.0c00590] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We present efficient implementations of the multilevel CC2 (MLCC2) and multilevel CCSD (MLCCSD) models. As the system size increases, MLCC2 and MLCCSD exhibit the scaling of the lower-level coupled cluster model. To treat large systems, we combine MLCC2 and MLCCSD with a reduced-space approach in which the multilevel coupled cluster calculation is performed in a significantly truncated molecular orbital basis. The truncation scheme is based on the selection of an active region of the molecular system and the subsequent construction of localized Hartree-Fock orbitals. These orbitals are used in the multilevel coupled cluster calculation. The electron repulsion integrals are Cholesky decomposed using a screening protocol that guarantees accuracy in the truncated molecular orbital basis and reduces computational cost. The Cholesky factors are constructed directly in the truncated basis, ensuring low storage requirements. Systems for which Hartree-Fock is too expensive can be treated by using a multilevel Hartree-Fock reference. With the reduced-space approach, we can handle systems with more than a thousand atoms. This is demonstrated for paranitroaniline in aqueous solution.
Collapse
Affiliation(s)
- Sarai Dery Folkestad
- Department of Chemistry, Norwegian University of Science and Technology, N-7491, Trondheim, Norway
| | - Eirik F Kjønstad
- Department of Chemistry, Norwegian University of Science and Technology, N-7491, Trondheim, Norway
| | - Linda Goletto
- Department of Chemistry, Norwegian University of Science and Technology, N-7491, Trondheim, Norway
| | - Henrik Koch
- Department of Chemistry, Norwegian University of Science and Technology, N-7491, Trondheim, Norway.,Scuola Normale Superiore, Piazza dei Cavaleri 7, Pisa, 56126, Italy
| |
Collapse
|
10
|
Goletto L, Giovannini T, Folkestad SD, Koch H. Combining multilevel Hartree–Fock and multilevel coupled cluster approaches with molecular mechanics: a study of electronic excitations in solutions. Phys Chem Chem Phys 2021; 23:4413-4425. [DOI: 10.1039/d0cp06359b] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We present the coupling of different quantum-embedding approaches with a third molecular-mechanics layer, which can be either polarizable or non-polarizable.
Collapse
Affiliation(s)
- Linda Goletto
- Department of Chemistry
- Norwegian University of Science and Technology (NTNU)
- 7491 Trondheim
- Norway
| | - Tommaso Giovannini
- Department of Chemistry
- Norwegian University of Science and Technology (NTNU)
- 7491 Trondheim
- Norway
| | - Sarai D. Folkestad
- Department of Chemistry
- Norwegian University of Science and Technology (NTNU)
- 7491 Trondheim
- Norway
| | | |
Collapse
|
11
|
Folkestad SD, Kjønstad EF, Myhre RH, Andersen JH, Balbi A, Coriani S, Giovannini T, Goletto L, Haugland TS, Hutcheson A, Høyvik IM, Moitra T, Paul AC, Scavino M, Skeidsvoll AS, Tveten ÅH, Koch H. e T 1.0: An open source electronic structure program with emphasis on coupled cluster and multilevel methods. J Chem Phys 2020; 152:184103. [PMID: 32414265 DOI: 10.1063/5.0004713] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The eT program is an open source electronic structure package with emphasis on coupled cluster and multilevel methods. It includes efficient spin adapted implementations of ground and excited singlet states, as well as equation of motion oscillator strengths, for CCS, CC2, CCSD, and CC3. Furthermore, eT provides unique capabilities such as multilevel Hartree-Fock and multilevel CC2, real-time propagation for CCS and CCSD, and efficient CC3 oscillator strengths. With a coupled cluster code based on an efficient Cholesky decomposition algorithm for the electronic repulsion integrals, eT has similar advantages as codes using density fitting, but with strict error control. Here, we present the main features of the program and demonstrate its performance through example calculations. Because of its availability, performance, and unique capabilities, we expect eT to become a valuable resource to the electronic structure community.
Collapse
Affiliation(s)
- Sarai D Folkestad
- Department of Chemistry, Norwegian University of Science and Technology, NO-7491 Trondheim, Norway
| | - Eirik F Kjønstad
- Department of Chemistry, Norwegian University of Science and Technology, NO-7491 Trondheim, Norway
| | - Rolf H Myhre
- Department of Chemistry, Norwegian University of Science and Technology, NO-7491 Trondheim, Norway
| | - Josefine H Andersen
- DTU Chemistry-Department of Chemistry, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark
| | - Alice Balbi
- Scuola Normale Superiore, Piazza dei Cavalieri, 7, IT-56126 Pisa, PI, Italy
| | - Sonia Coriani
- DTU Chemistry-Department of Chemistry, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark
| | - Tommaso Giovannini
- Department of Chemistry, Norwegian University of Science and Technology, NO-7491 Trondheim, Norway
| | - Linda Goletto
- Department of Chemistry, Norwegian University of Science and Technology, NO-7491 Trondheim, Norway
| | - Tor S Haugland
- Department of Chemistry, Norwegian University of Science and Technology, NO-7491 Trondheim, Norway
| | - Anders Hutcheson
- Department of Chemistry, Norwegian University of Science and Technology, NO-7491 Trondheim, Norway
| | - Ida-Marie Høyvik
- Department of Chemistry, Norwegian University of Science and Technology, NO-7491 Trondheim, Norway
| | - Torsha Moitra
- DTU Chemistry-Department of Chemistry, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark
| | - Alexander C Paul
- Department of Chemistry, Norwegian University of Science and Technology, NO-7491 Trondheim, Norway
| | - Marco Scavino
- Scuola Normale Superiore, Piazza dei Cavalieri, 7, IT-56126 Pisa, PI, Italy
| | - Andreas S Skeidsvoll
- Department of Chemistry, Norwegian University of Science and Technology, NO-7491 Trondheim, Norway
| | - Åsmund H Tveten
- Department of Chemistry, Norwegian University of Science and Technology, NO-7491 Trondheim, Norway
| | - Henrik Koch
- Department of Chemistry, Norwegian University of Science and Technology, NO-7491 Trondheim, Norway
| |
Collapse
|