1
|
Singh S, Aparna, Sharma N, Gupta J, Kyada A, Nathiya D, Behl T, Gupta S, Anwer MK, Gulati M, Sachdeva M. Application of nano- and micro-particle-based approaches for selected bronchodilators in management of asthma. 3 Biotech 2024; 14:208. [PMID: 39184911 PMCID: PMC11343956 DOI: 10.1007/s13205-024-04051-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Accepted: 08/09/2024] [Indexed: 08/27/2024] Open
Abstract
Asthma is a chronic inflammatory condition that affects the airways, posing a substantial health threat to a large number of people worldwide. Bronchodilators effectively alleviate symptoms of airway obstruction by inducing relaxation of the smooth muscles in the airways, thereby reducing breathlessness and enhancing overall quality of life. The drug targeting to lungs poses significant challenges; however, this issue can be resolved by employing nano- and micro-particles drug delivery systems. This review provides brief insights about underlying mechanisms of asthma, including the role of several inflammatory mediators that contribute to the development and progression of this disease. This article provides an overview of the physicochemical features, pharmacokinetics, and mechanism of action of particular groups of bronchodilators, including sympathomimetics, PDE-4 inhibitors (phosphodiesterase-4 inhibitors), methylxanthines, and anticholinergics. This study presents a detailed summary of the most recent developments in incorporation of bronchodilators in nano- and micro-particle-based delivery systems which include solid lipid nanoparticles, bilosomes, novasomes, liposomes, polymeric nano- and micro-particles. Specifically, it focuses on breakthroughs in the categories of sympathomimetics, methylxanthines, PDE-4 inhibitors, and anticholinergics. These medications have the ability to specifically target alveolar macrophages, leading to a higher concentration of pharmaceuticals in the lung tissues.
Collapse
Affiliation(s)
- Sukhbir Singh
- Department of Pharmaceutics, MM College of Pharmacy, Maharishi Markandeshwar (Deemed to Be University), Mullana-Ambala, 133207 Haryana India
| | - Aparna
- Department of Pharmaceutics, MM College of Pharmacy, Maharishi Markandeshwar (Deemed to Be University), Mullana-Ambala, 133207 Haryana India
| | - Neelam Sharma
- Department of Pharmaceutics, MM College of Pharmacy, Maharishi Markandeshwar (Deemed to Be University), Mullana-Ambala, 133207 Haryana India
| | - Jitendra Gupta
- Institute of Pharmaceutical Research, GLA University, Mathura, 281406 Uttar Pradesh India
| | - Ashishkumar Kyada
- Department of Pharmacy, Faculty of Health Sciences, Marwadi University Research Center, Marwadi University, Rajkot, 360003 Gujarat India
| | - Deepak Nathiya
- Department of Pharmacy Practice, Institute of Pharmacy, NIMS University, Rajasthan, Jaipur India
| | - Tapan Behl
- Amity School of Pharmaceutical Sciences, Amity University, Punjab, India
| | - Sumeet Gupta
- Department of Pharmaceutics, MM College of Pharmacy, Maharishi Markandeshwar (Deemed to Be University), Mullana-Ambala, 133207 Haryana India
| | - Md. Khalid Anwer
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, 11942 Alkharj, Saudi Arabia
| | - Monica Gulati
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, 1444411 Punjab India
- Faculty of Health, ARCCIM, University of Technology Sydney, Ultimo, NSW 20227 Australia
| | - Monika Sachdeva
- Fatima College of Health Sciences, Al Ain, United Arab Emirates
| |
Collapse
|
2
|
He Y, Cun S, Fan J, Wang J. Screening for promising multi-target bioactive components from Cortex Mori Radicis for the treatment of chronic cor pulmonale based on immobilized beta 1-adrenergic receptor and beta 2-adrenergic receptor chromatography. J Chromatogr B Analyt Technol Biomed Life Sci 2024; 1242:124175. [PMID: 38917653 DOI: 10.1016/j.jchromb.2024.124175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 05/15/2024] [Accepted: 05/25/2024] [Indexed: 06/27/2024]
Abstract
