1
|
Tada K, Kawakami T, Hinuma Y. Model calculations for the prediction of the diradical character of physisorbed molecules: p-benzyne/MgO and p-benzyne/SrO. Phys Chem Chem Phys 2023; 25:29424-29436. [PMID: 37795574 DOI: 10.1039/d3cp02988c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/06/2023]
Abstract
The analysis of the diradical state of functional open-shell molecules is important for understanding their physical properties and chemical reactivity. The diradical character is an important factor in the functional elucidation and design of open-shell molecules. In recent years, attempts have been made to immobilise functional open-shell molecules on surfaces to form devices. However, the influence of surface interactions on the diradical state remains unclear. In this study, the physisorption structures of p-benzyne, which is a typical diradical molecule, on MgO(001) and SrO(001) surfaces are used as models to investigate how the diradical character is affected by physisorption. This is done using approximate spin-projected density functional theory calculations with dispersion correction and plane-wave basis (AP-DFT-D3/plane-wave calculations). The diradical character change (Δy) due to adsorption can be categorised into three factors, namely the change due to the distortion of the diradical molecule (Δydis), the interaction between neighbouring diradical molecules (Δycoh), and molecule-surface interactions (Δysurf). In all the calculated models, physisorption reduced the diradical character (Δy < 0), and the contribution of Δysurf was the largest among the three factors. The calculated results show that adsorption induces electron delocalisation to π-conjugated orbitals and intramolecular charge polarisation, both of which contribute to reducing the occupancy of singly occupied molecular orbitals. This indicates that the diradical character of p-benzyne is reduced by the stabilisation of the resonance structures. Furthermore, geometry optimisation of the surfaces shows that the chemical-soft surface (SrO) varies the diradical character more significantly than the chemical-hard surface (MgO). This study shows that the open-shell electronic state and stack structure of diradical molecules can be controlled through the analysis of the surface diradical state.
Collapse
Affiliation(s)
- Kohei Tada
- Research Institute of Electrochemical Energy (RIECEN), Department of Energy and Environment, National Institute of Advanced Industrial Science and Technology (AIST), 1-8-31 Midorigaoka, Ikeda, Osaka 563-8577, Japan.
| | - Takashi Kawakami
- RIKEN Center for Computational Science, Kobe, Hyogo 650-0047, Japan
- Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
| | - Yoyo Hinuma
- Research Institute of Electrochemical Energy (RIECEN), Department of Energy and Environment, National Institute of Advanced Industrial Science and Technology (AIST), 1-8-31 Midorigaoka, Ikeda, Osaka 563-8577, Japan.
| |
Collapse
|
2
|
Sun JL, Dong MM, Niu Y, Li ZL, Zhang GP, Wang CK, Fu XX. Regulating the electronic properties of the WGe 2N 4 monolayer by adsorption of 4d transition metal atoms towards spintronic devices. Phys Chem Chem Phys 2023; 25:26270-26277. [PMID: 37743842 DOI: 10.1039/d3cp02686h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
We study the regulation of the electronic and spin transport properties of the WGe2N4 monolayer by adsorbing 4d transition metal atoms (Y-Cd) using density functional theory combined with non-equilibrium Green's function. It is found that the adsorption of transition metal atoms (except Pd, Ag and Cd atoms) can introduce a magnetic moment into the WGe2N4 monolayer. Among the transition metal atoms, the adsorption of Nb and Rh atoms transforms WGe2N4 from a semiconductor to a half-metal and a highly spin-polarized semiconductor, respectively. The half-metallic Nb-adsorbed WGe2N4 system is selected to investigate the spin transport properties, and a high magnetoresistance ratio of 107% is achieved. In both parallel and antiparallel magnetization configurations, the spin filtering efficiency reaches close to 100% in the whole bias range, and the antiparallel magnetization configuration exhibits a dual spin filtering effect with a rectification ratio of up to 104. Our study predicts that the adsorption of 4d transition metal heteroatoms is an effective method to regulate the electronic and magnetic properties of WGe2N4 towards high-performance spintronic devices.
