1
|
Szada-Borzyszkowska A, Malicka M, Pogrzeba M. Diversity of arbuscular mycorrhiza fungi in roots of giant miscanthus (Miscanthus × giganteus) and prairie cordgrass (Spartina pectinata) cultivated on heavy metal-contaminated areas. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2025; 32:8943-8958. [PMID: 40095304 DOI: 10.1007/s11356-025-36133-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 02/16/2025] [Indexed: 03/19/2025]
Abstract
The use of indigenous AMF species from heavy metal contaminated areas can be a promising tool to support the phytostabilisation of such areas. The aim of the study was to evaluate the AMF species diversity in the roots of the perennial energy grasses Miscanthus × giganteus and Spartina pectinata grown in areas with different levels of heavy metal contamination with regard to the potential use of the dominant AMF species to support phytostabilisation of soils contaminated with Pb, Cd and Zn. Samples were taken from two sites with different levels of Pb, Cd and Zn contamination and from an uncontaminated site as a control. The AMF colonisation of the roots of Miscanthus × giganteus and Spartina pectinata was investigated. The composition of AMF species in the plant roots was determined by sequencing the D2 region of the LSU rDNA of Glomeromycota. Soil contamination had a significant effect on the composition of AMF communities in the roots. Diversispora and Claroideoglomus were the predominant genera in the communities in the heavily heavy metal contaminated area. The AMF communities at moderately contaminated and uncontaminated areas showed a similar structure, with Rhizoglomus as the dominant genus. Species such as Palaeospora spainiae, Rhizoglomus silesianum, Septoglomus sp., Septoglomus nigrum, Ambispora sp., Claroideoglomus etunicatum and Diversispora sp3. were identified exclusively in the roots of Miscanthus × giganteus and Spartina pectinata grown in contaminated areas. They could potentially be used to support phytostabilisation of areas contaminated with Pb, Cd and Zn, but further studies are needed.
Collapse
Affiliation(s)
| | - Monika Malicka
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Jagiellońska 28 Street, 40-032, Katowice, Poland
| | - Marta Pogrzeba
- Institute for Ecology of Industrial Areas, 6 Kossutha St, 40-844, Katowice, Poland.
| |
Collapse
|
2
|
Niezgoda P, Błaszkowski J, Błaszkowski T, Stanisławczyk A, Zubek S, Milczarski P, Malinowski R, Meller E, Malicka M, Goto BT, Uszok S, Casieri L, Magurno F. Three new species of arbuscular mycorrhizal fungi (Glomeromycota) and Acaulospora gedanensis revised. Front Microbiol 2024; 15:1320014. [PMID: 38410392 PMCID: PMC10896085 DOI: 10.3389/fmicb.2024.1320014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 01/05/2024] [Indexed: 02/28/2024] Open
Abstract
Studies of the morphology and the 45S nuc rDNA phylogeny of three potentially undescribed arbuscular mycorrhizal fungi (phylum Glomeromycota) grown in cultures showed that one of these fungi is a new species of the genus Diversispora in the family Diversisporaceae; the other two fungi are new Scutellospora species in Scutellosporaceae. Diversispora vistulana sp. nov. came from maritime sand dunes of the Vistula Spit in northern Poland, and S. graeca sp. nov. and S. intraundulata sp. nov. originally inhabited the Mediterranean dunes of the Peloponnese Peninsula, Greece. In addition, the morphological description of spores of Acaulospora gedanensis, originally described in 1988, was emended based on newly found specimens, and the so far unknown phylogeny of this species was determined. The phylogenetic analyses of 45S sequences placed this species among Acaulospora species with atypical phenotypic and histochemical features of components of the two inner germinal walls.