Cortex Morin Radicis (CMR) is the dried root bark of Morus alba. L. It has a variety of effects such as antibacterial, anti-tumour, treatment of cardiovascular diseases or upper respiratory tract disease and so on. The pursuit for drugs selected from Cortex Mori Radicis having improved therapeutic efficacy necessitates increasing research on new assays for screening bioactive compounds with multi-targets. In this work, we applied immobilized β1-AR and β2-AR as the stationary phase in chromatographic column to screen bioactive compounds from Cortex Morin Radicis. Specific ligands of the two receptors (e.g. esmolol, metoprolol, atenolol, salbutamol, methoxyphenamine, tulobuterol and clorprenaline) were utilized to characterize the specificity and bioactivity of the columns. We used high performance affinity chromatography coupled with ESI-MS to screen targeted compounds of Cortex Morin Radicis. By zonal elution, we identified morin as a bioactive compound simultaneously binding to β1-AR and β2-AR. The compound exhibited the association constants of 3.10 × 104 and 2.60 × 104 M-1 on the β1-AR and β2-AR column. On these sites, the dissociation rate constants were calculated to be 0.131 and 0.097 s-1. Molecular docking indicated that the binding of morin to the two receptors occurred on Asp200, Asp121, and Val122 of β1-AR, Asn312, Thr110, Asp113, Tyr316, Gly90, Phe193, Ile309, and Trp109 of β2-AR. Likewise, mulberroside C was identified as the bioactive compound binding to β2-AR. The association constants and dissociation rate constants were calculated to be 1.08 × 104 M-1 and 0.900 s-1. Molecular docking also indicated that mulberroside C could bind to β2-AR receptor on its agonist site. Taking together, we demonstrated that the chromatographic strategy to identify bioactive natural products based on the β1-AR and β2-AR immobilization, has potential for screening bioactive compounds with multi-targets from complex matrices including traditional Chinese medicines.
Collapse
MESH Headings
- Morus/chemistry
- Receptors, Adrenergic, beta-2/metabolism
- Receptors, Adrenergic, beta-2/chemistry
- Receptors, Adrenergic, beta-1/metabolism
- Receptors, Adrenergic, beta-1/chemistry
- Molecular Docking Simulation
- Plant Extracts/chemistry
- Chromatography, Affinity/methods
- Humans
- Chromatography, High Pressure Liquid/methods
- Flavonoids/analysis
- Flavonoids/chemistry
Collapse
Affiliation(s)
- Yunzhi He
- College of Life Sciences, Northwest University, Xi'an, China
| | - Sidi Cun
- College of Life Sciences, Northwest University, Xi'an, China
| | - Junni Fan
- College of Life Sciences, Northwest University, Xi'an, China
| | - Jing Wang
- College of Life Sciences, Northwest University, Xi'an, China
| |
Collapse
|
3
|
Matera MG, Rinaldi B, Calzetta L, Rogliani P, Cazzola M. Advances in adrenergic receptors for the treatment of chronic obstructive pulmonary disease: 2023 update. Expert Opin Pharmacother 2023; 24:2133-2142. [PMID: 37955136 DOI: 10.1080/14656566.2023.2282673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 11/08/2023] [Indexed: 11/14/2023]
Abstract
INTRODUCTION Strong scientific evidence and large experience support the use of β2-agonists for the symptomatic alleviation of COPD. Therefore, there is considerable effort in discovering highly potent and selective β2-agonists. AREAS COVERED Recent research on novel β2-agonists for the treatment of COPD. A detailed literature search was performed in two major databases (PubMed/MEDLINE and Scopus) up to September 2023." EXPERT OPINION Compounds that preferentially activate a Gs- or β-arrestin-mediated signaling pathway via β- adrenoceptors (ARs) are more innovative. Pepducins, which target the intracellular region of β2-AR to modulate receptor signaling output, have the most interesting profile from a pharmacological point of view. They stabilize the conformation of the β2-AR and influence its signaling by interacting with the intracellular receptor-G protein interface. New bifunctional drugs called muscarinic antagonist-β2 agonist (MABA), which have both muscarinic receptor (mAChR) antagonism and β2-agonist activity in the same molecule, are a new opportunity. However, all tested compounds have been shown to act predominantly as mAChR antagonists or β2-agonists. An intriguing idea is to utilize allosteric modulators that bind to β2-ARs at sites different than those bound by orthosteric ligands to augment or reduce the signaling transduced by the orthosteric ligand.