Collapse
Affiliation(s)
- Jin-Lan Sun
- Shandong Key Laboratory of Medical Physics and Image Processing & Shandong Provincial Engineering and Technical Center of Light Manipulations, School of Physics and Electronics, Shandong Normal University, Jinan 250358, China.
| | - Mi-Mi Dong
- Shandong Key Laboratory of Medical Physics and Image Processing & Shandong Provincial Engineering and Technical Center of Light Manipulations, School of Physics and Electronics, Shandong Normal University, Jinan 250358, China.
| | - Yue Niu
- Shandong Key Laboratory of Medical Physics and Image Processing & Shandong Provincial Engineering and Technical Center of Light Manipulations, School of Physics and Electronics, Shandong Normal University, Jinan 250358, China.
| | - Zong-Liang Li
- Shandong Key Laboratory of Medical Physics and Image Processing & Shandong Provincial Engineering and Technical Center of Light Manipulations, School of Physics and Electronics, Shandong Normal University, Jinan 250358, China.
| | - Guang-Ping Zhang
- Shandong Key Laboratory of Medical Physics and Image Processing & Shandong Provincial Engineering and Technical Center of Light Manipulations, School of Physics and Electronics, Shandong Normal University, Jinan 250358, China.
| | - Chuan-Kui Wang
- Shandong Key Laboratory of Medical Physics and Image Processing & Shandong Provincial Engineering and Technical Center of Light Manipulations, School of Physics and Electronics, Shandong Normal University, Jinan 250358, China.
| | - Xiao-Xiao Fu
- Shandong Key Laboratory of Medical Physics and Image Processing & Shandong Provincial Engineering and Technical Center of Light Manipulations, School of Physics and Electronics, Shandong Normal University, Jinan 250358, China.
| |
Collapse
|
3
|
Diradical Characters of s-Indaceno[1,2,3-cd;5,6,7-c’d’]Diphenalene with and without Interaction with MgO(001). E-JOURNAL OF SURFACE SCIENCE AND NANOTECHNOLOGY 2022. [DOI: 10.1380/ejssnt.2022-011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
4
|
Malik AS, Liu T, Rittiruam M, Saelee T, Da Silva JLF, Praserthdam S, Praserthdam P. On a high photocatalytic activity of high-noble alloys Au-Ag/TiO 2 catalysts during oxygen evolution reaction of water oxidation. Sci Rep 2022; 12:2604. [PMID: 35173262 PMCID: PMC8850597 DOI: 10.1038/s41598-022-06608-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 01/31/2022] [Indexed: 11/29/2022] Open
Abstract
The analysis via density functional theory was employed to understand high photocatalytic activity found on the Au-Ag high-noble alloys catalysts supported on rutile TiO2 during the oxygen evolution of water oxidation reaction (OER). It was indicated that the most thermodynamically stable location of the Au-Ag bimetal-support interface is the bridging row oxygen vacancy site. On the active region of the Au-Ag catalyst, the Au site is the most active for OER catalyzing the reaction with an overpotential of 0.60 V. Whereas the photocatalytic activity of other active sites follows the trend of Au > Ag > Ti. This finding evident from the projected density of states revealed the formation of the trap state that reduces the band gap of the catalyst promoting activity. In addition, the Bader charge analysis revealed the electron relocation from Ag to Au to be the reason behind the activity of the bimetallic that exceeds its monometallic counterparts.
Collapse
Affiliation(s)
- Anum Shahid Malik
- High-Performance Computing Unit (CECC-HCU), Center of Excellence on Catalysis and Catalytic Reaction Engineering (CECC), Chulalongkorn University, Bangkok, 10330, Thailand
- Center of Excellence on Catalysis and Catalytic Reaction Engineering (CECC), Chulalongkorn University, Bangkok, 10330, Thailand
| | - Taifeng Liu
- National & Local Joint Engineering Research Center for Applied Technology of Hybrid Nanomaterials, Henan University, Kaifeng, 475004, China.
| | - Meena Rittiruam
- High-Performance Computing Unit (CECC-HCU), Center of Excellence on Catalysis and Catalytic Reaction Engineering (CECC), Chulalongkorn University, Bangkok, 10330, Thailand
- Center of Excellence on Catalysis and Catalytic Reaction Engineering (CECC), Chulalongkorn University, Bangkok, 10330, Thailand
- Rittiruam Research Group, Bangkok, 10330, Thailand
| | - Tinnakorn Saelee
- High-Performance Computing Unit (CECC-HCU), Center of Excellence on Catalysis and Catalytic Reaction Engineering (CECC), Chulalongkorn University, Bangkok, 10330, Thailand
- Center of Excellence on Catalysis and Catalytic Reaction Engineering (CECC), Chulalongkorn University, Bangkok, 10330, Thailand
- Saelee Research Group, Bangkok, 10330, Thailand
| | - Juarez L F Da Silva
- São Carlos Institute of Chemistry, University of São Paulo, PO Box 780, São Carlos, SP, 13560-970, Brazil
| | - Supareak Praserthdam
- High-Performance Computing Unit (CECC-HCU), Center of Excellence on Catalysis and Catalytic Reaction Engineering (CECC), Chulalongkorn University, Bangkok, 10330, Thailand.