Collapse
Affiliation(s)
- Piotr Niezgoda
- Department of Environmental Management, West Pomeranian University of Technology in Szczecin, Szczecin, Poland
| | - Janusz Błaszkowski
- Department of Environmental Management, West Pomeranian University of Technology in Szczecin, Szczecin, Poland
| | - Tomasz Błaszkowski
- Department of General and Oncological Surgery, Pomeranian Medical University in Szczecin, Szczecin, Poland
| | - Anna Stanisławczyk
- Department of Genetics, West Pomeranian University of Technology in Szczecin, Szczecin, Poland
| | - Szymon Zubek
- Institute of Botany, Faculty of Biology, Jagiellonian University, Krakow, Poland
| | - Paweł Milczarski
- Department of Genetic, Plant Breeding & Biotechnology, West Pomeranian University of Technology in Szczecin, Szczecin, Poland
| | - Ryszard Malinowski
- Department of Environmental Management, West Pomeranian University of Technology in Szczecin, Szczecin, Poland
| | - Edward Meller
- Department of Environmental Management, West Pomeranian University of Technology in Szczecin, Szczecin, Poland
| | - Monika Malicka
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Katowice, Poland
| | - Bruno Tomio Goto
- Departamento de Botânica e Zoologia, Universidade Federal do Rio Grande do Norte, Natal, Brazil
| | - Sylwia Uszok
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Katowice, Poland
| | - Leonardo Casieri
- Mycorrhizal Applications LLC at Bio-Research & Development Growth Park, St. Louis, MO, United States
| | - Franco Magurno
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Katowice, Poland
| |
Collapse
|
3
|
Hernández-Álvarez C, Peimbert M, Rodríguez-Martin P, Trejo-Aguilar D, Alcaraz LD. A study of microbial diversity in a biofertilizer consortium. PLoS One 2023; 18:e0286285. [PMID: 37616263 PMCID: PMC10449135 DOI: 10.1371/journal.pone.0286285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Accepted: 08/09/2023] [Indexed: 08/26/2023] Open
Abstract
Biofertilizers supply living microorganisms to help plants grow and keep their health. This study examines the microbiome composition of a commercial biofertilizer known for its plant growth-promoting activity. Using ITS and 16S rRNA gene sequence analyses, we describe the microbial communities of a biofertilizer, with 163 fungal species and 485 bacterial genera found. The biofertilizer contains a variety of microorganisms previously reported to enhance nutrient uptake, phytohormone production, stress tolerance, and pathogen resistance in plants. Plant roots created a microenvironment that boosted bacterial diversity but filtered fungal communities. Notably, preserving the fungal-inoculated substrate proves critical for keeping fungal diversity in the root fraction. We described that bacteria were more diverse in the rhizosphere than in the substrate. In contrast, root-associated fungi were less diverse than the substrate ones. We propose using plant roots as bioreactors to sustain dynamic environments that promote the proliferation of microorganisms with biofertilizer potential. The study suggests that bacteria grow close to plant roots, while root-associated fungi may be a subset of the substrate fungi. These findings show that the composition of the biofertilizer may be influenced by the selection of microorganisms associated with plant roots, which could have implications for the effectiveness of the biofertilizer in promoting plant growth. In conclusion, our study sheds light on the intricate interplay between plant roots and the biofertilizer's microbial communities. Understanding this relationship can aid in optimizing biofertilizer production and application, contributing to sustainable agricultural practices and improved crop yields.
Collapse
Affiliation(s)
- Cristóbal Hernández-Álvarez
- Laboratorio de Genómica Ambiental, Departamento de Biología Celular, Facultad de Ciencias, Universidad Nacional Autónoma de México, Coyoacán, Mexico City, Mexico
- Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Mariana Peimbert
- Departamento de Ciencias Naturales, Unidad Cuajimalpa, Universidad Autónoma Metropolitana, Mexico City, Mexico
| | - Pedro Rodríguez-Martin
- Laboratorio de Genómica Ambiental, Departamento de Biología Celular, Facultad de Ciencias, Universidad Nacional Autónoma de México, Coyoacán, Mexico City, Mexico
| | - Dora Trejo-Aguilar
- Laboratorio de Organismos Benéficos, Universidad Veracruzana, Veracruz, Mexico
| | - Luis D. Alcaraz
- Laboratorio de Genómica Ambiental, Departamento de Biología Celular, Facultad de Ciencias, Universidad Nacional Autónoma de México, Coyoacán, Mexico City, Mexico
| |
Collapse
|
4
|
Richness of Arbuscular Mycorrhizal Fungi in a Brazilian Tropical Shallow Lake: Assessing an Unexpected Assembly in the Aquatic-Terrestrial Gradient. DIVERSITY 2022. [DOI: 10.3390/d14121046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Aquatic ecosystems are historically overlooked regarding the occurrence of Arbuscular Mycorrhizal Fungi (AMF). Tropical lakes in the southern hemisphere are generally impacted by human actions, such as those in Brazil, although they still preserve a great diversity of macrophyte species that can support AMF communities. Thus, the study aimed to test (i) whether AMF community structure (composition, richness, diversity, dominance, and evenness) differs between aquatic and terrestrial conditions, and (ii) between seasons—rainy and dry. A total of 60 AMF species, distributed in 10 families and 17 genera, were found, with a difference in AMF composition between conditions (terrestrial and aquatic) and seasons (dry and rainy). The absolute species richness differed between conditions, seasons, and interactions. The aquatic/rainy season, which retrieved the most significant number of species, had the highest absolute richness and number of glomerospores and differed significantly from the terrestrial/rainy season. The results suggest that a shallow oligotrophic lake harbors a high AMF richness. In addition, this environment has a distinct AMF community from the adjacent coastal sand plain vegetation and is affected by seasonality.