Collapse
Affiliation(s)
- Maria Gabriella Matera
- Unit of Pharmacology, Department of Experimental Medicine, University of Campania 'Luigi Vanvitelli', Naples, Italy
| | - Barbara Rinaldi
- Unit of Pharmacology, Department of Experimental Medicine, University of Campania 'Luigi Vanvitelli', Naples, Italy
| | - Luigino Calzetta
- Unit of Respiratory Diseases and Lung Function, Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Paola Rogliani
- Unit of Respiratory Medicine, Department of Experimental Medicine, University of Rome 'Tor Vergata', Rome, Italy
| | - Mario Cazzola
- Unit of Respiratory Medicine, Department of Experimental Medicine, University of Rome 'Tor Vergata', Rome, Italy
| |
Collapse
|
4
|
Alkawadri T, Wong PY, Fong Z, Lundy FT, McGarvey LP, Hollywood MA, Thornbury KD, Sergeant GP. M2 Muscarinic Receptor-Dependent Contractions of Airway Smooth Muscle are Inhibited by Activation of β-Adrenoceptors. FUNCTION 2022; 3:zqac050. [PMID: 36325515 PMCID: PMC9617473 DOI: 10.1093/function/zqac050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 09/19/2022] [Accepted: 09/21/2022] [Indexed: 01/07/2023] Open
Abstract
Beta-adrenoceptor (β-AR) agonists inhibit cholinergic contractions of airway smooth muscle (ASM), but the underlying mechanisms are unclear. ASM cells express M3 and M2 muscarinic receptors, but the bronchoconstrictor effects of acetylcholine are believed to result from activation of M3Rs, while the role of the M2Rs is confined to offsetting β-AR-dependent relaxations. However, a profound M2R-mediated hypersensitization of M3R-dependent contractions of ASM was recently reported, indicating an important role for M2Rs in cholinergic contractions of ASM. Here, we investigated if M2R-dependent contractions of murine bronchial rings were inhibited by activation of β-ARs. M2R-dependent contractions were apparent at low frequency (2Hz) electric field stimulation (EFS) and short (10s) stimulus intervals. The β1-AR agonist, denopamine inhibited EFS-evoked contractions of ASM induced by reduction in stimulus interval from 100 to 10 s and was more effective at inhibiting contractions evoked by EFS at 2 than 20 Hz. Denopamine also abolished carbachol-evoked contractions that were resistant to the M3R antagonist 4-DAMP, similar to the effects of the M2R antagonists, methoctramine and AFDX-116. The inhibitory effects of denopamine on EFS-evoked contractions of ASM were smaller in preparations taken from M2R -/- mice, compared to wild-type (WT) controls. In contrast, inhibitory effects of the β3-AR agonist, BRL37344, on EFS-evoked contractions of detrusor strips taken from M2R -/- mice were greater than WT controls. These data suggest that M2R-dependent contractions of ASM were inhibited by activation of β1-ARs and that genetic ablation of M2Rs decreased the efficacy of β-AR agonists on cholinergic contractions.