- Center of Excellence on Catalysis and Catalytic Reaction Engineering (CECC), Chulalongkorn University, Bangkok, 10330, Thailand.
| | - Piyasan Praserthdam
- Center of Excellence on Catalysis and Catalytic Reaction Engineering (CECC), Chulalongkorn University, Bangkok, 10330, Thailand
| |
Collapse
|
5
|
Tada K, Ozaki H, Fujimaru K, Kitagawa Y, Kawakami T, Okumura M. Can we enhance diradical character using interaction with stoichiometric surfaces of ionic oxides? A theoretical investigation using chemical indices. Phys Chem Chem Phys 2021; 23:25024-25028. [PMID: 34730574 DOI: 10.1039/d1cp03439a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Chemical indices are effective tools for examining the functions and reactivities of stable radical species. In this study, we formulated an approximation to estimate chemical indices using electron density. Theoretical investigations using the developed scheme revealed that surface interactions can tune chemical indices and that the diradical character was enhanced by weak adsorption onto ionic solids with charge-dipole interactions.
Collapse
Affiliation(s)
- Kohei Tada
- Research Institute of Electrochemical Energy, Department of Energy and Environment (RIECEN), National Institute of Advanced Industrial Science and Technology (AIST), 1-8-31 Midorigaoka, Ikeda, Osaka 563-8577, Japan.
| | - Hiroyuki Ozaki
- Research Institute of Electrochemical Energy, Department of Energy and Environment (RIECEN), National Institute of Advanced Industrial Science and Technology (AIST), 1-8-31 Midorigaoka, Ikeda, Osaka 563-8577, Japan.
| | - Koji Fujimaru
- Research Institute of Electrochemical Energy, Department of Energy and Environment (RIECEN), National Institute of Advanced Industrial Science and Technology (AIST), 1-8-31 Midorigaoka, Ikeda, Osaka 563-8577, Japan. .,Department of Chemistry, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
| | - Yasutaka Kitagawa
- Department of Materials Engineering Science, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan
| | - Takashi Kawakami
- Department of Chemistry, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan.,Riken Center for Computational Science, Kobe, Hyogo 650-0047, Japan
| | - Mitsutaka Okumura
- Department of Chemistry, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
| |
Collapse
|
6
|
Maruyama T, Ohnari J, Tada K, Hinuma Y, Kawakami T, Yamanaka S, Okumura M. Extension of the Linear Response Function of Electron Density to a Plane-wave Basis and the First Application to Periodic Surface Systems. CHEM LETT 2021. [DOI: 10.1246/cl.210375] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Tomohiro Maruyama
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| | - Jinta Ohnari
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| | - Kohei Tada
- Research Institute of Electrochemical Energy, Department of Energy and Environment, National Institute of Advanced Industrial Science and Technology (AIST), 1-8-31 Midorigaoka, Ikeda, Osaka 563-8577, Japan
| | - Yoyo Hinuma
- Research Institute of Electrochemical Energy, Department of Energy and Environment, National Institute of Advanced Industrial Science and Technology (AIST), 1-8-31 Midorigaoka, Ikeda, Osaka 563-8577, Japan
| | - Takashi Kawakami
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| | - Shusuke Yamanaka
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
- Center for Quantum Information and Quantum Biology, Osaka University, 1-2 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| | - Mitsutaka Okumura
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
- Elements Strategy Initiative for Catalysts and Batteries (ESICB), Kyoto University, 1-30 Goryo Ohara, Nishikyo, Kyoto 615-8245, Japan
| |
Collapse
|
7
|
Tada K, Kitagawa Y, Kawakami T, Okumura M, Tanaka S. Electron Density-based Estimation of Diradical Character: An Easy Scheme for DFT/Plane-wave Calculations. CHEM LETT 2021. [DOI: 10.1246/cl.200741] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Kohei Tada
- Research Institute of Electrochemical Energy, National Institute of Advanced Industrial Science and Technology (AIST), 1-8-31 Midorigaoka, Ikeda, Osaka 563-8577, Japan
| | - Yasutaka Kitagawa
- Department of Materials Engineering Science, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan
| | - Takashi Kawakami
- Department of Chemistry, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
- Riken Center for Computational Science, Kobe, Hyogo 650-0047, Japan
| | - Mitsutaka Okumura
- Department of Chemistry, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
- Elements Strategy Initiative for Catalysts and Batteries (ESICB), Kyoto University, Kyoto 615-8245, Japan
| | - Shingo Tanaka
- Research Institute of Electrochemical Energy, National Institute of Advanced Industrial Science and Technology (AIST), 1-8-31 Midorigaoka, Ikeda, Osaka 563-8577, Japan
| |
Collapse
|