Collapse
|
5
|
Błaszkowski J, Sánchez-García M, Niezgoda P, Zubek S, Fernández F, Vila A, Al-Yahya’ei MN, Symanczik S, Milczarski P, Malinowski R, Cabello M, Goto BT, Casieri L, Malicka M, Bierza W, Magurno F. A new order, Entrophosporales, and three new Entrophospora species in Glomeromycota. Front Microbiol 2022; 13:962856. [PMID: 36643412 PMCID: PMC9835108 DOI: 10.3389/fmicb.2022.962856] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 10/31/2022] [Indexed: 11/30/2022] Open
Abstract
As a result of phylogenomic, phylogenetic, and morphological analyses of members of the genus Claroideoglomus, four potential new glomoid spore-producing species and Entrophospora infrequens, a new order, Entrophosporales, with one family, Entrophosporaceae (=Claroideoglomeraceae), was erected in the phylum Glomeromycota. The phylogenomic analyses recovered the Entrophosporales as sister to a clade formed by Diversisporales and Glomeraceae. The strongly conserved entrophosporoid morph of E. infrequens, provided with a newly designated epitype, was shown to represent a group of cryptic species with the potential to produce different glomoid morphs. Of the four potential new species, three enriched the Entrophosporales as new Entrophospora species, E. argentinensis, E. glacialis, and E. furrazolae, which originated from Argentina, Sweden, Oman, and Poland. The fourth fungus appeared to be a glomoid morph of the E. infrequens epitype. The physical association of the E. infrequens entrophosporoid and glomoid morphs was reported and illustrated here for the first time. The phylogenetic analyses, using nuc rDNA and rpb1 concatenated sequences, confirmed the previous conclusion that the genus Albahypha in the family Entrophosporaceae sensu Oehl et al. is an unsupported taxon. Finally, the descriptions of the Glomerales, Entrophosporaceae, and Entrophospora were emended and new nomenclatural combinations were introduced.
Collapse
Affiliation(s)
- Janusz Błaszkowski
- Department of Environmental Management, Faculty of Environmental Management and Agriculture, West Pomeranian University of Technology in Szczecin, Szczecin, Poland
| | - Marisol Sánchez-García
- Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Piotr Niezgoda
- Department of Environmental Management, Faculty of Environmental Management and Agriculture, West Pomeranian University of Technology in Szczecin, Szczecin, Poland
| | - Szymon Zubek
- Faculty of Biology, Institute of Botany, Jagiellonian University, Kraków, Poland
| | | | - Ana Vila
- R&D Department, Symborg SL, Murcia, Spain
| | | | - Sarah Symanczik
- Zurich-Basel Plant Science Center, Institute of Botany, University of Basel, Basel, Switzerland
| | - Paweł Milczarski
- Department of Genetic, Plant Breeding and Biotechnology, Faculty of Environmental Management and Agriculture, West Pomeranian University of Technology in Szczecin, Szczecin, Poland
| | - Ryszard Malinowski
- Department of Environmental Management, Faculty of Environmental Management and Agriculture, West Pomeranian University of Technology in Szczecin, Szczecin, Poland
| | - Marta Cabello
- Instituto Spegazzini, Comisión de Investigaciones Científicas de La Provincia de Buenos Aires (CIC-PBA), La Plata, Argentina
| | - Bruno Tomio Goto
- Departamento de Botânica e Zoologia, Universidade Federal do Rio Grande do Norte, Campus Universitário, Natal, RN, Brazil
| | - Leonardo Casieri
- Mycorrhizal Applications LLC at Bio-Research and Development Growth Park, St. Louis, MO, United States
| | - Monika Malicka
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Katowice, Poland
| | - Wojciech Bierza
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Katowice, Poland
| | - Franco Magurno
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Katowice, Poland
| |
Collapse
|
6
|
Is the Age of Novel Ecosystem the Factor Driving Arbuscular Mycorrhizal Colonization in Poa compressa and Calamagrostis epigejos? PLANTS 2021; 10:plants10050949. [PMID: 34068665 PMCID: PMC8151521 DOI: 10.3390/plants10050949] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 04/01/2021] [Accepted: 04/23/2021] [Indexed: 11/17/2022]
Abstract
Some sites transformed or created by humans (novel ecosystem) are different both in vegetation and ecosystems establishment and development. The unknown habitat conditions and new species composition is resulting in new abiotic and biotic systems. To improve the understanding of the process governing the relationships between the environmental factors, plant species assemblages and their arbuscular mycorrhizal fungi (AMF) inoculation were studied in chronosequence on post-coal mine heaps. We hypothesized that AMF root colonization will be dependent on the age of heap and not on the dominant plant species (vegetation type). The high frequency of mycorrhizal colonization of roots (F%) of Poa compressa- and Calamagrostis epigejos-dominated vegetation type was stated. All mycorrhizal parameters were lower in C. epigejos roots when compared to P. compressa (ranging from 60% to 90%). The highest relative mycorrhizal intensity, M%, and mean abundance of arbuscula, A%, in the roots of both examined plants were recorded in vegetation patches dominated by Daucus carota. Positive and statistically significant correlations were found between F%, M%, and A%, and lack of correlation between the heaps’ age and mycorrhizal parameters, and statistically significant correlations between A% and potassium and magnesium content were revealed. The interspecific relations in the novel ecosystems become more complex along with the increase of diversity.