Collapse
Affiliation(s)
- Tuleen Alkawadri
- Smooth Muscle Research Centre, Dundalk Institute of Technology, Dublin Road, Dundalk, Co. Louth A91 K584, Ireland
| | - Pei Yee Wong
- Smooth Muscle Research Centre, Dundalk Institute of Technology, Dublin Road, Dundalk, Co. Louth A91 K584, Ireland
| | - Zhihui Fong
- Smooth Muscle Research Centre, Dundalk Institute of Technology, Dublin Road, Dundalk, Co. Louth A91 K584, Ireland
| | - Fionnuala T Lundy
- The Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen’s University Belfast, Belfast, BT9 7BL, Northern Ireland
| | - Lorcan P McGarvey
- The Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen’s University Belfast, Belfast, BT9 7BL, Northern Ireland
| | - Mark A Hollywood
- Smooth Muscle Research Centre, Dundalk Institute of Technology, Dublin Road, Dundalk, Co. Louth A91 K584, Ireland
| | - Keith D Thornbury
- Smooth Muscle Research Centre, Dundalk Institute of Technology, Dublin Road, Dundalk, Co. Louth A91 K584, Ireland
| | | |
Collapse
|
5
|
Tiotropium/Olodaterol Delays Clinically Important Deterioration Compared with Tiotropium Monotherapy in Patients with Early COPD: a Post Hoc Analysis of the TONADO ® Trials. Adv Ther 2021; 38:579-593. [PMID: 33175291 PMCID: PMC7854451 DOI: 10.1007/s12325-020-01528-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 10/08/2020] [Indexed: 12/19/2022]
Abstract
Introduction Since chronic obstructive pulmonary disease (COPD) is a heterogeneous condition, a composite endpoint of clinically important deterioration (CID) may provide a more holistic assessment of treatment efficacy. We compared long-acting muscarinic antagonist/long-acting β2-agonist combination therapy with tiotropium/olodaterol versus tiotropium alone using a composite endpoint for CID. CID was evaluated overall and in patients with low exacerbation history (at most one moderate exacerbation in the past year [not leading to hospitalisation]), Global Initiative for Chronic Obstructive Lung Disease (GOLD) 2 patients and maintenance-naïve patients with COPD. We assessed whether early treatment optimisation is more effective with tiotropium/olodaterol versus tiotropium in delaying and reducing the risk of CID. Methods Data were analysed from 2055 patients treated with either tiotropium/olodaterol 5/5 μg or tiotropium 5 μg (delivered via Respimat®) in two replicate, 52-week, parallel-group, double-blind studies (TONADO® 1/2). CID was defined as a decline of at least 0.1 L from baseline in trough forced expiratory volume in 1 s, increase from baseline of at least 4 units in St. George’s Respiratory Questionnaire score, or moderate/severe exacerbation. Time to first occurrence of one of these events was recorded as time to first CID. Results Overall, treatment with tiotropium/olodaterol significantly increased the time to, and reduced the risk of, CID versus tiotropium (median time to CID 226 versus 169 days; hazard ratio [HR] 0.76 [95% confidence interval 0.68, 0.85]; P < 0.0001). Significant reductions were also observed in patients with low exacerbation history (241 versus 170; HR 0.73 [0.64, 0.83]; P < 0.0001), GOLD 2 patients (241 versus 169; 0.72 [0.61, 0.84]; P < 0.0001) and maintenance-naïve patients (233 versus 171; 0.75 [0.62, 0.91]; P = 0.0030). Conclusion In patients with COPD, including patients with low exacerbation history, GOLD 2 patients and maintenance-naïve patients, tiotropium/olodaterol reduced the risk of CID versus tiotropium. These results demonstrate the advantages of treatment optimisation with tiotropium/olodaterol over tiotropium monotherapy. Trial Registration ClinicalTrials.gov identifier: TONADO® 1 and 2 (NCT01431274 and NCT01431287, registered 8 September 2011). Graphic Abstract ![]()
Electronic supplementary material The online version of this article (10.1007/s12325-020-01528-2) contains supplementary material, which is available to authorized users. COPD is a complicated disease that deteriorates over time. Worsening of COPD is associated with the lungs working less effectively, a fall in quality of life and a rise in sudden flare-ups of the disease. In this study, we looked at lung function, quality of life and flare-ups together using a measure called “clinically important deterioration” (CID). We looked at 2055 people with COPD to compare the effects of taking two bronchodilators (tiotropium and olodaterol) against taking one bronchodilator (tiotropium alone). Bronchodilators are a type of inhaled medication that relax the muscles in the lungs and widen airways, making it easier to breathe. They have also been shown to reduce sudden flare-ups of COPD. Across a wide range of people with COPD, we found that treatment with tiotropium/olodaterol reduced the risk of a CID compared with tiotropium alone. This includes in those patients at an early stage of disease, who may benefit from finding the best treatment option for them as early as possible.
Collapse
|
6
|
Anzueto A, Kaplan A. Dual bronchodilators in chronic obstructive pulmonary disease: Evidence from randomized controlled trials and real-world studies. RESPIRATORY MEDICINE: X 2020. [DOI: 10.1016/j.yrmex.2020.100016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
|
7
|
Cazzola M, Rogliani P, Stolz D, Matera MG. Pharmacological treatment and current controversies in COPD. F1000Res 2019; 8:F1000 Faculty Rev-1533. [PMID: 31508197 PMCID: PMC6719668 DOI: 10.12688/f1000research.19811.1] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/20/2019] [Indexed: 12/16/2022] Open
Abstract
Bronchodilators, corticosteroids, and antibiotics are still key elements for treating chronic obstructive pulmonary disease in the 2019 Global Initiative for Chronic Obstructive Lung Disease (GOLD) recommendations and this is due in part to our current inability to discover new drugs capable of decisively influencing the course of the disease. However, in recent years, information has been produced that, if used correctly, can allow us to improve the use of the available therapies.
Collapse
Affiliation(s)
- Mario Cazzola
- Unit of Respiratory Medicine, Department of Experimental Medicine, University of Rome "Tor Vergata", Rome, Italy
| | - Paola Rogliani
- Unit of Respiratory Medicine, Department of Experimental Medicine, University of Rome "Tor Vergata", Rome, Italy
| | - Daiana Stolz
- Clinic of Respiratory Medicine and Pulmonary Cell Research, University Hospital of Basel, Basel, Switzerland
| | - Maria Gabriella Matera
- Unit of Pharmacology, Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| |
Collapse
|
8
|
Kistemaker LEM, Elzinga CRS, Tautermann CS, Pieper MP, Seeliger D, Alikhil S, Schmidt M, Meurs H, Gosens R. Second M 3 muscarinic receptor binding site contributes to bronchoprotection by tiotropium. Br J Pharmacol 2019; 176:2864-2876. [PMID: 31077341 DOI: 10.1111/bph.14707] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 04/16/2019] [Accepted: 04/29/2019] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND AND PURPOSE The bronchodilator tiotropium binds not only to its main binding site on the M3 muscarinic receptor but also to an allosteric site. Here, we have investigated the functional relevance of this allosteric binding and the potential contribution of this behaviour to interactions with long-acting β-adrenoceptor agonists, as combination therapy with anticholinergic agents and β-adrenoceptor agonists improves lung function in chronic obstructive pulmonary disease. EXPERIMENTAL APPROACH ACh, tiotropium, and atropine binding to M3 receptors were modelled using molecular dynamics simulations. Contractions of bovine and human tracheal smooth muscle strips were studied. KEY RESULTS Molecular dynamics simulation revealed extracellular vestibule binding of tiotropium, and not atropine, to M3 receptors as a secondary low affinity binding site, preventing ACh entry into the orthosteric binding pocket. This resulted in a low (allosteric binding) and high (orthosteric binding) functional affinity of tiotropium in protecting against methacholine-induced contractions of airway smooth muscle, which was not observed for atropine and glycopyrrolate. Moreover, antagonism by tiotropium was insurmountable in nature. This behaviour facilitated functional interactions of tiotropium with the β-agonist olodaterol, which synergistically enhanced bronchoprotective effects of tiotropium. This was not seen for glycopyrrolate and olodaterol or indacaterol but was mimicked by the interaction of tiotropium and forskolin, indicating no direct β-adrenoceptor-M3 receptor crosstalk in this effect. CONCLUSIONS AND IMPLICATIONS We propose that tiotropium has two binding sites at the M3 receptor that prevent ACh action, which, together with slow dissociation kinetics, may contribute to insurmountable antagonism and enhanced functional interactions with β-adrenoceptor agonists.