Collapse
|
7
|
Błaszkowski J, Jobim K, Niezgoda P, Meller E, Malinowski R, Milczarski P, Zubek S, Magurno F, Casieri L, Bierza W, Błaszkowski T, Crossay T, Goto BT. New Glomeromycotan Taxa, Dominikia glomerocarpica sp. nov. and Epigeocarpum crypticum gen. nov. et sp. nov. From Brazil, and Silvaspora gen. nov. From New Caledonia. Front Microbiol 2021; 12:655910. [PMID: 33967994 PMCID: PMC8102679 DOI: 10.3389/fmicb.2021.655910] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 03/09/2021] [Indexed: 11/25/2022] Open
Abstract
Examination of fungal specimens collected in the Atlantic rain forest ecosystems of Northeast Brazil revealed many potentially new epigeous and semihypogeous glomerocarp-producing species of the phylum Glomeromycota. Among them were two fungi that formed unorganized epigeous glomerocarps with glomoid spores of almost identical morphology. The sole structure that distinguished the two fungi was the laminate layer 2 of their three-layered spore wall, which in spores of the second fungus crushed in PVLG-based mountants contracted and, consequently, transferred into a crown-like structure. Surprisingly, phylogenetic analyses of sequences of the 18S-ITS-28S nuc rDNA and the rpb1 gene indicated that these glomerocarps represent two strongly divergent undescribed species in the family Glomeraceae. The analyses placed the first in the genus Dominikia, and the second in a sister clade to the monospecific generic clade Kamienskia with Kamienskia bistrata. The first species was described here as Dominikia glomerocarpica sp. nov. Because D. glomerocarpica is the first glomerocarp-forming species in Dominikia, the generic description of this genus was emended. The very large phylogenetic distance and the fundamental morphological differences between the second species and K. bistrata suggested us to introduce a new genus, here named as Epigeocarpum gen. nov., and name the new species Epigeocarpum crypticum sp. nov. In addition, our analyses also focused on an arbuscular mycorrhizal fungus originally described as Rhizophagus neocaledonicus, later transferred to the genus Rhizoglomus. The analyses indicated that this species does not belong to any of these two genera but represents a new clade at the rank of genus in the Glomeraceae, here described as Silvaspora gen. nov.
Collapse
Affiliation(s)
- Janusz Błaszkowski
- Laboratory of Plant Protection, Department of Shaping of Environment, West Pomeranian University of Technology in Szczecin, Szczecin, Poland
| | - Khadija Jobim
- Departamento de Botânica e Zoologia, Universidade Federal do Rio Grande do Norte, Natal, Brazil
| | - Piotr Niezgoda
- Laboratory of Plant Protection, Department of Shaping of Environment, West Pomeranian University of Technology in Szczecin, Szczecin, Poland
| | - Edward Meller
- Laboratory of Soil Science and Environmental Chemistry, Department of Shaping of Environment, West Pomeranian University of Technology in Szczecin, Szczecin, Poland
| | - Ryszard Malinowski
- Laboratory of Soil Science and Environmental Chemistry, Department of Shaping of Environment, West Pomeranian University of Technology in Szczecin, Szczecin, Poland
| | - Paweł Milczarski
- Department of Genetics, Plant Breeding and Biotechnology, West Pomeranian University of Technology in Szczecin, Szczecin, Poland
| | - Szymon Zubek
- Faculty of Biology, Institute of Botany, Jagiellonian University, Kraków, Poland
| | - Franco Magurno
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Katowice, Poland
| | - Leonardo Casieri
- Mycorrhizal Applications LLC at Bio-Research & Development Growth Park, St. Louis, MO, United States
| | - Wojciech Bierza
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Katowice, Poland
| | - Tomasz Błaszkowski
- Department of General and Oncological Surgery, Pomeranian Medical University in Szczecin, Szczecin, Poland
| | - Thomas Crossay
- Institut des Sciences Exactes et Appliquées (EA 7484), Université de la Nouvelle Calédonie, Nouméa, New Caledonia
| | - Bruno Tomio Goto
- Departamento de Botânica e Zoologia, Universidade Federal do Rio Grande do Norte, Natal, Brazil
| |
Collapse
|
8
|
Dominikia bonfanteae and Glomus atlanticum, two new species in the Glomeraceae (phylum Glomeromycota) with molecular phylogenies reconstructed from two unlinked loci. Mycol Prog 2021. [DOI: 10.1007/s11557-020-01659-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|