Collapse
Affiliation(s)
- Loes E M Kistemaker
- Department of Molecular Pharmacology, University of Groningen, Groningen, The Netherlands.,Groningen Research Institute for Asthma and COPD, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Carolina R S Elzinga
- Department of Molecular Pharmacology, University of Groningen, Groningen, The Netherlands.,Groningen Research Institute for Asthma and COPD, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Christofer S Tautermann
- Department of Medicinal Chemistry, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany
| | - Michael P Pieper
- Immunology and Respiratory Disease Research, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany
| | - Daniel Seeliger
- Department of Medicinal Chemistry, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany
| | - Suraya Alikhil
- Department of Molecular Pharmacology, University of Groningen, Groningen, The Netherlands.,Groningen Research Institute for Asthma and COPD, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Martina Schmidt
- Department of Molecular Pharmacology, University of Groningen, Groningen, The Netherlands.,Groningen Research Institute for Asthma and COPD, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Herman Meurs
- Department of Molecular Pharmacology, University of Groningen, Groningen, The Netherlands.,Groningen Research Institute for Asthma and COPD, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Reinoud Gosens
- Department of Molecular Pharmacology, University of Groningen, Groningen, The Netherlands.,Groningen Research Institute for Asthma and COPD, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
9
|
Harrison EM, Kim V. Long-acting maintenance pharmacotherapy in chronic obstructive pulmonary disease. RESPIRATORY MEDICINE: X 2019. [DOI: 10.1016/j.yrmex.2019.100009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
10
|
Vigna M, Aiello M, Bertorelli G, Crisafulli E, Chetta A. Flow and volume response to bronchodilator in patients with COPD. ACTA BIO-MEDICA : ATENEI PARMENSIS 2018; 89:332-336. [PMID: 30333454 PMCID: PMC6502113 DOI: 10.23750/abm.v89i3.5631] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2016] [Accepted: 07/25/2016] [Indexed: 11/23/2022]
Abstract
The response to a bronchodilator is considered as crucial to diagnose COPD and to distinguish COPD from asthma. COPD is characterized by progressive airflow obstruction that is only partly reversible, whereas asthma is associated with airflow obstruction that is often reversible either spontaneously or with treatment. In spite of the partly reversible airflow obstruction, patients with COPD may show a significant bronchodilator response both in terms of an increase in forced expiratory volume in 1 second (FEV1) or in forced vital capacity (FVC) after an adequate dose of an inhaled bronchodilator. Changes in FEV1 or FVC characterize, respectively, flow or volume response after bronchodilator administration. This overview will deal with the reversibility testing characteristics and its clinical significance in COPD patients.
Collapse
|
11
|
POINT: Should LAMA/LABA Combination Therapy Be Used as Initial Maintenance Treatment for COPD? Yes. Chest 2018; 154:746-748. [DOI: 10.1016/j.chest.2018.06.022] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Accepted: 06/11/2018] [Indexed: 11/22/2022] Open
|
12
|
Ficker JH, Rabe KF, Welte T. Role of dual bronchodilators in COPD: A review of the current evidence for indacaterol/glycopyrronium. Pulm Pharmacol Ther 2017; 45:19-33. [DOI: 10.1016/j.pupt.2017.04.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Revised: 03/29/2017] [Accepted: 04/01/2017] [Indexed: 01/22/2023]
|
13
|
Yang X, Xue L, Zhao Q, Cai C, Liu QH, Shen J. Nelumbo nucifera leaves extracts inhibit mouse airway smooth muscle contraction. Altern Ther Health Med 2017; 17:159. [PMID: 28320373 PMCID: PMC5359798 DOI: 10.1186/s12906-017-1674-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Accepted: 03/10/2017] [Indexed: 01/06/2023]
Abstract
Background Alkaloids extracted from lotus leaves (AELL) can relax vascular smooth muscle. However, whether AELL has a similar relaxant role on airway smooth muscle (ASM) remains unknown. This study aimed to explore the relaxant property of AELL on ASM and the underlying mechanism. Methods Alkaloids were extracted from dried lotus leaves using the high temperature rotary evaporation extraction method. The effects of AELL on mouse ASM tension were studied using force measuring and patch-clamp techniques. Results It was found that AELL inhibited the high K+ or acetylcholine chloride (ACh)-induced precontraction of mouse tracheal rings by 64.8 ± 2.9%, or 48.8 ± 4.7%, respectively. The inhibition was statistically significant and performed in a dose-dependent manner. Furthermore, AELL-induced smooth muscle relaxation was partially mediated by blocking voltage-dependent Ca2+ channels (VDCC) and non-selective cation channels (NSCC). Conclusion AELL, which plays a relaxant role in ASM, might be a new complementary treatment to treat abnormal contractions of the trachea and asthma. Electronic supplementary material The online version of this article (doi:10.1186/s12906-017-1674-7) contains supplementary material, which is available to authorized users.
Collapse
|
14
|
Cazzola M, Calzetta L, Puxeddu E, Ora J, Facciolo F, Rogliani P, Matera MG. Pharmacological characterisation of the interaction between glycopyrronium bromide and indacaterol fumarate in human isolated bronchi, small airways and bronchial epithelial cells. Respir Res 2016; 17:70. [PMID: 27296533 PMCID: PMC4906998 DOI: 10.1186/s12931-016-0386-8] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Accepted: 06/03/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Nowadays, there is a considerable gap in knowledge concerning the mechanism(s) by which long-acting β2-agonists (LABAs) and long-acting muscarinic antagonists (LAMAs) interact to induce bronchodilation. This study aimed to characterise the pharmacological interaction between glycopyrronium bromide and indacaterol fumarate and to identify the mechanism(s) leading to the bronchorelaxant effect of this interaction. METHODS The effects of glycopyrronium plus indacaterol on the contractile tone of medium and small human isolated bronchi were evaluated, and acetylcholine and cAMP concentrations were quantified. The interaction was assessed by Bliss Independence approach. RESULTS Glycopyrronium plus indacaterol synergistically inhibited the bronchial tone (medium bronchi, +32.51 % ± 7.86 %; small bronchi, +28.46 % ± 5.35 %; P < 0.05 vs. additive effect). The maximal effect was reached 140 min post-administration. A significant (P < 0.05) synergistic effect was observed during 9 h post-administration on the cholinergic tone, but not on the histaminergic contractility. Co-administration of glycopyrronium and indacaterol reduced the release of acetylcholine from the epithelium but not from bronchi, and enhanced cAMP levels in bronchi and epithelial cells (P < 0.05 vs. control), an effect that was inhibited by the selective KCa(++) channel blocker iberiotoxin. The role of cAMP-dependent pathway was confirmed by the synergistic effect elicited by the adenylate cyclase activator forskolin on glycopyrronium (P < 0.05 vs. additive effect), but not on indacaterol (P > 0.05 vs. additive effect), with regard of the bronchial relaxant response and cAMP increase. CONCLUSIONS Glycopyrronium/indacaterol co-administration leads to a synergistic improvement of bronchodilation by increasing cAMP concentrations in both airway smooth muscle and bronchial epithelium, and by decreasing acetylcholine release from the epithelium.
Collapse
Affiliation(s)
- Mario Cazzola
- Department of Systems Medicine, Chair of Respiratory Medicine, University of Rome Tor Vergata, Rome, Italy.,Department of Systems Medicine, Respiratory Pharmacology Research Unit, University of Rome Tor Vergata, Via Montpellier 1, 00133, Rome, Italy.,Division of Respiratory Medicine, University Hospital Tor Vergata, Rome, Italy
| | - Luigino Calzetta
- Department of Systems Medicine, Respiratory Pharmacology Research Unit, University of Rome Tor Vergata, Via Montpellier 1, 00133, Rome, Italy.
| | - Ermanno Puxeddu
- Department of Systems Medicine, Chair of Respiratory Medicine, University of Rome Tor Vergata, Rome, Italy.,Division of Respiratory Medicine, University Hospital Tor Vergata, Rome, Italy
| | - Josuel Ora
- Division of Respiratory Medicine, University Hospital Tor Vergata, Rome, Italy
| | - Francesco Facciolo
- Regina Elena National Cancer Institute, Thoracic Surgery Unit, Rome, Italy
| | - Paola Rogliani
- Department of Systems Medicine, Chair of Respiratory Medicine, University of Rome Tor Vergata, Rome, Italy.,Division of Respiratory Medicine, University Hospital Tor Vergata, Rome, Italy
| | - Maria Gabriella Matera
- Department of Experimental Medicine, Unit of Pharmacology, Second University of Naples, Naples, Italy
| |
Collapse
|